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UNIFORMLY PERFECT SETS AND DISTORTION OF

HOLOMORPHIC FUNCTIONS

JIAN-HUA ZHENG1

Abstract. We investigate the uniform perfectness on a boundary point of a
hyperbolic open set and distortion of a holomorphic function from the unit disk
∆ into a hyperbolic domain with a uniformly perfect boundary point, especially
of a universal covering map of such a domain from ∆, and we obtain similar
results to celebrated Koebe’s Theorems on univalent functions.

§1. Uniformly perfect points

We begin by recalling the basic knowledge of the hyperbolic metric on

a hyperbolic domain Ω in the complex plane C , that is, C \ Ω contains

at least two points. On an arbitrary hyperbolic domain Ω, we have the

hyperbolic metric λΩ(z)|dz| with Gaussian curvature −4. The hyperbolic

metrics of the unit disk ∆ and the upper half plane H = {Imz > 0} are

respectively

λ∆(z)|dz| =
|dz|

1 − |z|2 and λH(z)|dz| =
|dz|
2Imz

.

The density λΩ(w) of the hyperbolic metric on a hyperbolic domain Ω is

then defined as follows. Let f(z) be a holomorphic universal covering map

from ∆ onto Ω. Then the density λΩ(w) is determined by

λΩ(f(z))|f ′(z)| =
1

1 − |z|2 .(1)

Noting that f(z) is locally homeomorphic, we can solve λΩ(w) from equation

(1). The determination of λΩ is independent of the choices of holomorphic

covering maps of Ω from ∆ because of invariance of the hyperbolic metric

|dz|/(1 − |z|2) under Möbius transformation from ∆ onto itself. Then the
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18 J.-H. ZHENG

hyperbolic metric is conformally invariant. By λ0,1(z) we denote the density

of the hyperbolic metric on C \ {0, 1}. From [8] and [9], we have

λ0,1(z) ≥ 1

2|z|(| log |z|| + κ)
,(2)

where κ = Γ(1/4)4/(4π2). Next, by mod(A) we denote the modulus of an

annulus A. Let A = {z; r < |z − a| < R}, 0 < r < R. A calculation implies

that whenever |z − a| =
√

rR, we have

λA(z) =
π

2
√

rR mod(A)
(3)

(see [4]).

Throughout, let W be a hyperbolic open set in the complex plane,

that is, C \ W is closed and contains at least two points. We can define

the hyperbolic metric on W as the hyperbolic metric on each connected

component of W . By λW (z) we denote the density of the hyperbolic metric

on W . For a 6∈ W ∪ {∞}, put

C(a,W ) := inf{λW (z)|z − a|; z ∈ W}.

If C(a,W ) > 0, then a is called a uniformly perfect point with respect to

W .

For any z0 ∈ W , put c(z0,W ) := λW (z0)δW (z0), where δW (z0) :=

dist(z0, ∂W ) throughout denotes the euclidean distance from z0 to ∂W .

Then
{

z; |z − z0| <
c(z0,W )

λW (z0)

}

⊂ W.

Now we introduce a domain constant

CW := inf{c(z,W ); z ∈ W}.

In general, 0 ≤ CW ≤ 1
2 (see [7]). If every component of W is simply con-

nected, from Koebe 1
4 Theorem, we easily prove 1

4 ≤ CW . And CW = 1
2 if

and only if every component of W is convex (see [7]). ∂W is called uniformly

perfect, provided that CW > 0. There exist many mutually equivalent con-

ditions of uniform perfectness of a closed set (see [19] and [7]).

