CONVEXITY OF THE FIELD OF A LINEAR TRANSFORMATION

A.J. Goldman and M. Marcus

(received June 16, 1958)

Let U_n be an n-dimensional unitary space with inner product $(x, y) = \overline{(y, x)}$. In U_n let S_{n-1} denote the unit sphere:

$$S_{n-1} = \{x \mid (x,x) = 1\}$$
.

Let A be an arbitrary linear transformation of U_n. The subset

$$F(A) = \{ \zeta \mid \zeta = (Ax, x), x \text{ in } S_{n-1} \}$$

of the ζ -plane ($\zeta = \xi + i\eta$) is called the field of A.

As the image of S_{n-1} under the continuous mapping $x \rightarrow (Ax, x)$, F(A) must be compact and connected. Toeplitz proved in [4] that the boundary of F(A) is a convex curve. Hausdorff then showed [2] that F(A) actually fills the interior of this curve (i.e., that F(A) is convex). Proofs of the convexity of F(A) also appear in [3] and [5].

The purpose of this note is to provide a simple inductive proof for the convexity of F(A) which reduces the essential computation to the single case n = 2. We then dispose of this case by verifying directly that F(A) satisfies the definition of a convex set.

THEOREM. F(A) is convex.

Proof. (a) If n=1, then F(A) is a single point.

(b) Deferring the case n=2, we suppose $n \ge 3$ and consider the inductive step from n-1 to n. Let x and y be any two vectors of S_{n-1} ; we must show that F(A) contains the segment joining the points (Ax, x) and (Ay, y) in the ζ -plane. Since $n \ge 3$, we can find a vector u in U_n such that (u, x) = (u, y) = 0. The unitary-orthogonal complement in U_n of the line L spanned by u

Can. Math. Bull., vol.2, no. 1, Jan. 1959.

is a subspace U_{n-1} of U_n whose unit sphere S_{n-2} is contained in S_{n-1} ; furthermore, x and y lie in S_{n-2} . Any vector w in U_n admits a unique decomposition w = v + z, with v in L and z in U_{n-1} ; the unitary-orthogonal projection P of U_n onto U_{n-1} is defined by Pw = z. Obviously $A_0 = PAP = P(AP)$ is a linear transformation of U_{n-1} into itself. For any z in S_{n-2} (and thus in S_{n-1}) we have Pz = z and thus, decomposing $Az = v_1 + z_1$,

$$(Az, z) = (v_1 + z_1, z) = (z_1, z) = (PAz, z) = (PAPz, z) = (A_0 z, z);$$

since $(A_0z,z) = (Az,z)$, $F(A_0)$ is a subset of F(A). Also, taking z = x and z = y, we see that (Ax, x) and (Ay, y) are in $F(A_0)$; $F(A_0)$ is convex by hypothesis, and so the segment joining (Ax, x) and (Ay, y) lies in $F(A_0)$ and thus in F(A), as desired.

(c) We turn now to the case n=2. It is well known (see [1], for example) that there exists a coordinate system (or equivalently, a basis) in U_2 with respect to which the matrix of A takes a "superdiagonal" form

$$\mathbf{A} = \left(\begin{array}{cc} \mathbf{a} & \mathbf{c} \\ \\ \\ \mathbf{0} & \mathbf{b} \end{array}\right)$$

so that for any vector x in the "unit circle" S_1 of U_2 , with coordinates x_1 , x_2 relative to the system, we have

$$(Ax, x) = a |x_1|^2 + b |x_2|^2 + c\overline{x_1}x_2 \qquad (|x_1|^2 + |x_2|^2 = 1)$$

= b + (a-b) |x_1|^2 + c\overline{x_1}x_2.

If, using the convention arg (0) = 0, we let

$$\alpha = |a-b| \qquad (\alpha \ge 0)$$

$$t = \arg(a-b)$$

$$s = |x_1|^2 \qquad (0 \le s \le 1)$$

 $\theta = \arg x_2 - \arg x_1 - t$, and consider the set S = [F(A)-b]exp(-it), we find that

$$S = \{ \zeta \mid \zeta = \alpha s + c(s(1-s))^{\frac{1}{2}} \exp(i\theta); 0 \le s \le 1, 0 \le \theta \le 2\pi \}.$$

Since S is congruent to F(A), it suffices to prove that S is convex.

If c = 0, then S is a line segment and therefore convex. If $c \neq 0$ then we can assume c = 1, since F(A) is convex if and only if $c^{-1}F(A) = F(c^{-1}A)$ is convex. Thus we can take S to be the union of the circles

C(s): $|\zeta - \alpha s| = (s(1-s))^{\frac{1}{2}} = f(s)$ $(0 \le s \le 1).$

Let ζ_1 and ζ_2 be any points of S and let ζ_0 be any point on the line joining them: we must show that ζ_0 lies in S. Let $C(s_1)$ and $C(s_2)$ be circles on which ζ_1 , ζ_2 lie, and use the fact that ζ_0 can be written in the form

$$\zeta_0 = r \zeta_1 + (1-r)\zeta_2 \qquad (0 \le r \le 1)$$

to define

$$s_0 = rs_1 + (1-r)s_2$$
.

Consider $G(s) = |\zeta_0 - \alpha s| - f(s)$. Obviously $G(0) = |\zeta_0| \ge 0$ (i.e., ζ_0 lies outside or on C(0)). We will show that $G(s_0) \le 0$ (i.e., that ζ_0 lies inside or on $C(s_0)$). It follows that $G(s^*) = 0$ (i.e., that ζ_0 lies on $C(s^*)$) for some s* with $0 \le s^* \le s_0 \le 1$, so that ζ_0 lies in S and the convexity of S will be proved.

To show that $G(s_0) \leq 0$, we apply the triangle inequality:

$$|\zeta_0 - \alpha s_0| \leq r |\zeta_0 - \alpha s_1| + (1-r)| |\zeta_0 - \alpha s_2| = rf(s_1) + (1-r)f(s_2).$$

Since $f''(s) \leq 0$ for 0 < s < 1, we have

$$rf(s_1) + (1-r)f(s_2) \leq f(s_0)$$

and so $|\zeta_0 - \propto s_0| \leq f(s_0)$ (i.e., $G(s_0) \leq 0$). This completes the proof.

REFERENCES

- P.R. Halmos, Finite dimensional vector spaces, Annals of Mathematics Studies Number 7, (Princeton, 1942), 83-84.
- F. Hausdorff, Der Wertvorrat einer Bilinearform, Math. Zeit. 3(1919), 314-316.
- 3. M.H. Stone, Linear transformations in Hilbert space, A.M.S. Colloquium Publication XV, (1932), 131-133.
- O. Toeplitz, Das algebraische Analogen zu einem Satze von Fejer, Math. Zeit. 2(1918), 187-197.
- 5. A Wintner, Spektraltheorie der unendlichen Matrizen, (Leipzig, 1929), 34-37.

National Bureau of Standards and University of British Columbia