ON A DIOPHANTINE EQUATION

Fadwa S. Abu Muriefah and S. Akhtar Arif

In this paper the equation $x^{2}+3^{2 k}=y^{n}$ where $n \geqslant 3$ is studied. For $n=3$, it is proved that it has a solution only if $k=3 K+2$ and then there is a unique solution $x=46 \times 3^{3 K}$ and $y=13 \times 3^{2 K}$. For $n>3$ theorems are proved which determine a large number of values of k and n for which this equation has no solution. It is proved that if this equation has a solution for $n>3$, then n is odd and $k=2^{\delta} . k^{\prime}$ where $\delta \geqslant 1,(2, \delta)=1, k^{\prime} \equiv 15(\bmod 20)$ and all the primes divisors p of n are congruent to $11(\bmod 12)$.

1. Introduction

Many special cases of the equation $x^{2}+C=y^{n}$ where x and y are positive integers and $n \geqslant 3$ have been considered over the years, but recently Cohn has studied this equation extensively. In [3] he has solved this equation completely for most values of C less than 100. For $C=2^{k}$, Cohn [2] has proved that when k is odd there are three families of solutions and recently Arif and Abu Muriefah [1] have studied the same equation when k is even and they have put forward a conjecture and verified it for most values of k less than 200.

In this paper we confine ourselves to the study of the equation $x^{2}+C=y^{n}$ for $C=3^{2 k}$. The first result for general n is due to Lebesgue [4] who proved that when $k=0$ the equation has no solution, so we shall assume that $k \geqslant 1$. We solve the equation completely for n equal to 3 and for n even and greater than or equal to 4 . For the other values of n we prove some theorems giving necessary conditions for the solvability of the equation. Our work suggests the following.

Conjecture. There are no solutions for the diophantine equation

$$
\begin{equation*}
x^{2}+3^{2 k}=y^{n}, \quad \text { where } \quad n \geqslant 3 \tag{1}
\end{equation*}
$$

unless $k=3 K+2$ and $n=3$ and then there is a unique solution $x=46 \times 3^{3 K}$ and $y=13 \times 3^{2 K}$.

We are able to prove this conjecture for a large class of values of k and have verified it for all values of k less than or equal to 100 with eleven exceptions.

Our method of proof is similar to that of Cohn [3] and we use some of the results proved in that paper. Without loss of generality we can assume that x is positive and we consider two solutions of (1) different if they have different values of x.

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/98 \$A2.00+0.00.
2. We first deal with the case n even and we will use the following lemma to prove the next theorem.

Lemma 1. (Störmer [7].) The diophantine equation $x^{2}+1=2 y^{n}$ has no solution in integers $x>1, y \geqslant 1$ and n odd, $n \geqslant 3$.

TheOrem 1. The diophantine equation $x^{2}+3^{2 k}=y^{n}$ has no solution if n is even and greater than or equal to 4.

Proof: If x is odd then $x^{2}+3^{2 k} \equiv 2(\bmod 8)$, yielding no solution. So we assume that x is even and y is odd. First assume that $(3, x)=1$. Putting $n=2 t$ with $t \geqslant 2$ we obtain $\left(y^{t}+x\right)\left(y^{t}-x\right)=3^{2 k}$. Since $(3, x)=1$, we get $y^{t}+x=3^{2 k}$ and $y^{t}-x=1$. By adding the last two equations we get $2 y^{t}=1+3^{2 k}$. If t is even this equation is not true modulo 3 and if t is odd then it follows from Lemma 1 that it has no solution. Now if $3 \mid x$ then of course $3 \mid y$. Suppose that $x=3^{u} X, y=3^{v} Y$ where $u>0, v>0$ and $(3, X)=(3, Y)=1$. Then

$$
\begin{equation*}
3^{2 u} X^{2}+3^{2 k}=3^{2 t v} Y^{2 t} \tag{2}
\end{equation*}
$$

