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Electromyography in Disorders of 
Muscle Tone 
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ABSTRACT: No single clinical electrophysiological test can evaluate disorders of muscle tone. These disorders, 
symptomatic of a variety of diseases have a multifactorial physiological basis. The several tests used are complimen­
tary each aiming to study different aspects of spinal and supraspinal reflexes which become deranged. The H reflex 
and F wave (H max/M max and F max/M max ratios) measure motoneuron pool excitability in general. The tendon 
reflex includes spindle mechanisms bypassed by the H reflex and, with limitations, comparison of H max/M max and 
T max/M max yields information about the -y system. Tonic vibration of a tendon inhibits the H reflex from the same 
muscle. The TVR measures autogenous presynaptic inhibition exerted by the la afferents of the muscle. Recurrent 
inhibition via Renshaw cells is evaluated by studying the effect of collision on the H reflex. Reciprocal inhibition of the 
la afferents can be assessed by measuring H reflex change induced by stimulating la afferents from antagonists. 
Changes in the H reflex recovery cycle measure polysynaptic influences on spinal motoneuron excitability. Cutaneo-
muscular (flexor) reflexes measure poly- and oligosynaptic excitatory drive to spinal motoneurons and the blink 
reflex evaluates the excitatory drive to brainstem motoneurons. Long loop (segmental) responses can be evaluated 
by limb pertubation using a torque motor or electrical stimulation applied during voluntary muscle contraction. 
Finally needle electromyography is a more relevant test in several disorders of muscle tone such as the stiff-man 
syndrome and Isaacs' syndrome. 

RESUME: L'electromyographic dans les perturbations du tonus musculaire. Les perturbations du tonus musculaire ne 
peuvent etre evaluees au moyen d'une epreuve electrophysiologique clinique unique. Ces perturbations, sympto-
matiques de differentes maladies, ont une base physiologique multifactorielle. Les multiples tests utilises sont 
complementaires, chaque test evaluant differents aspects des reflexes spinaux et supraspinaux qui peuvent etre 
perturbes. Le reflexe H et l'onde F (les rapports H max/M max et F max/M max) mesurent l'excitabilite du pool de 
motoneurones en general. Le reflexe osteotendineux inclut des mecanismes en fuseau contournes par le reflexe H 
et, dans une certaine mesure, la comparaison de H max/M max et de T max/M max fournit de ['information sur le 
systeme. Les vibrations toniques d'un tendon inhibent le reflexe H du meme muscle. Le RTV mesure l'inhibition 
presynaptique autogene exercee par les afferents la de ce muscle. L'inhibition recurrente via les cellules de Renshaw 
est mesuree par l'etude de l'effet de collision sur le reflexe H. L'inhibition reciproque des afferents la peut etre 
evaluee en mesurant le changement du reflexe H induit par la stimulation des afferents la qui proviennent des 
antagonistes. Les changements du cycle de recuperation du reflexe H mesurent les influences polysynaptiques sur 
l'excitabilite du motoneurone spinal. Les reflexes cutaneomusculaires (flexion) mesurent la transmission excitative 
poly- et oligo-synaptique vers les motoneurones spinaux et le reflexe de clignotement evalue la transmission excitative 
vers les motoneurones du tronc cerebral. Les reponses des boucles longues (segmentaires) peuvent etre mesurees 
par la perturbation d'un membre au moyen d'un moteur qui imprime un moment de torsion ou de stimulation elec-
trique pendant la contraction musculaire volontaire. Finalement, I'electromographie a I'aiguille est le test le plus 
approprie dans plusieurs perturbations du tonus musculaire telles le syndrome de l'homme raide et le syndrome 
d'lsaac. 
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Altered muscle tone is symptomatic of a variety of syn­
dromes manifested, for example by spasticity, rigidity, abnor­
mal posturing (dystonia) and hypotonia. These are usually 
identifiable without difficulty but are not readily defined in 
physiological terms. '"5 The physiological mechanisms underly­
ing abnormal tone are complex and multifactorial. One or more 
of the following are involved in many syndromes characterized 
by altered tone: peripheral sensory receptors, primary afferent 
fibers and their presynaptic terminals, excitatory and inhibi­
tory interneurons, alpha motorneurons and gamma (fusimotor) 

