
Artificial Intelligence for
Engineering Design, Analysis
and Manufacturing

cambridge.org/aie

Research Article

Cite this article: Çakıt E, Dağdeviren M (2023).
Comparative analysis of machine learning
algorithms for predicting standard time in a
manufacturing environment. Artificial
Intelligence for Engineering Design, Analysis
and Manufacturing 37, e2, 1–12. https://
doi.org/10.1017/S0890060422000245

Received: 16 November 2021
Revised: 28 September 2022
Accepted: 16 November 2022

Key words:
Machine learning; manufacturing; prediction;
productivity; standard time

Author for correspondence:
Erman Çakıt,
E-mail: ecakit@gazi.edu.tr

Comparative analysis of machine learning
algorithms for predicting standard time
in a manufacturing environment

Erman Çakıt1 and Metin Dağdeviren1,2

1Department of Industrial Engineering, Gazi University, Ankara 06570, Turkey and 2Council of Higher Education,
Universiteler Mah. No:10, Bilkent-Ankara 06539, Turkey

Abstract

Determining accurate standard time using direct measurement techniques is especially chal-
lenging in companies that do not have a proper environment for time measurement studies or
that manufacture items requiring complex production schedules. New and specific time mea-
surement techniques are required for such companies. This research developed a novel time
estimation approach based on several machine learning methods. The set of collected inputs
in the manufacturing environment, including a number of products, the number of welding
operations, product’s surface area factor, difficulty/working environment factors, and the
number of metal forming processes. The data were collected from one of the largest bus man-
ufacturing companies in Turkey. Experimental results demonstrate that when model accuracy
was measured using performance measures, k-nearest neighbors outperformed other machine
learning techniques in terms of prediction accuracy. “The number of welding operations” and
“the number of pieces” were found to be the most effective parameters. The findings show that
machine learning algorithms can estimate standard time, and the findings can be used for sev-
eral purposes, including lowering production costs, increasing productivity, and ensuring effi-
ciency in the execution of their operating processes by other companies that manufacture
similar products.

Introduction

The work study is a widely used approach for analyzing how tasks are carried out in a com-
pany and recommending steps to enhance efficiency. Frederick Winslow Taylor (1856–1915)
emphasized the need to follow the three basic principles to maximize productivity: (i) “a
defined task, determined by the definition of the job leading to the best operation sequence,”
(ii) “a definite time, established by stopwatch time study or estimated from standard data,” and
(iii) “a definite method developed by detailed analysis and recorded in the instruction charts.”
Taylor’s main contribution to work study is therefore the timing of each action and finding the
“one optimum method” to do a task. All of these concepts are represented in his book “Shop
Management” (Taylor, 1911).

The two core concepts in work study are motion study and work measurement. Motion study
focuses on the effectiveness of the work and work study provides the standard time that is
required for different purposes. The type of applied work measurement technique can vary
according to the work specifications and structure that will be measured. Work measurement
is the application of the predefined techniques by a qualified worker with a required measurement
of time to validate work with a predetermined definition (standardized) and performance level.

The work study is not a single technique but a definition that consists of a group of tech-
niques that are used to measure the work (Niebel and Freivalds, 2003).

Companies today have a tremendous need to monitor the standard times for the items they
manufacture (Freivalds et al., 2000). Without precise standard time, it is extremely challenging
to design manufacturing schedules, short- and long-term estimates, capacity planning, pricing,
and other technical and administrative tasks in a firm (Eraslan, 2009). Because determining
the standard time is challenging, extra work measurement methodologies, such as time
study, are required in addition to direct measurement techniques (Dağdeviren et al., 2011).
It is obvious that not all firms can determine the standard time for each product or semi-
product using indirect labor measuring methods. However, for some products, when the
time study is expensive or not practicable, they are extremely useful approaches.
Unfortunately, in most situations, direct or indirect work measurement techniques such as
“time study,” “activity sampling,” “standard data synthesis,” “analytical estimation,” “compar-
ison,” “prediction,” and “elementary motion standards” are inadequate to ensure the precise
standard time (Atalay et al., 2015). As a result, new and effective techniques for dealing
with this problem are required. The primary goal of this study is to apply machine learning
algorithms for estimating the standard time based on various parameters including the
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number of products, the number of welding operations, product’s
surface area factor, difficulty/working environment factor, and the
number of metal forming processes.

The rest of this study is organized as follows. The literature
review is presented in the part after that, Section “Background”.
Section “Material and methodology” introduces machine learning
methods and presents a study design. Comparing the results of
the selected machine learning techniques is covered in Section
“Results and discussion”, and Section “Conclusions” examines
the findings and makes recommendations for further research.