Proposition 1. CW = inf
a∈∂W\{∞}

{C(a,W )}.
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HOLOMORPHIC FUNCTIONS 19

Proof. Obviously, for any a ∈ ∂W \ {∞}, C(a,W ) ≥ CW . So we only

need to prove that

CW ≥ inf
a∈∂W\{∞}

{C(a,W )}.(4)

For any n > 0, there exists a zn ∈ W such that CW + 1
n > λW (zn)δW (zn)

and for zn we have an ∈ ∂W \{∞} such that |zn−an| = δW (zn). Therefore,

CW +
1

n
> λW (zn)|zn − an| ≥ C(an,W ) ≥ inf

a∈∂W\{∞}
{C(a,W )}.

From this (4) follows.

Hence when ∂W is uniformly perfect, any finite point on ∂W is a uni-

formly perfect one with respect to W. An annulus A is said to separate a

from ∞ if the bounded component of C \A contains a. Below we introduce

two domain constants and a notation. For a 6∈ W ∪ {∞}, define

Mod0
a(W ) := sup{mod(A);A is a round annulus in W centered at a},

Moda(W ) := sup{mod(A);A is a (topological) annulus in W

and separates a from ∞},

where conventionally Mod0
a(W ) = 0 (Moda(W ) = 0) if W does not contain

any round annuli centered at a (any annuli which separate a from ∞), and

βW (z; a) := inf

{∣

∣

∣

∣

log
|z − a|
|b − a|

∣

∣

∣

∣

; b ∈ ∂W

}

.

Since a round annulus in W centered at a obviously separates a from ∞, we

have Moda(W ) ≥ Mod0
a(W ). We shall establish an inequality concerning

C(a,W ) and Mod0
a(W ). To this end, we first prove the following result.

Lemma. For a ∈ ∂W \ {∞}, we have

Mod0
a(W ) = 2 sup

z∈W
βW (z; a).(5)

Proof. For z0 ∈ W with βW (z0; a) 6= 0, it is clear that {|z − a| =

δ} ∩ ∂W = ∅, where δ = |z0 − a|. Then there must exist in W a round

annulus A = {z; r < |z − a| < R} such that ∂A ∩ ∂W 6= ∅ and δ =
√

rR.

For b ∈ ∂A ∩ ∂W, then it is easy to see that

βW (z; a) =

∣

∣

∣

∣

log

∣

∣

∣

∣

z − a

b − a

∣

∣

∣

∣

∣

∣

∣

∣

=
1

2
log

R

r
=

1

2
mod(A),(6)
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20 J.-H. ZHENG

whenever |z − a| =
√

rR, especially,

2βW (z0; a) = mod(A) ≤ Mod0
a(W ).

This inequality still holds for z0 ∈ W with βW (z0; a) = 0. Therefore

2 sup
z∈W

βW (z; a) ≤ Mod0
a(W ).(7)

To get (5) we need to prove the converse inequality. We may assume

that Mod0
a(W ) > 0, then there exists a sequence of round annuli

An = {z; rn < |z − a| < Rn} ⊂ W

such that ∂An ∩ ∂W 6= ∅ and

mod(An) +
1

n
> Mod0

a(W ).

Applying (6) to An gives 2βW (z; a) = mod(An) whenever |z−a| =
√

rnRn.

Thus

2 sup
z∈W

βW (z; a) +
1

n
> Mod0

a(W ).(8)

(5) immediately follows by combining (8) with (7).

We can prove by applying (2) and the method in [4] the following

theorem , which is essentially due to Beardon and Pommerenke [4](see [20]

and [23]).

Theorem A. For a ∈ ∂W \ {∞}, we have

1

2(βW (z; a) + κ)
≤ λW (z)|z − a| ≤ π

4βW (z; a)
, z ∈ W.(9)

Combining Theorem A with Lemma immediately shows the following

result.

Proposition 2. For a ∈ ∂W \ {∞}, we have

1

Mod0
a(W ) + 2κ

≤ C(a,W ) ≤ π

2Mod0
a(W )

.(10)
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Observe the domain

Ω0 := C \
∞
⋃

n=1

[rn, r2
n],

where rn is chosen to satisfy rn+1 > r3
n > 0 and rn → +∞. It is easy to see

that CΩ0
= 0 and from Proposition 2 for any a ∈ ∂Ω0 \ {∞}, C(a,Ω0) = 0.

