CONVEXITY OF THE FIELD
 OF A LINEAR TRANSFORMATION

A.J. Goldman and M. Marcus
(received June 16, 1958)
Let U_{n} be an n-dimensional unitary space with inner product $(x, y)=\overline{(y, x)} . \quad$ In U_{n} let S_{n-1} denote the unit sphere:

$$
S_{n-1}=\{x \mid(x, x)=1\}
$$

Let A be an arbitrary linear transformation of U_{n}. The subset

$$
\left.F(A)=\{ \} \mid\}=(A x, x), x \text { in } S_{n-1}\right\}
$$

of the ζ-plane $(\zeta=\xi+i \eta)$ is called the field of A.
As the image of S_{n-1} under the continuous mapping $x \rightarrow(A x, x)$, $F(A)$ must be compact and connected. Toeplitz proved in [4] that the boundary of $F(A)$ is a convex curve. Hausdorff then showed [2] that $F(A)$ actually fills the interior of this curve (i.e., that $F(A)$ is convex). Proofs of the convexity of $F(A)$ also appear in [3] and [5].

The purpose of this note is to provide a simple inductive proof for the convexity of $F(A)$ which reduces the essential computation to the single case $n=2$. We then dispose of this case by verifying directly that $F(A)$ satisfies the definition of a convex set.

THEOREM. $F(A)$ is convex.
Proof. (a) If $n=1$, then $F(A)$ is a single point.
(b) Deferring the case $n=2$, we suppose $n \geqslant 3$ and consider the inductive step from $n-1$ to n. Let x and y be any two vectors of S_{n-1}; we must show that $F(A)$ contains the segment joining the points ($\mathrm{A} x, \mathrm{x}$) and (Ay,y) in the ζ-plane. Since $n \geqslant 3$, we can find a vector u in U_{n} such that $(u, x)=(u, y)=0$. The unitary-orthogonal complement in U_{n} of the line L spanned by u

Can. Math. Bull., vol.2, no. 1, Jan. 1959.
is a subspace U_{n-1} of U_{n} whose unit sphere S_{n-2} is contained in S_{n-1}; furthermore, x and y lie in S_{n-2}. Any vector w in U_{n} admits a unique decomposition $w=v+z$, with v in L and z in U_{n-1}; the unitary-orthogonal projection P of U_{n} onto U_{n-1} is defined by $P w=z$. Obviously $A_{o}=P A P=P(A P)$ is a linear transformation of U_{n-1} into itself. For any z in S_{n-2} (and thus in S_{n-1}) we have $P z=z$ and thus, decomposing $A z=v_{1}+z_{1}$,

$$
(A z, z)=\left(v_{1}+z_{1}, z\right)=\left(z_{1}, z\right)=(P A z, z)=\left(P^{2} A_{z}, z\right)=\left(A_{0} z, z\right)
$$

since $\left(A_{o} z, z\right)=(A z, z), F\left(A_{o}\right)$ is a subset of $F(A)$. Also, taking $z=x$ and $z=y$, we see that ($A x, x$) and ($A y, y$) are in $F\left(A_{0}\right)$; $F\left(A_{0}\right)$ is convex by hypothesis, and so the segment joining ($A x, x$) and ($A y, y$) lies in $F\left(A_{0}\right)$ and thus in $F(A)$, as desired.
(c) We turn now to the case $n=2$. It is well known (see [1], for example) that there exists a coordinate system (or equivalently, a basis) in U_{2} with respect to which the matrix of A takes a "superdiagonal" form

$$
A=\left(\begin{array}{ll}
a & c \\
0 & b
\end{array}\right)
$$

so that for any vector x in the "unit circle" S_{1} of U_{2}, with coordinates x_{1}, x_{2} relative to the system, we have

$$
\begin{aligned}
(A x, x) & =a\left|x_{1}\right|^{2}+b\left|x_{2}\right|^{2}+c \bar{x}_{1} x_{2} \quad\left(\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}=1\right) \\
& =b+(a-b)\left|x_{1}\right|^{2}+c \bar{x}_{1} x_{2}
\end{aligned}
$$

