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UNIFORMLY PERFECT SETS AND DISTORTION OF
HOLOMORPHIC FUNCTIONS

JIAN-HUA ZHENG!

Abstract. We investigate the uniform perfectness on a boundary point of a
hyperbolic open set and distortion of a holomorphic function from the unit disk
A into a hyperbolic domain with a uniformly perfect boundary point, especially
of a universal covering map of such a domain from A, and we obtain similar
results to celebrated Koebe’s Theorems on univalent functions.

§1. Uniformly perfect points

We begin by recalling the basic knowledge of the hyperbolic metric on
a hyperbolic domain 2 in the complex plane C , that is, C \ Q contains
at least two points. On an arbitrary hyperbolic domain {2, we have the
hyperbolic metric Aq(z)|dz| with Gaussian curvature —4. The hyperbolic
metrics of the unit disk A and the upper half plane H = {Imz > 0} are
respectively

The density Aq(w) of the hyperbolic metric on a hyperbolic domain €2 is
then defined as follows. Let f(z) be a holomorphic universal covering map
from A onto €. Then the density \q(w) is determined by

W Ml E) = =

Noting that f(z) is locally homeomorphic, we can solve Aq(w) from equation
(1). The determination of A is independent of the choices of holomorphic
covering maps of 2 from A because of invariance of the hyperbolic metric
|dz|/(1 — |2|?) under Mé&bius transformation from A onto itself. Then the
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18 J.-H. ZHENG

hyperbolic metric is conformally invariant. By Ao 1(z) we denote the density
of the hyperbolic metric on C\ {0,1}. From [8] and [9], we have

1
> 9
~ 2Jz[(|log |z][ + #)

(2) Ao,1(2)

where x = I'(1/4)*/(47?). Next, by mod(A) we denote the modulus of an
annulus A. Let A = {z; r < |z —a| < R}, 0 <r < R. A calculation implies
that whenever |z — a| = V7R, we have

m
) Aa(z) 2v/rR mod(A)
(see [4]).

Throughout, let W be a hyperbolic open set in the complex plane,
that is, C \ W is closed and contains at least two points. We can define
the hyperbolic metric on W as the hyperbolic metric on each connected
component of W. By Ay (2) we denote the density of the hyperbolic metric
on W. For a ¢ W U {oo}, put

C(a, W) :=inf{A\w(2)|z —al; z € W}

If C(a,W) > 0, then a is called a uniformly perfect point with respect to
w.

For any zg € W, put c(z0, W) := Aw(20)0w (20), where oy (z9) :=
dist(zp, W) throughout denotes the euclidean distance from zy to OW.

Then (20.T7)
C(20,
zy lz—2l < ————=p CW.
{51l < S}

Now we introduce a domain constant
Cw = inf{c(z,W); z € W}.

In general, 0 < Cy < 1 (see [7]). If every component of W is simply con-
nected, from Koebe % Theorem, we easily prove % < Cw. And Cy = % if
and only if every component of W is convex (see [7]). OW is called uniformly
perfect, provided that Cyy > 0. There exist many mutually equivalent con-

ditions of uniform perfectness of a closed set (see [19] and [7]).

ProposiTION 1. Cyw = inf Cla, W)}
B W aeall/lrfl\{oo}{ (CL )}
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HOLOMORPHIC FUNCTIONS 19

Proof. Obviously, for any a € OW \ {o0}, C(a, W) > Cw. So we only
need to prove that

> i .
@ Cwz it {ClaW))

For any n > 0, there exists a z, € W such that Cy + % > Aw (2n) 0w (2n)
and for z, we have a,, € W \ {co} such that |z, —a,| = dw(2n). Therefore,

1
Cw + = > M (20)|2n — an| > Clan, W) > inf  {C(a, W)}.
Wt > A anl 2 Clan W) 2 inf{C(a,W))

From this (4) follows. [

Hence when W is uniformly perfect, any finite point on W is a uni-
formly perfect one with respect to W. An annulus A is said to separate a
from oo if the bounded component of C\ A contains a. Below we introduce
two domain constants and a notation. For a ¢ W U {oo}, define

Mod?(W) := sup{mod(A); A is a round annulus in W centered at a},
Mod, (W) := sup{mod(A); A is a (topological) annulus in W

and separates a from oo},

where conventionally ModO(W) = 0 (Mod, (W) = 0) if W does not contain
any round annuli centered at a (any annuli which separate a from o0), and

logm'; be@W}.