Hence in order to consider the local structure of ∂W at a boundary point

a, we introduce the quantity

C(a,W ;R) := inf{λW (z)|z − a|; z ∈ W ∩ {|z − a| < R}},

where R is a positive constant. For a fixed a, C(a,W ;R) decreases as R

increases, hence we easily prove that

C(a,W ) = lim
R→+∞

C(a,W ;R).

Then for a ∈ ∂W \ {∞}, if {a} is not a component of ∂W, it is easy to

see from Proposition 2 that C(a,W ;R) > 0. However, this condition is not

necessary to C(a,W ;R) > 0.

Set

LW (γ) =

∫

γ
λW (z)|dz|, γ ⊂ W.

It is the hyperbolic length of γ on W . For any annulus A, the hyperbolic

length of the core curve, denoted by Core(A), of A is

LA(Core(A)) =
π2

mod(A)
.

Let ΓW (a) be the set of all the closed curves winding around a ∈ ∂W \{∞}
in W . Define for a ∈ ∂W \ {∞}

I(a,W ) := inf {LW (γ); γ ∈ ΓW (a)} ,

where conventionally I(a,W ) = ∞ if ΓW (a) = ∅, and

IW := inf{I(a,W ); a ∈ ∂W \ {∞}}.

Proposition 3. For a ∈ ∂W \ {∞}, we have

I(a,W ) ≤ π2

Moda(W )
≤ I(a,W ) exp(I(a,W )).(11)
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22 J.-H. ZHENG

Proof. For an annulus A in W which separates a from ∞, we clearly

have
π2

mod(A)
= LA(Core(A)) ≥ LW (Core(A)) ≥ I(a,W ),

and therefore the left-hand side of (11) follows from arbitrary choice of A.

It remains to show the right-hand side of (11). From the definition of

I(a,W ), there exists a sequence of closed curves {γn} in ΓW (a) such that

LW (γn) < I(a,W ) +
1

n
.

For each n > 0, we have the geodesic αn homotopic to γn in W such that

LW (γn) ≥ LW (αn). αn ∈ ΓW (a) is obvious. By the collar lemma (see [14]),

there exists a collar An of width ωn around the geodesic αn in W , that is,

An = {z ∈ W ; dW (z, αn) < ωn/2}, where dW (z, αn) denotes the hyperbolic

distance of z from αn, such that An is homeomorphic to a round annulus

and sinh ωn sinh LW (αn) = 1. From the proof of Theorem 5.2 and Corollary

5.3 of [19] (see [13]), it follows that

π2

mod(An)
≤ LW (αn) exp{LW (αn)},(12)

so that
π2

Moda(W )
≤

(

I(a,W ) +
1

n

)

exp
(

I(a,W ) +
1

n

)

.

This implies the right-hand side of (11).

Remark. The similar inequalities concerning CΩ, IΩ and Mod(Ω) =

sup{Moda(Ω); a ∈ ∂Ω} have been established, see [19], for a hyperbolic

domain Ω. From (10) and (11) we immediately have the following result.

Theorem 1. For a ∈ ∂W \{∞}, the following statements are mutually

equivalent.

(I) a is a uniformly perfect point with respect to W ;

(II) C(a,W ) > 0;

(III) I(a,W ) > 0;

(IV) Mod0
a(W ) < ∞;

(V) Moda(W ) < ∞.
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Proof. Obviously, we only need to imply (V) by (IV). Suppose that

Moda(W ) = ∞, then there exists a sequence of annuli {An} such that each

An separates a from ∞ and mod(An) → ∞ (n → ∞), and furthermore we

have a sequence of round annuli {Bn} centered at a such that mod(Bn) =

mod(An) + O(1) → ∞ (n → ∞). This implies Mod0
a(W ) = ∞, which

contradicts (IV).