If $u<k$, then by cancelling $3^{2 u}$ in (2) we get $X^{2}+3^{2(k-u)}=3^{2 t v-2 u} Y^{2 t}$ and considering this equation modulo 3 we deduce that $t v-u=0$, then $X^{2}+3^{2(k-u)}=Y^{2 t}$. But it is proved above that this equation has no solution. If $k \leqslant u$, we get $3^{2(u-k)} X^{2}+$ $1=3^{2 t v-2 k} Y^{2 t}$ and considering this modulo 3 we get $2 t v-2 k=0$, so (2) becomes $\left(3^{u-k} X\right)^{2}+1=Y^{2 t}$ and this equation is known to have no solution [4].
3. Now we consider the equation when n is an odd integer and suppose that p is an odd prime that divides n. Then we can write (1) as $x^{2}+3^{2 k}=\left(y^{n / p}\right)^{p}$. So it is sufficient to consider the equation $x^{2}+3^{2 k}=y^{p}$.

In fact it is sufficient to consider the case $(3, x)=1$. Because if $3 \mid x$ then using the hypotheses in the proof of the last theorem, and by similar argument we get

$$
\begin{equation*}
X^{2}+3^{2(k-u)}=Y^{p}, \quad \text { where } \quad 2 u=p v \tag{3}
\end{equation*}
$$

with $(3, X)=1$ and the equation is reduced to the same kind of equation (1) with a smaller value of k. So we proceed to consider the equation

$$
\begin{equation*}
x^{2}+3^{2 k}=y^{p}, \quad \text { where } \quad k>0, p \text { an odd prime and }(3, x)=1 \tag{4}
\end{equation*}
$$

Theorem 2. If the diophantine equation (4) has a solution then either $p=3$ and there is the unique solution $k=2, x=46, y=13$ or k is even and $p \equiv 11$ $(\bmod 12)$.

Proof: We factorise equation(4) in the field $Q(i)$, to obtain

$$
\left(x+3^{k} i\right)\left(x-3^{k} i\right)=y^{p}
$$

where the factors in the left hand side are coprime. Thus

$$
\begin{equation*}
x+3^{k} i=(a+b i)^{p} \tag{5}
\end{equation*}
$$

where $y=a^{2}+b^{2}$ is odd, so a and b have opposite parity. On equating real and imaginary parts in (5) we get

$$
\begin{align*}
x & =a\left\{a^{p-1}-\binom{p}{2} a^{p-2} b^{2}+\cdots+(-1)^{(p-1) / 2} p b^{p-1}\right\} \tag{6}\\
3^{k} & =b \sum_{r=0}^{(p-1) / 2}\binom{p}{2 r+1} a^{p-2 r-1}\left(-b^{2}\right)^{r} \tag{7}
\end{align*}
$$

From (6) we deduce that ($3, a)=1$, and from (7) we deduce that a is even and b is odd. If $p=3$ then from (7) we get $3^{k}=b\left(3 a^{2}-b^{2}\right)$. If $b= \pm 1$, then $\pm 3^{k}=3 a^{2}-1$, which is impossible modulo 3. Similarly $b= \pm 3^{k}$ can be easily eliminated. Hence $b= \pm 3^{c}$, $1 \leqslant c<k$. Then $\pm 3^{k-c-1}=a^{2}-3^{2 c-1}$. Since $(3, a)=1$, we deduce that $k=c+1$, whence $3^{2 c-1} \pm 1=a^{2}$. By considering this equation modulo 4 , we get $3^{2 c-1}+1=a^{2}$. Then $(a-1)(a+1)=3^{2 \mathrm{c}-1}$, whence $a-1=1$ or -3 , and $k=2$. Thus from (6) we get $x=46$, so $y=13$. Now if $p>3$, let $b= \pm 1$. Then (7) considered modulo 3 implies

$$
0 \equiv \frac{(1+i)^{p}-(1-i)^{p}}{2 i} \equiv \pm 1 \quad(\bmod 3)
$$

which is a contradiction, so $b \neq \pm 1$. Hence $b= \pm 3^{\lambda}, 1 \leqslant \lambda<k$. If $\lambda \neq k$ then again considering (7) modulo 3, we get a contradiction. Hence $b= \pm 3^{k}$, and we arrive at

$$
\pm 1=\sum_{r=0}^{(p-1) / 2}\binom{p}{2 r+1} a^{p-2 r-1}\left(-3^{2 k}\right)^{r}
$$