motorneurons. The commonly held view that disorders of mus­
cle tone are due primarily to defective fusimotor control of 
muscle spindle endings is probably naive.6 Nevertheless, com­
mon to many of these disorders are altered supraspinal influences. 
As a result, changes in spinal cord function and segmental 
reflexes are reflected clinically by paresis or loss of dexterity. 

Over the last 2 decades numerous electrophysiological meth­
ods have been developed for assessing altered muscle tone. 
Many complement each other, evaluating different aspects of 
neuronal circuitry, and it is unlikely that a single technique will 
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evolve which will be applicable to all situations. In evaluating 
altered muscle tone, clinical electrophysiology attempts to answer 
at least three questions:7 1) Is tone abnormal and if so to what 
extent? 2) What physiological factor(s) underly the abnormality? 
3) Is a particular therapeutic regimen efficacious and what is its 
mode of action? 

This paper overviews many of the presently available electro­
physiological tests used clinically to assess altered muscle tone 
(Table 1). It does not consider how these tests can be used to 
evaluate myorelaxant agents, (but see references 1,4,8). Other 
contributors to this symposium will concentrate on specific 
aspects of clinical electrophysiology in altered muscle tone. 

The H Max/M Max Ratio 

This measures alpha motoneuron excitability reflecting the 
percentage of motorneurons activated via the monosynaptic 
reflex.9 It assumes that presynaptic inhibition, acting upon the 
terminal arborizations of the la afferents, remains constant.10 

Long duration (1 ms) shocks, preferentially exciting la afferents, 
are commonly applied to the sciatic nerve in the popliteal fossa. 
The H reflex, with the maximum amplitude, is recorded from 
the soleus muscle (H Max). The same stimulation site is used to 
evoke a maximal motor compound action potential employing a 
supramaximal shock of 1 ms duration. The response is recorded 
over the soleus muscle (M Max). The normal range of H Max/M 
Max is 5-35%. Although, the soleus H reflex is most commonly 
employed, monosynaptic responses with the same properties 
as the soleus H reflex can be elicited from many other muscles. 
They become more easily elicited in upper motor neuron lesions.'' 

The H Max/M Max ratio is increased in spasticity.912 In 
parkinsonian rigidity it is normal or reduced.91314 

The T Max/M Max Ratio 

This additionally measures excitability of the muscle spin-

Table 1: Electrophysiological tests used in assessment of muscle tone 
Test Evaluate/Measures 
H Max/M Max Ratio 
T Max/M Max Ratio 

Tonic Vibration of Muscle 

H Reflex Recovery Cycle 

Modification of H Reflex by 
Maximal Conditioning Shock 
Modification of H Reflex by 
Simultaneous Sensory Stimulation 
F Wave Responses 
F Max, F/M Ratio 
Limb Perturbation During 
Intended Motor Acts 
Nerve Stimulation During 
Muscle Contraction 
Blink Reflex 

Cutaneomuscular 
Flexor Reflexes 

Needle Electromyography 

Alpha Motoneuron Excitability 
Alpha Motoneuron Excitability 
Incorporates Spindle Mechanism 
Presynaptic Inhibition of 
Monosynaptic Reflex 
Polysynaptic Changes in Motor 
Neuron Excitability 
Recurrent Renshaw Inhibition 