Remark. From Theorem 1, it is easy to see that C(a,W ) = 0 if and

only if there exists a sequence of annuli {An} in W such that for each n, An

separates a from ∞ and mod(An) → ∞ as n → ∞. And we can also require

either sup{|z − a|; z ∈ An} → 0 or dist(a,An) → ∞ as n → ∞.

Next, we discuss variation of the domain constant CΩ of a hyperbolic

domain Ω produced under a covering map. It is well-known that CΩ is quasi-

invariant under a conformal mapping. It was indeed proved in [12] that if

Ω0 and Ω1 are conformally equivalent, then

1

B
CΩ1

≤ CΩ0
≤ BCΩ1

,

where B = |1 + i coth π
3 | = 2.4335.... Define

rΩ := sup{r; the hyperbolic disk {z; dΩ(z, q) < r} is

simply connected for all q ∈ Ω},

where dΩ(z, q) throughout denotes the hyperbolic distance from z to q on

Ω. Then IΩ = 2rΩ (see [11]). Let p(z) be a covering map from Ω onto p(Ω).

From the Principle of Hyperbolic Metric (see below Theorem B), we easily

deduce IΩ ≥ Ip(Ω), so that rΩ ≥ rp(Ω). Thus the same argument as in [12]

can show the following

Proposition 4. Let Ω be a hyperbolic domain and p(z) be a covering

map from Ω onto p(Ω). Then

Cp(Ω) ≤ BCΩ.

It is clear that the inequality CΩ ≤ BCp(Ω) does not generally hold,

since an arbitrary hyperbolic domain must have a universal covering map

from ∆.
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§2. Distortion theorems

Distortion theorems concerning univalent analytic functions on ∆ are

well-known and play an important role in study of Complex Analysis. In this

section, we mainly discuss distortion of holomorphic functions and universal

covering maps from ∆ in terms of uniform perfectness of image domains.

The following is the Principle of Hyperbolic Metric (see Chapter III.3 of

Nevanlinna[16] and also [15], this principle is sometimes called the Schwarz-

Pick lemma), which is a start of our discussion in this section.

Theorem B. Let f(z) be holomorphic in ∆ and Ω be a hyperbolic

domain such that f(∆) ⊆ Ω. Then

λΩ(f(z))|f ′(z)| ≤ λ∆(z), for z ∈ ∆,

with equality if and only if f is a covering map of Ω from ∆.

By applying the Principle of Hyperbolic Metric, we first of all establish

a distortion theorem about a function holomorphic in ∆.

Theorem 2. Let f(z) be holomorphic in ∆ and Ω be a hyperbolic do-

main such that f(∆) ⊆ Ω. If for some a ∈ ∂Ω \ {∞}, c = 2C(a,Ω) > 0,

then for z ∈ ∆ we have

|f(0) − a|
(

1 − |z|
1 + |z|

)1/c

≤ |f(z) − a| ≤ |f(0) − a|
(

1 + |z|
1 − |z|

)1/c

(13)

and

|f ′(z)| ≤ 2|f(0) − a|
c

(1 + |z|)1/c−1

(1 − |z|)1/c+1
.(14)

If, in addition, CΩ > 0 and f ′(0) 6= 0, we have

{w; |w − f(0)| < CΩ|f ′(0)|} ⊂ Ω.(15)

Proof. Applying the Principle of Hyperbolic Metric to f(z) gives

λΩ(f(z))|f ′(z)| ≤ 1

1 − |z|2 , z ∈ ∆.(16)

Then from the definition of C(a,Ω) we get

c

2

|f ′(z)|
|f(z) − a| ≤ λΩ(f(z))|f ′(z)| ≤ 1

1 − |z|2 .(17)
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Integrating the left-hand and right-hand sides of (17) along the segment

[0, z] gives

c

∣

∣

∣

∣

log
|f(z) − a|
|f(0) − a|

∣

∣

∣

∣

≤ log
1 + |z|
1 − |z| .