This equation is exactly equation (1) in [3] and we can use Lemma 5 of [3] to deduce that the upper sign cannot hold, so $b=-3^{k}$ and

$$
\begin{equation*}
-1=\sum_{r=0}^{(p-1) / 2}\binom{p}{2 r+1} a^{p-2 r-1}\left(-3^{2 k}\right)^{r} \tag{8}
\end{equation*}
$$

This implies that k is even, $p \equiv 2(\bmod 3), p \equiv 3(\bmod 4)$. Consequently $p \equiv 11$ $(\bmod 12)$. This completes the proof of Theorem 2.

Corollary 1. The diophantine equation (4) has no solution if k is odd.
We use Theorem 2 to solve equation (1) completely when $p=3$. When $3 \mid x$ we can deduce from equation (3) that (1) reduces to

$$
X^{2}+3^{2(k-u)}=Y^{3}, \quad \text { where } \quad 2 u=3 v
$$

with $(3, X)=1$, and from Theorem 2 there is a unique solution when $k-u=2$. But $3 \mid u$, so let $u=3 K$, then $k=3 K+2, x=46 \times 3^{u}=46 \times 3^{3 K}$ and $y=13 \times 3^{v}=$ $13 \times 3^{2 K}$. Hence we get the following:

Corollary 2. The diophantine equation $x^{2}+3^{2 k}=y^{3}$ has a solution only if $k=3 K+2$ and the unique solution is given by $x=46 \times 3^{3 K}$ and $y=13 \times 3^{2 K}$.

Now we consider equation (8) and obtain conditions for the solvability of (4). We need the following two lemmas to prove Theorem 3.

Lemma 2. (Nagell [6].) Suppose that $N=2^{t} . v$ where N, t and v are positive integers, v odd. Suppose further that u and u_{1} are odd integers $u \neq u_{1}$. Then the integer $\left(u^{N}-u_{1}^{N}\right) /\left(u^{2}-u_{1}^{2}\right)$ is divisible exactly by 2^{t-1}.

Lemma 3. The integer a defined in (8) is divisible by 4.
Proof: We know that a is even and $p \equiv 3(\bmod 4)$. Let $a=2 a^{\prime}$ where $\left(2, a^{\prime}\right)=1$ and $p=4 H+3$. Then (8) implies

$$
\begin{aligned}
-1 & \equiv \frac{p(p-1)}{2} a^{2} 3^{k(p-3)}-3^{k(p-1)}(\bmod 16) \\
& \equiv(4 H+3)(2 H+1) 4 a^{\prime 2} \cdot 3^{4 k H}-3^{k(2+4 H)}(\bmod 16) \\
& \equiv \pm 4-3^{2 k}(\bmod 16)
\end{aligned}
$$

which is not true. This concludes the proof.
Thedrem 3. In equation (8), if $2^{S} \| a$ then $S \geqslant 2$ and $2^{2 S-3} \| k$.
Proof: Since $4 \mid a$, let $a=2^{S} . a^{\prime}$, where $S \geqslant 2$ and ($2, a^{\prime}$) $=1$. Also k even implies that $k=2^{\delta} . k^{\prime},\left(2, k^{\prime}\right)=1$ and $\delta \geqslant 0$. By rewriting (8) we obtain

$$
3^{k(p-1)}-1=\sum_{r=0}^{(p-3) / 2}\binom{p}{2 r+1} a^{p-2 r-1}\left(-3^{2 k}\right)^{r}
$$

The right hand side of this equation is exactly divisible by $2^{2 S}$. For the left hand side, we know that $p \equiv 3(\bmod 4)$, so using Lemma 2 , where

$$
N=k(p-1)=2^{\delta+1} \cdot k^{\prime}\left(\frac{p-1}{2}\right)=2^{\delta+1} \cdot v
$$

and v is odd we find that this side is exactly divisible by $2^{\delta+3}$. Consequently $\delta+3=2 S$ and hence $2^{2 S-3} \| k$.