Reciprocal la Inhibition 

Motoneuron Excitability 

Short and Long-Loop 
Responses 

• Short and Long-Loop 
Responses 
Poly and Oligosynaptic 
Excitatory Drive to the 
Brainstem Interneurons 
Poly and Oligosynaptic 
Excitability Drive to Spinal 
Interneurons 
Recruitment Pattern, Firing 
Frequency of Motor Units, 
Motor Unit Morphology 

dies and the rheological properties of the stretched muscle 
bypassed by the H reflex.,5 The ankle jerk is elicited by a single 
tap applied to the achilles tendon using an electromechanical 
hammer. The direction and percussive force of the hammer is 
varied to obtain a maximal amplitude response recorded over 
the gastrocnemius-soleus complex (T Max). This site is also 
used to record the maximal M wave elicited by supramaximal 
stimulation to the sciatic nerve at the popliteal fossa (M Max). 
In parkinsonian patients with rigidity the ratio is within the 
normal range (5-40%). It is increased in spasticity. 

Vibratory Inhibition of the H Reflex (Tonic Vibration Reflex) 

In normal subjects, vibration applied to a limb muscle pro­
duces an illusion of movement, a slowly augmenting contrac­
tion (the tonic vibration reflex) and relatively non-specific 
inhibition of the monosynaptic reflex. l6This last effect predomi­
nantly results from autogenic presynaptic inhibition of the mus­
cle la afferents responsible for the monosynaptic reflex.17"20 

A 100 Hz vibrator is attached to the achilles tendon and the 
maximum amplitude H reflex is measured under control condi­
tions and during vibration. Inhibition is expressed as [H Max 
during vibration/control H Max x 100]. In normal (young) 
subjects there is about a 40% inhibition of H Max in the relaxed 
muscle. Presynaptic inhibition declines in older subjects and 
inhibition is reduced during muscle contraction in normal 
subjects.10 

In spasticity, inhibition is significantly reduced and may be 
absent.I0,20,21 This is also true during contraction, a modifica­
tion of the technique that ensures that the inhibition being 
measured is truly presynaptic.10 Presynaptic inhibition is not 
reduced in parkinsonism12 and returns to normal within a year 
of complete spinal lesion.16 

H Reflex Recovery Cycle 
This monitors polysynaptic changes in motoneuron excitabil­

ity secondary to segmental and suprasegmental mechanisms.I8,22 

Paired stimuli of equal strength, each of sufficient intensity to 
elicit a maximum H reflex, are applied at various interstimulus 
intervals. Results are expressed as a (percentage) ratio of the 
second (test) response, H2, to the first (conditioning) response, 
HI. In certain individuals results are stable over many hours.23 

The normal H reflex recovery cycle follows a characteristic 
pattern: complete inexcitability for 2 msec, reappearance of the 
reflex for about 10 msec, marked inhibition for about 100 msec, 
facilitation for about 200 msec and moderate inhibition for sev­
eral seconds. Several aspects of the recovery cycle are 
measureable: T0, time of onset of recovery, T,, time of peak 
facilitation, T2, duration of facilitation, T3, recovery time constant, 
Ro, amplitude at onset of recovery and R,, degree of facilitation.24 

In spastic subjects there is a trend toward increased time of 
peak facilitation, increased duration of facilitation and increased 
recovery time constant. However, only the degree of facilitation, 
which approximately doubles, differs significantly from normals.24 

The parkinsonian recovery curve exhibits a longer and higher 
period of facilitation.25 

Recurrent Renshaw Inhibition 
Inhibition by Renshaw cells reduces the excitability of moto­

neurons and when less effective results in motoneuron hyper­
activity. Renshaw inhibition can be assessed using a double 
collision technique.26'27 This prevents excitatory postsynaptic 
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potentials, created by la conditioning volleys, negating recur­
rent inhibition in the tested motoneurons.26 In essence the H 
reflex amplitude is compared when elicited by a stimulus adjusted 
to produce a maximum H response (conditioning shock) with 
that obtained by collision of this volley with a shock adjusted 
for a maximum M wave (test shock). Conditioning-test interval 
isabout 10 msec,beingvaried according to the subjects height.26 