From this (13) follows, and by combining (17) with (13), we deduce (14).

Since 0 < CΩ ≤ λΩ(f(0))δΩ(f(0)), from (16) we obtain

CΩ|f ′(0)| ≤ δΩ(f(0)).

This immediately implies (15).

Theorem 2 follows.

We remark on Theorem 2. When f(∆) is simply connected with f(0) =

0 and f ′(0) = 1, we have

{

w; |w| <
1

4

}

⊂ f(∆).

This result generalizes Koebe 1
4 Theorem, since we do not assume that f(z)

is univalent. When f(∆) is convex with f(0) = 0 and f ′(0) = 1, we have

{w; |w| < 1
2} ⊂ f(∆).

Theorem 3. Let f(z) be a universal covering map of Ω from ∆. If

d = 2CΩ > 0, then

d

2
|f ′(0)|(1 − |z|)1/d−1

(1 + |z|)1/d+1
≤ |f ′(z)| ≤ 2

d
|f ′(0)|(1 + |z|)1/d−1

(1 − |z|)1/d+1
(18)

and

|f(z) − f(0)| ≤ |f ′(0)|
{

(

1 + |z|
1 − |z|

)1/d

− 1

}

.(19)

Proof. For any z ∈ ∆, there exists a point az ∈ ∂Ω such that δΩ(f(z)) =

|f(z) − az|. From (15) it is easy to see that

|f(0) − az| ≥
d

2
|f ′(0)|.

Noting C(az,Ω) ≥ CΩ and using (13), we have

|f(z) − az| ≥ |f(0) − az|
(

1 − |z|
1 + |z|

)1/d

.
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An application of the Principle of Hyperbolic Metric yields

λΩ(f(z))|f ′(z)| =
1

1 − |z|2 .(20)

It is well-known that

λΩ(f(z))δΩ(f(z)) ≤ 1.(21)

Combining the above inequalities shows

|f ′(z)| ≥ 1

1 − |z|2 δΩ(f(z))

=
1

1 − |z|2 |f(z) − az|

≥ d

2
|f ′(0)|(1 − |z|)1/d−1

(1 + |z|)1/d+1
.

This is the left-hand side of (18). It is clear from (21) and (20) that

|f(0) − a0| = δΩ(f(0)) ≤ 1

λΩ(f(0))
= |f ′(0)|.

Thus from (14) the right-hand side of (18) follows.

In order to prove (19), we note the elementary formula

∫ t

0

(1 + x)α−1

(1 − x)α+1
dx =

1

2α

(

1 + t

1 − t

)α

− 1

2α
,(22)

where α is a non-zero real constant. For z ∈ ∆, using the right-hand side

of (18) we have

|f(z) − f(0)| =

∣

∣

∣

∣

∫ z

0
f ′(ζ)dζ

∣

∣

∣

∣

≤ 2

d
|f ′(0)|

∫ |z|

0

(1 + x)1/d−1

(1 − x)1/d+1
dx.

Thus applying (22) to the last integration on the above inequality implies

(19).

Remark. (A) In Theorem 3, when Ω is simply connected, we have that

d = 2CΩ ≥ 1/2 and f is a conformal mapping, and then it follows from (18)

that
1

4
|f ′(0)| 1 − |z|

(1 + |z|)3 ≤ |f ′(z)| ≤ 4|f ′(0)| 1 + |z|
(1 − |z|)3
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and from (19) that

|f(z) − f(0)| ≤ |f ′(0)| 4|z|
(1 − |z|)2 .

Comparing them with the corresponding inequalities in Koebe Distortion

Theorem for a conformal mapping from ∆ onto Ω, then we have reason to

ask whether the coefficients d/2 and 2/d respectively in both the sides of

(18) are necessary.