Corollary 3. The diophantine equation (4) has no solution if $k=2^{2 m} \cdot k^{\prime}$, where $\left(2, k^{\prime}\right)=1$ and $m \geqslant 0$.

Examples.

1. The diophantine equation $x^{2}+9=y^{n}$ has no solution. This was first shown by Ljunggren [5].
2. Consider the diophantine equation $x^{2}+3^{40}=y^{n}$.

Here $k \equiv 2(\bmod 3)$, so if $3 \mid n$, then there is a unique solution $x=46.3^{18}, y=13.3^{9}$, $n=3$ and if n even then there is no solution. Finally if $(6, n)=1$ then there is no solution when $(3, x)=1$ (Corollary 3), so let $x=3^{u} X, y=3^{u} Y$ where $u>0, v>0$ and $(3, X)=(3, Y)=1$. Then we have only the equation

$$
X^{2}+3^{2(20-u)}=Y^{n}
$$

where $n v=2 u$ and $0<u<20$. Corollary 3 can solve this equation except when

$$
20-u=2,6,8,10,14,18
$$

1. If $20-u=2$, then $u=18$, so $n v=36$ which is impossible since $(6, n)=1$.
2. If $20-u=6$, then $u=14$, so $n v=48$, thus $n=7$, so $X^{2}+3^{12}=Y^{7}$ with $(3, X)=1$ which has no solution (Theorem 2).
3. If $20-u=8$ then $n v=24$ which is impossible since $(6, n)=1$.
4. If $20-u=10$, then we get $n=5$, so $X^{2}+3^{20}=Y^{5}$ with $(3, X)=1$ which has no solution (Theorem 2).
5. If $20-u=14$, then $n v=12$ which is impossible since $(6, n)=1$.
6. If $20-u=18$, then $n v=4$ which is impossible since $(6, n)=1$.

Corollary 3 does not solve equation (4) if an odd power of 2 exactly divides k, for example, $k=2,8,10, \ldots$. In the following we give a theorem which can solve some of these values of k, that is when an odd power of 2 exactly divides k and when $(5, k)=1$. From Corollary 1 it is sufficient to consider k even.

Theorem 4. The diophantine equation (4) where $p>3$ has no solution if $(5, k)=1$.

Proof: Since k is even, $3^{2 k} \equiv 1(\bmod 5)$. Considering equation (8) modulo 5 , remembering $p \equiv 3(\bmod 4)$, we get

$$
-1 \equiv \frac{(a+i)^{p}-(a-i)^{p}}{2 i}=\frac{(a+i)^{3}-(1-i)^{3}}{2 i}=3 a^{2}-1 \quad(\bmod 5)
$$

which implies $5 \mid a$. Then [3, Lemma 3] implies that $3^{8 k} \equiv 1(\bmod 25)$. But 3 is a primitive root of 25 , hence $5 \mid k$, so if $(5, k)=1$, then equation (4) as no solution. $]$

Examples.

1. The diophantine equation $x^{2}+3^{4}=y^{n}$ has the unique solution $x=46$, $y=13, n=3$. This result is also in [3].
2. The diophantine equation $x^{2}+3^{48}=y^{n}$ has no solution.

Now if an odd power of 2 exactly divides k and $5 \mid k$, then none of the above theorems solve (4). The following theorem can solve this problem partially.

THEOREM 5. The diophantine equation (4) where $p>3$ has no solution if $k=$ $2^{\delta} . k^{\prime}$ where $k^{\prime} \equiv 1(\bmod 4), \delta \geqslant 1$.

Proof: Let us define the sequences of rational integers $\left\{u_{m}\right\}$ and $\left\{v_{m}\right\}$ by setting

$$
\begin{equation*}
\left(a-3^{k} i\right)^{m}=u_{m}+3^{k} v_{m} i, m>0 \tag{9}
\end{equation*}
$$