Background

To increase the efficient use of resources and set performance cri-
teria for the selected activities, work study is the systematic assess-
ment of activity-conduct procedures (Kanawaty, 1992). Some of
the recent studies on work study have been conducted by several
authors. For instance, Moktadir et al. (2017) used the work study
approach to enhance productivity in the leather goods business.
They demonstrated that reducing work content and balancing
lines improved productivity. In order to determine the average
and standard times for each task included in the manual palm
oil harvesting process, Saibani et al. (2015) observed two harvest-
ers. Khan and Jha (2017) evaluated a production line of a high-
deck body and performed a time study to determine the standard
time for each process.

Suyono (2021) recently estimated the cycle time, normal time,
and standard time for each work process done by employees while
accounting for the adjustment factor and the allowance factor to
differentiate the types of labor. Ahmed et al. (2018) predicted the
standard time based on an effective layout model of a shirt man-
ufacturing company. The authors investigated different types of
machines such as cutting machine and sewing machine. Rosa
et al. (2018) improved an assembly line’s production process by
removing non-value-adding tasks. Similarly, Rosa et al. (2017a,
2017b) considerably improved the manufacture of control cables
used in car vehicles to operate doors and windows. SMED (single
minute exchange of die) approaches were used in various jobs, as
well as value stream mapping (VSM) analysis and standard work
principles. Significant productivity increases were made in a
product with a low added value and a labor-intensive assembly
process. An electronic component company enhanced the effi-
ciency of their assembly line by 10% using VSM and lean line
design (Correia et al., 2018). Various levels of production stan-
dard time were examined by Nurhayati et al. (2016) to determine
the relationship between work productivity and acute reactions.
They concluded that their findings are useful for assessing work-
ers’ current work productivity and serving as a reference for
future work productivity planning to reduce the risk of developing
work-related musculoskeletal disorders (WMSDs). Eraslan (2009)
proposed the artificial neural network (ANN)-based approach for
standard time estimation in the molding sector. The proposed
approach, according to the author, might be used with accuracy
in comparable procedures. Similarly, for standard time estimate
in particular production systems, Atalay et al. (2015) used fuzzy
linear regression analysis with quadratic programming.

This research is a considerable expansion of the study under-
taken by Dağdeviren et al. (2011), in which the dataset was used
to develop and evaluate ANNs. In this study, more data were col-
lected to build and test 13 machine learning algorithms for estimat-
ing the standard time. These algorithms include linear (“multiple
linear regression, ridge regression, lasso regression, and elastic net

regression”) and nonlinear models [“k-nearest neighbors, random
forests, artificial neural network, support vector regression, classifi-
cation and regression tree (CART), gradient boosting machines
(GBM), extreme gradient boosting (XGBoost), light gradient boost-
ing machine (LightGBM), and categorical boosting (CatBoost)”].

Despite extensive research on work study applications, there is
a dearth of data on how to model the relationship between com-
ponents of the manufacturing environment and standard time.
The literature indicates that no research has been performed on
the use of any machine learning technique specifically for this
objective in order to ascertain the extent to which production
environment features contribute to the computation of the stan-
dard time. This fact has served as the basis for the current
study. Thus, the current work will contribute to the domain of
work study and ergonomics.

Material and methodology

Work measurement techniques

It is possible to define the work measurement techniques as indi-
rect techniques where direct observation is required (time study,
group timing technique, work sampling) and as direct techniques
where direct observation is not required (predetermined motion-
time systems, standard data and formulation, comparison and
prediction methods) (Niebel and Freivalds, 2003). The most com-
mon ones are briefly explained below:

(i) A time study (TS) captures the process time and levels of a
planned work under specific conditions. The obtained data
are evaluated and used to determine how long it will take
to complete the task at a set process speed (Niebel and
Freivalds, 2003). Time measurements, especially by using
work technique, method and conditions of the work systems,
consist of proportionality quantities, factors, performance
levels, and evaluation of real time for each flow section.
The specified flow sections’ foresight time is determined
using the evaluations of this time. Unfortunately, time
study is cost ineffective and can be used only under certain
situations. Furthermore, it depends on the expertise of the
individual conducting the time study.

(ii) Work sampling (WS) is the determination of the frequency
of the occurrence of the flow types that are previously deter-
mined for one or more similar work systems by using ran-
domness and short time observations. The state of the
worker or the machine that is randomly observed is recorded
and the free time percentages of the worker or machine, even
a workshop, are determined after many sufficient observa-
tions. WS is based on probability fundamentals, for the
assumption that the sample group will represent the mass
similarly done in similar statistical studies. As the sample
size is increased, the reliability of the measurement will
increase. There are some advantages of WS such that it
does not require any experience and can be performed
using less effort compared with TS. However, some of the
disadvantages of this method are the difficulties in observing
separate machines, not providing a performance evaluation,
informing groups rather than individual people and prob-
lems based on non-clear observations of some flow sections
(Niebel and Freivalds, 2003).