(B) The lower bound corresponding to (19) for |f(z) − f(0)| does not

exist unless f(z) is conformal. This is because f(z) can take f(0) at other

point in ∆ than zero if f(z) is not univalent.

Another distortion theorem on a universal covering map can be estab-

lished by another way.

Theorem 4. Let f(z) be a universal covering map of Ω from ∆. As-

sume that d = 2CΩ > 0. Then

|f ′(0)|(1 − |z|)2/d−1

(1 + |z|)2/d+1
≤ |f ′(z)| ≤ |f ′(0)|(1 + |z|)2/d−1

(1 − |z|)2/d+1
(23)

and

| arg f ′(z) − arg f ′(0)| ≤ 2

d
log

1 + |z|
1 − |z| .(24)

Proof. Let F (z) be the universal covering map of Ω from ∆ with F (0) =

0 and F ′(0) = 1 (Here we assume 0 ∈ Ω for the moment). From the Principle

of Hyperbolic Metric, we have

λΩ(F (z))|F ′(z)| = λ∆(z).

Taking the logarithm of the above equality and, then, differentiating it give

∂

∂w
[log λΩ(w)](F (z))F ′(z) +

1

2

F ′′(z)

F ′(z)
=

∂

∂z
log λ∆(z) =

z

1 − |z|2 .

Thus

|F ′′(0)| = 2

∣

∣

∣

∣

∂

∂w
log λΩ(0)

∣

∣

∣

∣

= |∇ log λΩ(0)|.

By Theorem 4 in [17] and by noting λΩ(0) = λ∆(0) = 1, we have

|∇ log λΩ(0)| ≤ 2

δΩ(0)
≤ 2

CΩ
,
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and therefore

|F ′′(0)| ≤ 4

d
.(25)

For each z ∈ ∆ define

g(ζ) :=
f

(

ζ+z
1+zζ

)

− f(z)

(1 − |z|2)f ′(z)
.

It is easy to see that g(ζ) is a universal covering map from ∆ onto L(Ω),

where L(w) = (w − f(z))/[(1 − |z|2)f ′(z)] is a linear transformation. Also

g(0) = 0 and g′(0) = 1. A simple calculation reveals

g′′(0) = (1 − |z|2)f
′′(z)

f ′(z)
− 2z.

Applying (25) to g(ζ) and noting d = 2CΩ = 2CL(Ω) give

|g′′(0)| =

∣

∣

∣

∣

(1 − |z|2)f
′′(z)

f ′(z)
− 2z

∣

∣

∣

∣

≤ 4

d
.

Multiply both the sides of this inequality by |z|/(1 − |z|2) to get

∣

∣

∣

∣

zf ′′(z)

f ′(z)
− 2|z|2

1 − |z|2
∣

∣

∣

∣

≤ 4

d

|z|
1 − |z|2 .

This implies
2|z|2 − 4

d |z|
1 − |z|2 ≤ Re

zf ′′(z)

f ′(z)
≤ 2|z|2 + 4

d |z|
1 − |z|2(26)

and
∣

∣

∣

∣

Im
zf ′′(z)

f ′(z)

∣

∣

∣

∣

≤ 4

d

|z|
1 − |z|2 .(27)

We note

Re
zf ′′(z)

f ′(z)
= |z| ∂

∂|z| log |f ′(z)|

and

Im
zf ′′(z)

f ′(z)
= |z| ∂

∂|z| arg f ′(z).

Thus (26) and (27) respectively yield

2|z| − 4
d

1 − |z|2 ≤ ∂

∂|z| log |f ′(z)| ≤ 2|z| + 4
d

1 − |z|2
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and

− 4

d

1

1 − |z|2 ≤ ∂

∂|z| arg f ′(z) ≤ 4

d

1

1 − |z|2 .

Integrating both the sides of the above two inequalities along the segment

[0, z] respectively implies (23) and (24).