Obviously

$$
u_{1}=a, v_{1}=-1, u_{2}=a^{2}-3^{2 k}, v_{2}=-2 a
$$

From equation (5) where $b=-3^{k}$ we get

$$
\begin{equation*}
x+3^{k} i=\left(a-3^{k} i\right)^{p} \tag{10}
\end{equation*}
$$

where $a=2^{S} . a^{\prime}, S \geqslant 2,\left(2, a^{\prime}\right)=1$ and $p \equiv 3(\bmod 4)$. From (9) and (10) we get

$$
\begin{equation*}
x+3^{k} i=\left(a-3^{k} i\right)^{p}=u_{p}+3^{k} v_{p} i . \tag{11}
\end{equation*}
$$

So a solution of (4) exists if $v_{p}=1$, for some p. Now

$$
\begin{aligned}
u_{p+1}+3^{k} v_{p+1} i & =\left(a-3^{k} i\right)^{p}\left(a-3^{k} i\right) \\
& =\left(u_{p}+3^{k} v_{p} i\right)\left(a-3^{k} i\right)
\end{aligned}
$$

By equating the imaginary parts in this relation we get

$$
\begin{equation*}
v_{p+1}=a v_{p}-u_{p} \tag{12}
\end{equation*}
$$

Also from (11) we get

$$
\begin{aligned}
u_{p+2}+3^{k} v_{p+2} i & =\left(a-3^{k} i\right)^{p}\left(a-3^{k} i\right)^{2} \\
& =\left(u_{p}+3^{k} v_{p} i\right)\left(a^{2}-2 a .3^{k} i-3^{2 k}\right)
\end{aligned}
$$

Again by equating the imaginary parts in this relation and using (12) we deduce

$$
\begin{align*}
v_{p+2} & =\left(a^{2}-3^{2 k}\right) v_{p}-2 u_{p} a \\
& =\left(a^{2}-3^{2 k}\right) v_{p}+2 a\left(v_{p+1}-a v_{p}\right) \\
& =2 a v_{p+1}-\left(a^{2}+3^{2 k}\right) v_{p} \tag{13}
\end{align*}
$$

Since $4 \mid a$, then from (13) we can deduce that

$$
\begin{aligned}
v_{3} & =2 a v_{2}-\left(a^{2}+3^{2 k}\right) v_{1} \\
& =-2^{2 S+2} a^{\prime 2}+a^{2}+3^{2 k} \\
& \equiv 2^{2 S} a^{\prime 2}+3^{2 k}\left(\bmod 2^{2 S+2}\right) \\
& \equiv 2^{2 S}+3^{2 k}\left(\bmod 2^{2 S+2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
v_{p+2}+\left(a^{2}-3^{2 k}\right) v_{p} & =2 a v_{p+1} \\
& =2 a\left[2 a v_{p}-\left(a^{2}+3^{2 k}\right) v_{p-1}\right] \\
& \equiv-2 a\left(2^{2 S}+3^{2 k}\right) v_{p-1}\left(\bmod 2^{2 S+2}\right)
\end{aligned}
$$

Continuing, we get

$$
v_{p+2}+\left(a^{2}-3^{2 k}\right) v_{p} \equiv \pm 2 a\left(2^{2 S}+3^{2 k}\right) v_{2} \equiv 0 \quad\left(\bmod 2^{2 S+2}\right)
$$

This implies that

$$
v_{p+2} \equiv-\left(2^{2 S}+3^{2 k}\right) v_{p} \quad\left(\bmod 2^{2 S+2}\right)
$$

So we deduce that when $p \equiv 3(\bmod 4)$

$$
\begin{aligned}
v_{p} & \equiv-\left(a^{2}+3^{2 k}\right) v_{p-2}\left(\bmod 2^{2 S+2}\right) \\
& \equiv\left(a^{2}+3^{2 k}\right)^{2} v_{p-4}\left(\bmod 2^{2 S+2}\right) \\
& \equiv\left(2^{2 S}+3^{2 k}\right)^{(p-3) / 2} v_{3}\left(\bmod 2^{2 S+2}\right) \\
& \equiv\left(2^{2 S}+3^{2 k}\right)^{(p-1) / 2}\left(\bmod 2^{2 S+2}\right)
\end{aligned}
$$

By using the Binomial Theorem we get

$$
\begin{equation*}
v_{p} \equiv\left\{\left(\frac{p-1}{2}\right) 2^{2 S} \cdot 3^{k(p-3)}+3^{k(p-1)}\right\} \quad\left(\bmod 2^{2 S+2}\right) \tag{14}
\end{equation*}
$$