(iii) Predetermined motion-time system (MTM) is an indirect
work study technique. Motion-time systems, also named as
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synthetic time systems, are used to determine the time
needed for a related work by means of using predetermined
time standards for some motions without a direct observa-
tion and measurement. It is, however, only applicable to
hand-made processes (Niebel and Freivalds, 2003).

(iv) Time study in individual and discrete serial manufacturing,
small-sized establishments, re-work activities, or producing
a new product in manufacturing lines is very expensive or
not possible. For this reason, the time study in these fields
is mostly determined by a comparison and prediction method
(CPM). The flow time, which is evaluated by the reference
time, is deduced by comparing it with a predetermined sim-
ilar product’s flow time. This method is capable of obtaining
data that can be used under some special circumstances if
there exists sufficient experience, provided documents and
the correct application of the method. This method requires
forecasts and measurements are affected mostly by the per-
sonal opinions of the one who performs the time study
(Niebel and Freivalds, 2003).

(v) Standard data and formulation method (SDF) is based on the
formulation that the work time is calculated using the pre-
viously completed time studies and assume that the factors
affecting the time are declared as variables. Regression analysis
is one of these methods. The most significant disadvantages of
this method are the impossibility of deriving a formulation
expressing the behavior of all systems and the condition of
ineffectiveness of a mathematical function that effect time.

Direct or indirect work measurement techniques are, however,
inadequate to identify the actual standard time in many instances.
The cost of time study might be quite costly in addition to com-
plicated manufacturing schedules and procedures and insufficient
environmental conditions. Therefore, current work measurement
techniques that measure work directly or indirectly are not con-
sidered practical for all organizations. In addition to reducing
the total cost, this study shortens time measurements and
enhances standard time accuracy.

Data description

The data used in this research were collected based on the study
by Dağdeviren et al. (2011) in which the dataset was employed to
build and test ANNs. More data was collected for this research in
order to develop and evaluate 13 machine learning methods for
predicting the standard time. For this purpose, the number of
products, the number of welding operations, product’s surface
area factor, difficulty/working environment factor, and the num-
ber of metal forming processes were considered as input variables.
The input variables are described below:

• Number of products: The components of the items are various
steel component combinations. Preparation time can be
depicted by taking the components from the relevant shelves
and arranging them according to their patterns. The number
of components to be welded is the most critical aspect that
influences the preparation time.

• Number of welding operations: Welding is the most basic man-
ufacturing procedure. The amount of time it takes to complete
these welding processes is governed by the number of welding
operations performed on that particular product.

• Product’s surface area factor: The fact that the items’ dimensions
differ from one another shows that this element impacts on

time. The number of personnel who can work on the product
and the maximum dimension restrictions are both affected by
the surface area factor.

• Difficulty/working environment factor: The working environ-
ment’s difficulties, including the depth factor, are related to
the ergonomics of pattern placement, the product’s complexity,
and the consequences of welding problems raised by the
product design. It is simple to determine the product’s com-
plexity level based on its category.

• The number of metal forming processes: Due to the heated metal
formation, welding operations can cause stress and strain on the
product. This rule applies to all items. In some products, the
allowed deformation limitations might be exceeded in relation
to the structure shape. If this occurs, metal shaping is used to
restore the product’s physical proportions. This process is
known as rectification, and it takes time. Here, the products
are categorized based on whether or not sheet metal forming
is present, and 1 and 0 values are assigned.

The standard time was estimated using all of these variables.
As a result, the data had five inputs and one output that repre-
sented the standard time. Of the 305 records, 244 were classified
as training records using 80% of the data and testing records using
the remaining 20% (61 records). For machine learning, it is pos-
sible to use several programming languages. Data scientists and
software developers are increasingly using Python (Robinson,
2017). In this study, Python version 3.4 was conducted to perform
the analysis for each model. This research was carried out in the
order shown in Figure 1.

Machine learning algorithms

Machine learning is a branch of artificial intelligence that incor-
porates several learning paradigms such as supervised learning,
unsupervised learning, and reinforcement learning (Shirzadi
et al., 2018). As shown in Figure 2, there are several forms of
machine learning that include reward maximization, classifica-
tion, anomaly detection, clustering, dimensionality reduction,
and regression (Gao et al., 2020).

With the increasing growth of data in many sectors, the adop-
tion of appropriate machine learning algorithms may enhance the
efficiency of data analysis and processing while also solving some
practical problems (Lou et al., 2021). Machine learning is covered
in depth in many great texts (Marsland, 2014; Mohri et al., 2018;
Alpaydin, 2020). This section describes the 13 machine learning
techniques performed in the study. We employed both linear
(“multiple linear regression, ridge regression, lasso regression,
and elastic net regression”) and nonlinear machine learning
methods [“k-nearest neighbors, random forests, artificial neural
network, support vector regression, classification and regression
tree (CART), gradient boosting machines (GBM), extreme gradi-
ent boosting (XGBoost), light gradient boosting machine
(LightGBM), and categorical boosting (CatBoost)”].