Bw (z;a) == inf{ bl

Since a round annulus in W centered at a obviously separates a from oo, we
have Mod, (W) > Mod?(W). We shall establish an inequality concerning
C(a, W) and Mod?(W). To this end, we first prove the following result.

LEMMA. Fora € OW \ {oo}, we have

(5) Mody (W) = 2 sup B (2; a).
zeW
Proof. For zy € W with Bw(z0;a) # 0, it is clear that {|z — a| =
5} NOW = (), where § = |29 — a|. Then there must exist in W a round
annulus A = {z; r < |z —a|] < R} such that 9A NOW # () and § = V7R.
For b € A N OW, then it is easy to see that

R 1
Zlog = = Zmod(A
— 0g 2mod( )

(6) v (30) = ;

— 1
log z aH =
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20 J-H. ZHENG
whenever |z — a| = V7R, especially,
26w (20; a) = mod(A) < Mod?(W).
This inequality still holds for zp € W with Gy (20; a) = 0. Therefore

(7) 2 sup B (z;a) < Mod2(W).
zeW

To get (5) we need to prove the converse inequality. We may assume
that Mod2(WW) > 0, then there exists a sequence of round annuli

Ay ={z rm<|z—al<R,} CW

such that 94, NOW # () and
1
mod(A,) + — > Mod2(W).
n

Applying (6) to A, gives 20w (z;a) = mod(A,,) whenever |z —a| = /1, Ry,

Thus 1
(8) 2 sup B (z;a) + — > Modd(W).
zeW n
(5) immediately follows by combining (8) with (7). U

We can prove by applying (2) and the method in [4] the following
theorem , which is essentially due to Beardon and Pommerenke [4](see [20]
and [23]).

THEOREM A. Fora € OW \ {oo}, we have

T
9 <Mww2)|z—al < ———, z€W.
O G e MO S g

Combining Theorem A with Lemma immediately shows the following

result.

PROPOSITION 2. For a € OW \ {oo}, we have

1 T
<Cla,W)< —
Mod0 () 1 2r = W) = S

(10)
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HOLOMORPHIC FUNCTIONS 21

Observe the domain

Qp:=C\ U [, 2],

n=1

where 7, is chosen to satisfy r, 11 > rf’l > 0 and 7, — 4o00. It is easy to see
that Cq, = 0 and from Proposition 2 for any a € 9Q \ {co}, C(a,p) = 0.
Hence in order to consider the local structure of OW at a boundary point
a, we introduce the quantity

C(a,W;R) := inf{\w(2)|z —a|; z€ Wn{|z—a|] < R}},

where R is a positive constant. For a fixed a, C(a, W;R) decreases as R
increases, hence we easily prove that

C(a,W) = REIEOO C(a,W;R).

Then for a € OW \ {o0}, if {a} is not a component of W, it is easy to
see from Proposition 2 that C'(a, W; R) > 0. However, this condition is not
necessary to C'(a, W; R) > 0.

Set

v = [ Aw(dsl, v < W

It is the hyperbolic length of v on W. For any annulus A, the hyperbolic
length of the core curve, denoted by Core(A), of A is

7T2

L 4(Core(A)) = mod(A)’

Let I'yy(a) be the set of all the closed curves winding around a € OW \ {oco}
in W. Define for a € OW \ {o0}

I{a, W) :=inf {Lw(7); v € Tw(a)},
where conventionally I(a, W) = oo if I'y(a) = 0, and
Iy :=inf{I(a,W);a € OW \ {o0}}.