If, using the convention $\arg (0)=0$, we let

$$
\begin{array}{rlr}
\alpha & =|a-b| & (\alpha \geqslant 0) \\
t & =\arg (a-b) & \\
s & =\left|x_{1}\right|^{2} & (0 \leqslant s \leqslant 1) \\
\theta & =\arg x_{2}-\arg x_{1}-t, & \\
\text { and consider the set } S=[F(A)-b] \exp (-i t), \text { we find that }
\end{array}
$$

$$
S=\left\{\zeta \left\lvert\, \zeta=\alpha s+c(s(1-s))^{\frac{1}{2}} \exp (i \theta)\right. ; 0 \leqslant s \leqslant 1,0 \leqslant \theta \leqslant 2 \pi\right\} .
$$

Since S is congruent to $F(A)$, it suffices to prove that S is convex.
If $c=0$, then S is a line segment and therefore convex. If $c \neq 0$ then we can assume $c=1$, since $F(A)$ is convex if and only if $c^{-1} F(A)=F\left(c^{-1} A\right)$ is convex. Thus we can take S to be the union of the circles

$$
C(s): \quad|\zeta-\alpha s|=(s(1-s))^{\frac{1}{2}}=f(s) \quad(0 \leqslant s \leqslant 1)
$$

Let $\}_{1}$ and ζ_{2} be any points of S and let ζ_{0} be any point on the line joining them: we must show that ζ_{0} lies in S. Let $C\left(s_{1}\right)$ and $C\left(s_{2}\right)$ be circles on which $\left.\}_{1},\right\}_{2}$ lie, and use the fact that \}o can be written in the form

$$
\}_{0}=r\right\}_{1}+(1-r)\right\}_{2} \quad(0 \leqslant r \leqslant 1)
$$

to define

$$
s_{0}=r s_{1}+(1-r) s_{2}
$$

Consider $G(s)=\mid\}_{0}-\alpha s \mid-f(s)$. Obviously $\left.G(0)=\mid\right\}_{0} \mid \geqslant 0$ (i.e., Yolies outside or on $C(0)$). We will show that $G\left(s_{0}\right) \leqslant 0$ (i.e., that $\}_{0}$ lies inside or on $\left.C\left(s_{o}\right)\right)$. It follows that $G\left(s^{*}\right)=0$ (i.e., that ζ_{0} lies on $C\left(s^{*}\right)$) for some s^{*} with $0 \leqslant s * \leqslant s_{0} \leqslant 1$, so that ζ_{0} lies in S and the convexity of S will be proved.

To show that $G\left(s_{0}\right) \leqslant 0$, we apply the triangle inequality:

$$
\left.\mid\}_{0}-\alpha s_{0}|\leqslant r| r_{0}-\alpha s_{1}|+(1-r)|\right\}_{0}-\alpha s_{2} \mid=r f\left(s_{1}\right)+(1-r) f\left(s_{2}\right) .
$$

Since $f^{\prime \prime}(s) \leqslant 0$ for $0<s<1$, we have

$$
r f\left(s_{1}\right)+(1-r) f\left(s_{2}\right) \leqslant f\left(s_{0}\right)
$$

and so $\mid\}_{0}-\alpha s{ }_{o} \mid \leqslant f\left(s_{0}\right)\left(i . e ., G\left(s_{0}\right) \leqslant 0\right)$. This completes the proof.

REFERENCES

1. P.R. Halmos, Finite dimensional vector spaces, Annals of Mathematics Studies Number 7,(Princeton, 1942), 83-84.
2. F. Hausdorff, Der Wertvorrat einer Bilinearform, Math. Zeit. 3(1919), 314-316.
3. M. H. Stone, Linear transformations in Hilbert space, A.M.S. Colloquium Publication XV, (1932), 131-133.
4. O. Toeplitz, Das algebraische Analogen zu einem Satze von Fejer, Math. Zeit. 2(1918), 187-197.
5. A Wintner, Spektraltheorie der unendlichen Matrizen, (Leipzig, 1929), 34-37.

National Bureau of Standards and
University of British Columbia