From Theorem 3 we have $k=2^{2 S-3} k^{\prime}$. Suppose $k^{\prime}=4 r+1$. Since $p \equiv 3(\bmod 4)$ we have two cases:

Case 1. $p=8 H+7$. Then from (14) we get, since $3^{2 S} \equiv 1\left(\bmod 2^{2 S+2}\right)$

$$
\begin{align*}
v_{p} & \equiv\left\{(4 H+3) 2^{2 S} \cdot 3^{2^{2 S-3}(8 H+4)(4 r+1)}+3^{2^{2 S-3}(8 H+6)(4 r+1)}\right\}\left(\bmod 2^{2 S+2}\right) \\
& \equiv\left\{2^{2 S} .3 .3^{2^{2 S-1}}+3^{3.2^{2 S-3}}\right\}\left(\bmod 2^{2 S+2}\right) \tag{15}
\end{align*}
$$

But $3^{2^{2 S-2}} \equiv 1+2^{2 S}\left(\bmod 2^{2 S+2}\right)$ and $3^{2^{2 S-1}} \equiv 1(\bmod 8)$. On substituting in (13) we get

$$
\begin{aligned}
v_{p} & \equiv\left\{3.2^{2 S}+\left(1+2^{2 S}\right)^{3}\right\}\left(\bmod 2^{2 S+2}\right) \\
& \equiv 1+2^{2 S+1}\left(\bmod 2^{2 S+2}\right)
\end{aligned}
$$

Case 2. $p=8 H+3$. Then from (14) we get

$$
\begin{aligned}
v_{p} & \equiv\left\{(4 H+1) 2^{2 S} \cdot 3^{2^{2 S-3} \cdot 8 H(4 r+1)}+3^{2^{2 S-3}(8 H+2)(4 r+1)}\right\}\left(\bmod 2^{2 S+2}\right) \\
& \equiv\left\{2^{2 S}+3^{2^{2 S-2}}\right\}\left(\bmod 2^{2 S+2}\right) \\
& \equiv 1+2^{2 S}+2^{2 S}\left(\bmod 2^{2 S+2}\right) \\
& \equiv 1+2^{2 S+1}\left(\bmod 2^{2 S+2}\right)
\end{aligned}
$$

In both cases $v_{p} \neq 1$, hence the diophantine equation (4) has no solution.
Examples. The diophantine equation $x^{2}+3^{20}=y^{n}$ and $x^{2}+3^{80}=y^{n}$ have no solutions.

Theorem 6. If $3 \mid k$ and $(7, k)=1$, then the diophantine equation (4) where $p>3$ may have a solution only if $p \equiv 11(\bmod 24)$.

Proof: Since $3 \mid k$, therefore $3^{2 k} \equiv 1(\bmod 7)$. From (8) we get

$$
\begin{equation*}
-1 \equiv \frac{(a+i)^{p}-(a-i)^{p}}{2 i} \quad(\bmod 7) \tag{16}
\end{equation*}
$$

From Theorem 1 we have only the following two cases for p :
CASE 1: $p=8 H+3$. Since $(a \pm i)^{8} \equiv a^{2}+1(\bmod 7)$ therefore (16) becomes

$$
-1 \equiv\left(a^{2}+1\right)^{H}\left(3 a^{2}-1\right) \quad(\bmod 7)
$$

We consider the different values of a :

1. $a^{2} \equiv 0(\bmod 7)$, then from Lemma 3 of $[3]$ we get $3^{12 k} \equiv 1(\bmod 49)$. But the order of 3 modulo 49 equals to 7 , hence $7 \mid k$, which is not true.
2. $a^{2} \equiv 1(\bmod 7)$, then $2^{H+1} \equiv-1(\bmod 7)$, which is not true.
3. $a^{2} \equiv 2(\bmod 7)$, then $5.3^{H} \equiv-1(\bmod 7)$, so $H \equiv 4(\bmod 6)$ and $p \equiv 2$ $(\bmod 3)$.
4. $a^{2} \equiv 4(\bmod 7)$, then $4.5^{H} \equiv-1(\bmod 7)$, so $H \equiv 1(\bmod 6)$ and $p \equiv 2$ $(\bmod 3)$. Thus when $p \equiv 3(\bmod 8)$, we deduce $p \equiv 2(\bmod 3)$, that is $p \equiv 11(\bmod 24)$.