PROPOSITION 3. For a € OW \ {oo}, we have

7.(.2

(11) I(a,W) < W

< I(a,W)exp(I(a,W)).
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Proof. For an annulus A in W which separates a from oo, we clearly

have

7T2

mod(A)

and therefore the left-hand side of (11) follows from arbitrary choice of A.
It remains to show the right-hand side of (11). From the definition of
I(a, W), there exists a sequence of closed curves {v,} in 'y (a) such that

= La(Core(A)) > Ly (Core(A)) > I(a, W),

L () < 1(a, W) +
For each n > 0, we have the geodesic «,, homotopic to v, in W such that
Lw () = Lw (). ay, € Ty (a) is obvious. By the collar lemma (see [14]),
there exists a collar A,, of width w,, around the geodesic «,, in W, that is,
n={z € Widw(z,a,) < w,/2}, where dy (z, ) denotes the hyperbolic
distance of z from «,, such that A, is homeomorphic to a round annulus
and sinh wy, sinh Ly (cy,) = 1. From the proof of Theorem 5.2 and Corollary
5.3 of [19] (see [13]), it follows that

2

T
12 T < Lwlom Ly (o)),
(12) o < Do) exp{ o)
so that )
us 1 1

< Z).

Mod, (W) — (I(a, W)+ n) oXp (I(a W)+ n)
This implies the right-hand side of (11). U

Remark. The similar inequalities concerning Cq, Io and Mod(Q2) =
sup{Mod,(Q2); a € 99} have been established, see [19], for a hyperbolic
domain Q. From (10) and (11) we immediately have the following result.

THEOREM 1. Fora € OW\{oo}, the following statements are mutually
equivalent.

(I) a is a uniformly perfect point with respect to W;

(1) C(a, W) > 0;

(ITT) I(a, W) > 0;

(IV) ModO(W) < oo;

(V) Mod, (W) < oo.
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HOLOMORPHIC FUNCTIONS 23

Proof. Obviously, we only need to imply (V) by (IV). Suppose that
Mod, (W) = oo, then there exists a sequence of annuli {A,,} such that each
A, separates a from oo and mod(A4,) — oo (n — 00), and furthermore we
have a sequence of round annuli {B,,} centered at a such that mod(B,,) =
mod(A,) + O(1) — oo (n — o00). This implies Mod(W) = oo, which
contradicts (IV). 0

Remark. From Theorem 1, it is easy to see that C(a, W) = 0 if and
only if there exists a sequence of annuli {4,,} in W such that for each n, A4,
separates a from co and mod(A,,) — oo as n — co. And we can also require
either sup{|z —al;z € A,} — 0 or dist(a, A,,) — 00 as n — oo.

Next, we discuss variation of the domain constant Cq of a hyperbolic
domain 2 produced under a covering map. It is well-known that Cq is quasi-
invariant under a conformal mapping. It was indeed proved in [12] that if
Qo and 2y are conformally equivalent, then

1
ECQl S CQO S BCQU
where B = |1 + icoth §| = 2.4335.... Define
rq := sup{r; the hyperbolic disk {z; dq(z,q) < r} is

simply connected for all ¢ € 0},

where dq(z,q) throughout denotes the hyperbolic distance from z to ¢ on
Q. Then I = 2rq (see [11]). Let p(z) be a covering map from 2 onto p(£2).
From the Principle of Hyperbolic Metric (see below Theorem B), we easily
deduce I > I,q), so that rq > 7,q). Thus the same argument as in [12]
can show the following

PROPOSITION 4. Let 2 be a hyperbolic domain and p(z) be a covering
map from Q onto p(Q2). Then

Cp(Q) < BCq.

It is clear that the inequality Cq < BC)q) does not generally hold,
since an arbitrary hyperbolic domain must have a universal covering map

from A.
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§2. Distortion theorems

Distortion theorems concerning univalent analytic functions on A are
well-known and play an important role in study of Complex Analysis. In this
section, we mainly discuss distortion of holomorphic functions and universal
covering maps from A in terms of uniform perfectness of image domains.
The following is the Principle of Hyperbolic Metric (see Chapter I11.3 of
Nevanlinna[16] and also [15], this principle is sometimes called the Schwarz-
Pick lemma), which is a start of our discussion in this section.

THEOREM B. Let f(z) be holomorphic in A and Q be a hyperbolic
domain such that f(A) C Q. Then

Aa(f())If'(2)] < Aa(z), for z € A,
with equality if and only if f is a covering map of Q0 from A.

By applying the Principle of Hyperbolic Metric, we first of all establish
a distortion theorem about a function holomorphic in A.