The intensity of recurrent inhibition is normal in parkinsonian 
rigidity12 but increased in spasticity.26 

Reciprocal Inhibition of la Afferents 

Muscle la afferents normally exert a measurable inhibitory 
influence upon the motoneurons of antagonists.28 This periph­
eral la reciprocal inhibition is different from central, supraspinal 
inhibition, but both types converge onto the same spinal la 
inhibitory interneurones.29,30 In the upper limbs, peripheral 
inhibition, is assessed by comparing the H reflex recorded from 
relaxed forearm flexor muscles evoked by median (flexor) nerve 
stimulation at the elbow with the effect of applying a simultaneous, 
conditioning, low intensity, stimulation of the radial (extensor) 
nerve at the spiral groove. Lower limb inhibition is assessed by 
measuring the decline in the soleus H reflex amplitude induced 
by simultaneous, threshold stimulation of the peroneal nerve. 
Unlike the upper limb, inhibition in the lower limb is weak in 
normal subjects and usually requires voluntary dorsiflexion of 
the foot before it is seen.28 

In parkinsonism inhibition of the soleus H reflex is obvious, 
even at rest, and is more marked with voluntary contraction 
than in normals.122930 

The F Wave Response 

The F wave reflects recurrent discharge of antidromically 
activated motoneurons.3132 Its shortest latency is a useful 
measure of conduction through the proximal peripheral ner­
vous system,32 but other characteristics such as F wave 
persistence33"35 and amplitude36'37 are of particular relevance 
for evaluating central disorders. For example, increased F 
wave persistence34 and amplitude36"38 has been demonstrated 
in spasticity. These studies suggest the F wave is a measure of 
central motoneuron excitability.31,39 In acute stroke the ampli­
tude of the F wave is decreased.39,40 Recently, an increased 
amplitude of the F wave has also been described in parkinso­
nian rigidity.12,41 However, before concluding that the F wave 
amplitude is increased it is essential to be sure that baseline 
muscle activity was absent or the same as on the other side. 

Long-Loop Responses to Limb Perturbations 

Long-loop responses are synchronized muscular contrac­
tions associated with phasic aspects of movement; acceleration 
and velocity. The term response rather than reflex is preferred 
since volitional movement is an essential element when elicit­
ing them.5 They are recognized by their latencies, which are 
considerably longer than a spinal reflex, but shorter than a pure 
voluntary contraction in response to a command. 

The subject is instructed to maintain a limb posture to oppose 
a sudden perturbation (push or pull) delivered via a torque 
motor. The raw EMG is amplified, averaged and rectified. The 
stretched muscle reacts with a short latency spinal reflex and 
medium-latency and long-latency responses followed by volun­
tary movement. The responses, named Ml, M2 and M3,42 

elicited by wrist perturbation, have latencies of about 30 msec 

(spinal reflex), 50 msec (medium-latency) and 80 msec (long-
latency) respectively. M3 is inconsistent and M2 and M3 may 
not be distinguishable. Long-loop responses elicited by leg 
perturbation have appropriately longer latencies since the con­
duction pathway includes much of the spinal cord.43 

Long-loop responses are unrecordable when a perturbation 
is applied distal to a spinal lesion indicating the conduction 
pathway is supraspinal. In hemiplegia Ml, the spinal reflex 
component, is usually enhanced. M2 may be normal, enhanced 
or absent in the affected arm and leg. In many hemiplegics, late 
activity is seen occurring at about 100 msec. This is not volun­
tary since it is seen in a paretic limb, and not clonus because its 
frequency would be too fast.44 The dorsal columns, medial 
lemniscus, sensorimotor cortex and capsular corticomotoneurone 
pathways are essential for long-loop responses which are atten­
uated or lost when these are involved selectively.5,43 In rigid 
parkinsonians, long-loop responses are enhanced,42,44 an enhance­
ment that correlates positively with the degree of rigidity.45 