The following is a consequence of Theorems 3 and 4, which generalizes

the celebrated distortion theorem of a univalent analytic function on ∆.

Corollary 1. Assume that K is a compact subset of hyperbolic do-

main G. Then for every covering map f : G → f(G) such that Cf(G) ≥ k >

0, we have
1

M
≤ |f ′(z)|

|f ′(w)| ≤ M, for z, w ∈ K,(28)

where M are a positive constant depending on K and k.

Proof. It suffices to prove the right-hand side of (28). Let h be a univer-

sal covering map of G from ∆. Then g = f(h) : ∆ → f(G) is a covering map.

We can find a r, 0 < r < 1, such that h(∆r) ⊃ K, ∆r = {|z| < r}. For a pair

of z and w in K, there exist z0 and w0 in ∆r such that h(z0) = z, h(w0) = w.

From Proposition 4 it follows that s = CG ≥ 0.42Cf(G) ≥ 0.42k > 0. Ap-

plying Theorem 4 respectively to h and g gives

|h′(w0)|
|h′(z0)|

≤ (1 + r)2/s

(1 − r)2/s

and
|f ′(z)h′(z0)|
|f ′(w)h′(w0)|

=
|g′(z0)|
|g′(w0)|

≤ (1 + r)2/k

(1 − r)2/k
.

Combining the above inequalities implies the right-hand side of (28).

We can also establish the corresponding inequalities to (13) for half

plane, angular domain and other special domains.

Theorem 5. Let f(z) be holomorphic in H and f(H) ⊆ Ω. If for some

a ∈ ∂Ω \ {∞}, c = 2C(a,Ω) > 0, then for any 0 < δ < π
2 , we have

|f(z)| ≤ C0(1 + |z|1/c), | arg z − π

2
| < δ,(29)

where C0 is a positive constant depending on δ, a and a fixed point z1 in H

and f(z1).
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Proof. It is well-known (see [3]) that for a fixed point z1 in H, we have

sinh2 dH(z, z1) =
|z − z1|2

4Im[z]Im[z1]
= O(|z|),(30)

whenever | arg z − π
2 | < δ and z → ∞.

On the other hand, recalling the definition of hyperbolic distance be-

tween two points we obtain

dΩ(ζ, ζ0) = inf
γ

∫

γ
λΩ(ζ)|dζ|

≥ c

2
inf
γ

∫

γ

|dζ|
|ζ − a|

≥ c

2

∣

∣

∣

∣

log

∣

∣

∣

∣

ζ − a

ζ0 − a

∣

∣

∣

∣

∣

∣

∣

∣

,

where the infimum is taken over all the curves γ connecting ζ and ζ0 in Ω.

Noting sinh2 x > e2x/4 − 1/2, this yields

sinh2 dΩ(ζ, ζ0) ≥ sinh2

{

c

2
log

∣

∣

∣

∣

ζ − a

ζ0 − a

∣

∣

∣

∣

}

(31)

>
1

4

∣

∣

∣

∣

ζ − a

ζ0 − a

∣

∣

∣

∣

c

− 1

2
, for ζ, ζ0 ∈ Ω.

Then the desired inequality (29) can be derived from dΩ(f(z), f(z1)) ≤
dH(z, z1) and by combining (30) with (31).

Let D(z0, θ, δ) := {z; | arg(z − z0) − θ| < δ} be an angular domain.

Transformation

w = M(z) = {e−i(θ−δ)(z − z0)}
π

2δ

maps conformally D(z0, θ, δ) onto the upper half plane H. And w =

exp( π
R−r (z − Ri)) maps conformally the band domain {r < Imz < R}

onto the upper half plane H. Then from Theorem 5 the following results

immediately follow.