THEOREM 2. Let f(z) be holomorphic in A and Q be a hyperbolic do-
main such that f(A) C Q. If for some a € IN\ {0}, ¢ = 2C(a,2) > 0,
then for z € A we have

— |z 1/e p 1/c
1) 150 -d (1) <15 -d < 150 - o (72
and
—a 2 1/c—1
(14) If'(2)| < 2[£(0) —af (1 + |2])

c (1 _ |Z|)1/c+1'

If, in addition, Cq > 0 and f'(0) # 0, we have
(15) fuw; Jw— £(0)] < CalfO)]} € 0.
Proof. Applying the Principle of Hyperbolic Metric to f(z) gives
(16) Mlf I ()] < 7o 2€ A
Then from the definition of C(a,2) we get

AL < averels =

(a7) 27 —a
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Integrating the left-hand and right-hand sides of (17) along the segment
[0, 2] gives
f(z) —a 1+ 2|
log ———+——1| < log )
£(0) —a 1—|z]
From this (13) follows, and by combining (17) with (13), we deduce (14).
Since 0 < Cqo < Aqa(f(0))da(f(0)), from (16) we obtain

Calf'(0)] < 0 (f(0)).

This immediately implies (15).
Theorem 2 follows. []

Cc

We remark on Theorem 2. When f(A) is simply connected with f(0) =
0 and f’(0) = 1, we have

{us ol < 3} e s,

This result generalizes Koebe i Theorem, since we do not assume that f(z)
is univalent. When f(A) is convex with f(0) = 0 and f/(0) = 1, we have

{ws lw] < 3} € F(A).

THEOREM 3. Let f(z) be a universal covering map of Q from A. If
d=2Cq >0, then

d, ., 1— |z])l/d-t , 2 ., 1+ |z])V/d-1
a8) SO < e < o
and L4l 1
(19) 1) = 1) < 17 0) { () - 1} .

Proof. For any z € A, there exists a point a, € 92 such that o (f(z)) =
|f(2) — az|. From (15) it is easy to see that

7(0) 0.l = SIF O

Noting C(as,2) > Cq and using (13), we have

o\ e
£(2) — ] > [£(0) ’(%H) .
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An application of the Principle of Hyperbolic Metric yields
1

(20) Aa(f())If'(2)] = TP

It is well-known that

(21) Aa(f(2))0a(f(2)) < 1.

Combining the above inequalities shows

FG) = T atalfe)
= =l -l
d, 1 —|z|)/d-1
= 51f( )|%-

This is the left-hand side of (18). It is clear from (21) and (20) that

1£(0) — ag| = 8a(F(0)) < ——~— = |7(0)].

~ Aa(f(0)

Thus from (14) the right-hand side of (18) follows.
In order to prove (19), we note the elementary formula

C(1 )t 1 /14+t\* 1
22 A = — [ ) - —
(22) /0 1—2)o1 "~ 2 <1—t> 20

where « is a non-zero real constant. For z € A, using the right-hand side
of (18) we have

o (14 z) /a1

10101 = | [ o] < 3ol [T
Thus applying (22) to the last integration on the above inequality implies
(19). 0

&II\D

Remark. (A) In Theorem 3, when € is simply connected, we have that
d =2Cq > 1/2 and f is a conformal mapping, and then it follows from (18)

that 1 1— ‘ ’ 1+‘ ’
Z\f(o)lw < A=A OIg e
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and from (19) that

1) - 10 < 1P Ol 2L

Comparing them with the corresponding inequalities in Koebe Distortion
Theorem for a conformal mapping from A onto €2, then we have reason to
ask whether the coefficients d/2 and 2/d respectively in both the sides of
(18) are necessary.

(B) The lower bound corresponding to (19) for |f(z) — f(0)| does not
exist unless f(z) is conformal. This is because f(z) can take f(0) at other
point in A than zero if f(z) is not univalent.

Another distortion theorem on a universal covering map can be estab-
lished by another way.