Short and Long Latency Responses Elicited by Electrical Stimuli 

Electrical stimulation of the median nerve at the wrist induces 
three potentials of increasing latency, recordable from the con­
tracting thenar muscle. The one with the shortest latency is a 
direct motor response (M-wave). It is followed by two responses, 
named Rl and R2 by Eisen et al.46 Their latencies are about 
28 msec and 46 msec respectively. Rl has many of the proper­
ties of an H reflex.47,48 Evidence derived from patient studies 
suggests that R2 is a long-loop response synapsing within the 
sensorimotor cortex.49,50 It is likely, but unconfirmed, that R2 
is the same response as M2 evoked by perturbation of a limb.5'52 

Short and long latency responses can also be elicited by electri­
cal stimulation of a leg nerve.46,50 R2 has a longer latency than 
that obtained with arm stimulation, the difference being in 
keeping with the time it takes to transit along the spinal cord. 

The Blink Reflex 

The blink reflex can be elicited by mechanical or electrical 
stimulation. An ipsilateral early latency response, Rl , (less 
than 12.9 msec) and longer latency bilaterally recorded responses, 
R2, (less than 43.7 msec) are evoked by supraorbital nerve 
stimulation.53 R2 is equivalent to the clinically visible glabellar 
reflex. Both normally habituate rapidly and failure to do so is 
characteristic, but not specific of early Parkinson's disease.54,55 

In stroke, especially early on, both early and late components 
are often absent or reduced in amplitude on the involved side.56 

Cutaneous Polysynaptic Reflexes 

When an electrical stimulus, of intensity sufficient to pro­
duce a tactile sensation is applied to the sural nerve, a reflex 
response of short latency (40-60 msec) is recordable from the 
biceps femoris muscle. A stronger, painful, stimulus elicits a 
longer latency response (85-120 msec). If the stimulus is increased 
further both early and late components are recordable from 
other flexor muscles of the lower limb, for example the tibialis 
anterior.'4,57,58 Inhibitory and subliminal excitatory effects 
may preclude recording cutaneomuscular reflexes from an inac­
tive muscle. This may be overcome by introducing a test activ­
ity such as a monosynaptic (H) reflex or tonic voluntary EMG 
activity.59 

In spasticity, stimuli that are threshold for the late response, 
recordable in normal subjects only from the biceps femoris, 
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elicit widespread flexor reflexes. In parkinsonian patients 
with rigidity the short latency response is enhanced and may 
become more widespread. However, the longer latency response 
is lost.58 

Needle Electromyography 

Abnormal muscle tone, although most commonly due to 
upper motoneuron disease and associated spasticity or extra­
pyramidal disease associated with rigidity, may also be seen as 
a manifestation of a variety of conditions having characteristic 
findings on needle electromyography. 

Neuromyotonia (Isaacs' syndrome), is a sporadic disease 
usually starting with muscle twitching in the legs. As the dis­
ease progresses intermittent and then permanent muscle stiffness 
develops. If untreated, the arms become involved and laryn­
geal stridor may develop. Tendon reflexes are depressed or 
absent.60 Abnormalities are seen on nerve-muscle biopsy affect­
ing predominantly the motor nerve terminal which is consid­
ered to be the site of the abnormality responsible for the 
syndrome.61 Electromyography shows sustained or repetitive 
firing of motor units (continuous muscle fiber activity). In 
addition there are characteristic very high frequency (300 Hz) 
spontaneous discharges. Decrement in successive potential 
amplitude produces a unique and pathognomonic sound on the 
speaker. Many patients respond to phenytoin and carbama-
zepine.62 Similar EMG findings are seen in the much rarer 
congenital Schwartz-Jampel syndrome.63 

Stiff-man syndrome is another disease characterized by con­
tinuous firing of otherwise normal motor units. Clinically there 
is rigidity initially involving axial musculature and later spread­
ing to the limb girdles. Voluntary movement is difficult or 
impossible.64,65 
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