Case 2: $p=8 H+7$. From (16) we get

$$
1 \equiv\left(a^{2}+1\right)^{H} \quad(\bmod 7)
$$

We consider the different values of a :

1. $\quad a^{2} \equiv 0(\bmod 7)$, as above, this is not possible.
2. $a^{2} \equiv 1(\bmod 7)$, then $2^{H} \equiv 1(\bmod 7)$ so $H \equiv 0(\bmod 3)$ and $p \equiv 1$ $(\bmod 3)$.
3. $a^{2} \equiv 2(\bmod 7)$, then $3^{H} \equiv 1(\bmod 7)$, so $H \equiv 0(\bmod 6)$ and $p \equiv 1$ $(\bmod 3)$.
4. $a^{2} \equiv 4(\bmod 7)$, then $5^{H} \equiv 1(\bmod 7)$, so $H \equiv 0(\bmod 6)$ and $p \equiv 1$ $(\bmod 3)$.

Thus when $p \equiv 7(\bmod 8)$, we deduce $p \equiv 1(\bmod 3)$, which is not true (Theorem 1).

From Theorems 2, 3, 4, and 5 we are able to solve the equation $x^{2}+3^{2 k}=y^{n}$, where $(3, x)=1$ for all $k \leqslant 100$ except when $k=30,70$. And if $3 \mid x$, then we examine the following equation

$$
X^{2}+3^{2(k-u)}=Y^{n}
$$

where $(3, X)=1, n v=2 u, 0<u<k$ for a given $k \leqslant 100$. The problem arises when $k-u=30$ or 70 and n has a prime divisor $p \equiv 11(\bmod 12)$ but Theorem 6 can solve this problem for some values of k. As an example we take $k=53$.

Example. Consider the diophantine equation $x^{2}+3^{106}=y^{n}$. As before it is sufficient to consider the equation

$$
X^{2}+3^{2(53-u)}=Y^{n},
$$

with $(6, n)=1,(3, X)=1, n v=2 u$ and $0<u<53$. For all values of u, this equation has no solution except when $53-u=30$, then $n v=46$, that is $n=23$, hence

$$
X^{2}+3^{60}=Y^{23}
$$

From Theorem 6 this equation has no solution. So the given equation has no solution.
By using the above method we are able to verify the conjecture for $k \leqslant 100$ except possibly for the values $k=30,41,52,63,70,81,85,89,92,93,96$.

References

[1] S.A. Arif and F.S. Abu Muriefah, 'The diophantine equation $x^{2}+2^{k}=y^{n}$ ', Internat. J. Math. Math. Sci. 20 (1997), 299-304.
[2] J.H. Cohn, 'The diophantine equation $x^{2}+2^{k}=y^{n}$, Arch. Math. 59 (1992), 341-344.
[3] J.H. Cohn, 'The diophantine equation $x^{2}+C=y^{n}$ ', Acta Arith. 65 (1993), 367-381.
[4] V.A. Lebesgue, 'Sur I'impossibilitié en nombres entiers de l'equation $x^{m}=y^{2}+1$ ', Von. Ann. Des. Math 9 (1850), 178-181.
[5] W. Ljunggren, 'On the diophantine equation $x^{2}+p^{2}=y^{n}$ ', Kong. Norsk. Vid. Selskab Forh. Trond. 16 (1943), 27-30.
[6] T. Nagell, 'On the diophantine equation $x^{2}+8 D=y^{n}$ ', Ark. Math. 3 (1955), 103-112.
[7] Störmer, 'L'equation m arctan $1 / x+n \arctan 1 / y=k . \pi / 4$ ', Bull. Soc. Math. France 27 (1899), 160-170.

Department of Mathematics
Girls College of Education
Riyadh
Saudi Arabia

[^0]: Received 16th June, 1997