THEOREM 4. Let f(z) be a universal covering map of Q from A. As-
sume that d = 2Cq > 0. Then

(1= [t (1 + [z)

(23) P OF e < V@I <1 O — Sz
and 2 1
(24) |arg f'(z) —arg f/(0)] < d log 1 i_ t;

Proof. Let F(z) be the universal covering map of Q from A with F'(0) =
0 and F’'(0) = 1 (Here we assume 0 € ) for the moment). From the Principle
of Hyperbolic Metric, we have

Aa(F(2))|F'(2)] = Aa(z).
Taking the logarithm of the above equality and, then, differentiating it give

1F"(z) 0 Z
- ——1Og)\A(Z)—1_7|Z|2

5ol (W] (FENF () + 57 = 3

ow
Thus

0
F(0)] = 2 \%logmm\ _ [V1og Aa(0)].

By Theorem 4 in [17] and by noting Aq(0) = Aa(0) = 1, we have

|V1og A\q(0)] <
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and therefore
(25) |[F"(0)] <

QW+~

For each z € A define

r(#2) -1
A=FPFG)

It is easy to see that g(() is a universal covering map from A onto L(f),
where L(w) = (w — f(2))/[(1 — |2|?)f'(2)] is a linear transformation. Also
g(0) =0 and ¢’(0) = 1. A simple calculation reveals

9(¢) =

ey — (1 2y B o
'0) = (1= ) — 2.
Applying (25) to g(¢) and noting d = 2Cq = 2C,q) give
f"(2)

01 = |- 15D - ] <

f'(2) d

Multiply both the sides of this inequality by |z|/(1 — |z|?) to get

2f"(z) 2z 4 |7
(2)  1—|z?| =~ d1—[z[*
This implies
2|2|* - 32 2f"(z) _ 2|2 + 7]
< <
(26) 1—vw SRy S T1o P
e |1
z z z
< —
27 S | <
‘We note 02 3
z2f"(z) ,
Re f/(Z) - ‘Z’a|z| log‘f (Z)|
and 102 5
z2f"(z) ,
Im o) \z[a’z‘ arg f'(2).

Thus (26) and (27) respectively yield

2!Z| 2IZI 202] + 3

<
MQ—aH slf =T
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and
4 1 0 4 1

T = 2 89 S g

— |z
Integrating both the sides of the above two inequalities along the segment
[0, z] respectively implies (23) and (24). 0

The following is a consequence of Theorems 3 and 4, which generalizes
the celebrated distortion theorem of a univalent analytic function on A.

COROLLARY 1. Assume that K is a compact subset of hyperbolic do-
main G. Then for every covering map f : G — f(G) such that Cpqy > k >
0, we have

< 1)
(28) ’f()‘SM,forz,wEK,

where M are a positive constant depending on K and k.

Proof. 1t suffices to prove the right-hand side of (28). Let h be a univer-
sal covering map of G from A. Then g = f(h) : A — f(G) is a covering map.
We can findar, 0 <r < 1,such that h(A,) D K, A, = {|z| < r}. For a pair
of z and w in K, there exist zp and wp in A, such that h(zy) = z, h(wy) = w.
From Proposition 4 it follows that s = Cg > 0.42C} ) > 0.42k > 0. Ap-
plying Theorem 4 respectively to h and g gives

W (wo)| _ (1+r)s
W ()] = (L)

and
NG o)l _ (P
| (w)h (wo)] g (wo)] = (1 —r)2/k

Combining the above inequalities implies the right-hand side of (28). b

We can also establish the corresponding inequalities to (13) for half
plane, angular domain and other special domains.

THEOREM 5. Let f(z) be holomorphic in H and f(H) C Q. If for some
a € 0N\ {oo}, c=2C(a,Q) >0, then for any 0 < § < 5, we have

(20) F@] < oL+, Jargz = 2] <4,

where Cy is a positive constant depending on §, a and a fized point z1 in H

and f(z1).
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Proof. 1t is well-known (see [3]) that for a fixed point z; in H, we have

2
30 inh2 d - & -0
( ) S H(Z7Z1) 4Im[2]1m[21] (‘ZD?
whenever |argz — 5| < ¢ and z — oo.
On the other hand, recalling the definition of hyperbolic distance be-

tween two points we obtain

da(¢.G) = int [ Aa()ldc

gl

S Cinp [ 4
27 J,I¢—al
c (—a

|

5 ol a—||

where the infimum is taken over all the curves « connecting ¢ and (j in €.
Noting sinh? z > €%* /4 — 1/2, this yields

(31) sinh? do (¢, o) > sinh? § < log | £ =4
2 Co —a
1/¢—al® 1
- — =, f Q.
>4—<O_a 9’ OI'C,C()E
Then the desired inequality (29) can be derived from dq(f(2), f(z1)) <
dri(z, z1) and by combining (30) with (31). [

Let D(z0,0,9) := {z; |arg(z — z0) — 0| < 6} be an angular domain.
Transformation ‘
w=M(z)={e (2 - 2)}%

maps conformally D(zg,60,0) onto the upper half plane H. And w =
exp(z= (z — Ri)) maps conformally the band domain {r < Imz < R}
onto the upper half plane H. Then from Theorem 5 the following results

immediately follow.