Corollary 2. Let f(z) be holomorphic in D(z0,θ,δ) and f(D(z0,θ,δ))

⊆ Ω. If for some a ∈ ∂Ω \ {∞}, c = 2C(a,Ω) > 0, then for any 0 < δ0 < δ,

we have

|f(z)| ≤ C0(1 + |z| π

2cδ ), for z ∈ D(z0, θ, δ0),(32)

where C0 is a positive constant depending on δ0, δ, a and a fixed point z1

in D(z0, θ, δ0) and f(z1).
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Corollary 3. Let f(z) be holomorphic in E = {r < Imz < R} and

f(E) ⊆ Ω. If for some a ∈ ∂Ω \ {∞}, c = 2C(a,Ω) > 0, then for any

0 < δ0 < (R − r)/2, we have

|f(z)| ≤ C0 exp

(

π

(R − r)c
|z|

)

, for z ∈ {r + δ0 < Imz < R − δ0},(33)

where C0 is a positive constant depending on δ0, a and a fixed point z1 in

E and f(z1).

Remark. The inequalities (29), (32) and (33) are sharp. For example,

observe function h(z) = {e−i(θ−δ)(z−z0)}
π

2δ . It maps conformally D(z0, θ, δ)

onto the upper half plane H. Obviously, h(z) satisfies the condition of Corol-

lary 2 with Ω = H. In fact it is easy to see that for any a ∈ {Imz = 0},
c = 2C(a,H) = 1. Thus

|h(z)| = |z − z0|
π

2δ ∼ |z| π

2δ

1

c ,

as z → ∞, z ∈ D(z0, θ, δ).

Corollary 2 has an application in iteration theory of meromorphic func-

tions. Let f(z) be a transcendental meromorphic function in the complex

plane. Let fn(z) denote the n-th iterate of f : f1(z) = f(z), fn(z) =

f(fn−1(z)) = fn−1(f(z)). Then fn(z) is defined for all z ∈ C except for a

countable set of the poles of f, f2, . . . , fn−1. Define Fatou set of f(z) as

F (f) := {z ∈ C; {fn} is defined and normal in some neighborhood of z}.

F (f) is open and each fn(z) is analytic in F (f). It is well-known that F (f)

is completely invariant, that is, z ∈ F (f) if and only if f(z) ∈ F (f), and

thus for any connected component U of F (f), called a stable domain of f ,

fn(U) is contained in a component Un of F (f). If for some n, Un = U, then

U is called a periodic domain of f ; If for n 6= m, Un 6= Um, then U is called

a wandering domain of f . We refer to [5] for more information.

Theorem 6. Let f be a meromorphic function and U be a stable do-

main of f . Assume that there exist an angular domain D(z0, θ, δ) ⊂ U and

an a 6∈ U such that C(a,U) > 0. Then for any positive integer n, we have

|fn(z)| ≤ Cn(1 + |z| tπ

4δ ), for z ∈ D(z0, θ, δ0),(34)

where 0 < δ0 < δ, t = max{4, 1/C(a,U)} and Cn is a positive constant

depending on a, δ0, δ, n and a fixed point z1 in U and fn(z1).
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Proof. If Un = U, then fn satisfies the condition of Corollary 2 with

Ω = U ; If Un 6= U , then Un ∩ U = ∅, and Un ⊂ C \ {arg(z − z0) =

θ}. Noting the fact that C \ {arg(z − z0) = θ} is simply connected and

CC\{arg(z−z0)=θ} = 1/4, we also have that fn satisfies the condition of Corol-

lary 2 with Ω = C \ {arg(z − z0) = θ}. Thus (34) follows from Corollary

2.

We remark on Theorem 6. (I) (34) with t = 4 holds without the as-

sumption of C(a,Ω) > 0 when U is a wandering domain of f .

(II) When U is simply connected, (34) with t = 1/CU ≤ 4 holds, which

was established in [6] and [18] by different methods with t = 4 for the case

when f is an entire function, for an unbounded stable domain of an entire

function f is simply connected (see [2]).
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