COROLLARY 2. Let f(2) be holomorphic in D(zy,0,0) and f(D(zy,0,9))
C Q. If for some a € 92\ {0}, ¢ =2C(a,) > 0, then for any 0 < §y < 4,
we have

(32) [F(2)] < Co(1 + |2]2), for z € D(z0,6,6),

where Cy is a positive constant depending on dy, 0, a and a fized point z;

in D(z0,0,00) and f(z1).
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COROLLARY 3. Let f(2) be holomorphic in E = {r < Imz < R} and
f(E) C Q. If for some a € 00\ {0}, ¢ = 2C(a,) > 0, then for any
0<d<(R—r1)/2, we have

(33) |f(2)] < Coexp (ﬁkﬁ) , for z € {r+dp < Imz < R—dp},

where Cy is a positive constant depending on dy, a and a fived point z1 in

E and f(z1).

Remark. The inequalities (29), (32) and (33) are sharp. For example,
observe function h(z) = {e?=9 (z—2;)} 2. It maps conformally D(zg, 0, )
onto the upper half plane H. Obviously, h(z) satisfies the condition of Corol-
lary 2 with = H. In fact it is easy to see that for any a € {Imz = 0},
¢=2C(a,H) = 1. Thus

|h(2)| = |z — 2|3 ~ |2|55%,

as z — 00, z € D(20,0,9).

Corollary 2 has an application in iteration theory of meromorphic func-
tions. Let f(z) be a transcendental meromorphic function in the complex
plane. Let f(z) denote the n-th iterate of f : fl(z) = f(z), f*(z) =
F(f"Y2)) = f*1(f(2)). Then f"(z) is defined for all z € C except for a
countable set of the poles of f, f2, ..., f" 1. Define Fatou set of f(z) as

F(f):={z¢€ C; {f"} is defined and normal in some neighborhood of z}.

F(f) is open and each f"(z) is analytic in F'(f). It is well-known that F'(f)
is completely invariant, that is, z € F(f) if and only if f(z) € F(f), and
thus for any connected component U of F(f), called a stable domain of f,
f™(U) is contained in a component U,, of F(f). If for some n, U, = U, then
U is called a periodic domain of f; If for n #£ m, U, # U,,, then U is called
a wandering domain of f. We refer to [5] for more information.

THEOREM 6. Let f be a meromorphic function and U be a stable do-
main of f. Assume that there exist an angular domain D(zy,6,0) C U and
an a ¢ U such that C(a,U) > 0. Then for any positive integer n, we have

(34) 1£™(2)] < Cal1 + |2|5), for z € D(z,0, &),

where 0 < §p < 6, t = max{4,1/C(a,U)} and C,, is a positive constant
depending on a, &y, 0, n and a fixed point z; in U and f"(z1).
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Proof. 1f U, = U, then f" satisfies the condition of Corollary 2 with
Q=U; IfU, # U, then U, NU = 0, and U,, C C\ {arg(z — 29) =
0}. Noting the fact that C \ {arg(z — z9) = 6} is simply connected and
Cc\{arg(2—z0)=0} = 1/4, we also have that f" satisfies the condition of Corol-
lary 2 with @ = C\ {arg(z — 29) = 6}. Thus (34) follows from Corollary
2. O

We remark on Theorem 6. (I) (34) with ¢ = 4 holds without the as-
sumption of C'(a,2) > 0 when U is a wandering domain of f.

(IT) When U is simply connected, (34) with ¢ = 1/Cy < 4 holds, which
was established in [6] and [18] by different methods with ¢ = 4 for the case
when f is an entire function, for an unbounded stable domain of an entire
function f is simply connected (see [2]).
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