Regression modeling
In engineering, regression modeling is a highly helpful statistical
approach for predicting the relationship between one or more
independent variables as predictors and the dependent variables
as estimated values. Multiple regression modeling is aimed in par-
ticular at understanding the change in dependent variable y and
movement in k explanatory variables (independent) x1, x2, …, xk.
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The simplest basic representation of the multiple regression
analysis is as follows:

yi = f (xi1, xi2, . . . , xik)+[i,

yi = b0 + b1xi1 + b2xi2 + · · · + bkxik +[i.
(1)

Ridge regression
Ridge regression uses the same concepts as linear regression, but
adds a bias to counterbalance the impact of large variances and
eliminates the necessity for unbiased estimators. It penalizes non-
zero coefficients and seeks to minimize the sum of squared resi-
duals (Hoerl and Kennard, 1970; Zhang et al., 2015). Ridge

Fig. 1. Research methodology.
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regression performs L2 regulations that penalize the coefficients
by incorporating the square of the size of the cost function
coefficient:

J =
∑n
i=1

yi −
∑p
j=1

xijuj

( )2

+l
∑p
j=1

u2j , (2)

where l
∑p

j=1 u
2
j is the “regularization component”, and λ is a

“regularization factor” that may be improved by evaluating the
validation error.

Lasso regression
The purpose of lasso regression is to recognize the variables and
associated regression coefficients leading to a model, which mini-
mizes the prediction error. The lasso regression model, like ridge
regression, penalizes the magnitude of coefficients to avoid over-
fitting (Vrontos et al., 2021). L1 regularization is performed using
the lasso regression as follows:

J =
∑n
i=1

yi −
∑p
j=1

xijuj

( )2

+l
∑p
j=1

|uj|, (3)

where l
∑p

j=1 |uj| is the regularization component, and it consists
of the feature coefficients’ absolute values added together.

Elastic-net regression model
The elastic-net regression approach is a variation of multiple lin-
ear regression techniques for dealing with high-dimensional fea-
ture selection challenges (Fukushima et al., 2019). The penalties
of the ridge and lasso techniques are linearly combined in this
algorithm (Richardson et al., 2021). Through the use of a
parameter, 0≤ α≤ 1 the elastic-net algorithm fades between the
lasso and ridge techniques.

Random forests
The random forest (RF) approach (Breiman, 2001) is not only
useful in regression and classification, but it also performs well
in variable selection (Genuer et al., 2010). RF incorporates several
trees into an algorithm by including the concept of ensemble
learning (Cun et al., 2021). Following that, the forecast for a
new observation is obtained by combining the forecasted values
derived from each individual tree in the forest. “The number of
trees,” “the minimum number of observations in the terminal
node,” and “the number of suitable features for splitting” are
the three major parameters for RF algorithms. There are compre-
hensive mathematical explanations for RFs in the literature
(Breiman, 2001).

k-nearest neighbors
The k-nearest neighbors (KNN) algorithm is one of mature data
mining technique. KNN has therefore been recognized in data
mining and machine learning as one of the top 10 algorithms
(Wang and Yang, 2020). The KNN algorithm is a supervised
machine learning method that may be used to solve problems
such as classification and regression (Asadi et al., 2017). KNN col-
lects data points that are near it. Any attributes that may change
to a wide extent might effectively affect the distance between data
points (James et al., 2013). Then, the algorithm sorts the nearest
data points from the arrival data point in terms of distance.

Artificial neural networks
ANN is a calculation technique inspired by the nervous system of
the human brain that analyzes data and estimates outcomes
(Rucco et al., 2019). ANNs are capable of working efficiently
with large and complex datasets (Çakıt et al., 2014; Noori,
2021). The number of hidden layers in a neural network –
which typically consists of an input layer, a hidden layer, and
an output layer – defines the network’s complexity (Haykin,
2007). The appropriate neural network design is a critical selec-
tion for precise prediction (Sheela and Deepa, 2014). Many

Fig. 2. Types of machine learning (adapted from
Swamynathan (2019)).
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resources for further ANN explanations are accessible in the lit-
erature (Zurada, 1992; Fausett, 2006; Haykin, 2007).

Support vector regression
Support vector regression (SVR) analysis is an effective method
for curve fitting and prediction for both linear and nonlinear
regression types. As the conventional support vector regression
formulation, Vapnik’s ϵ-insensitive cost function is employed:

≺1 (e) = Cmax(0, |e| − 1), C . 0. (4)

In which an error e = y − �y up to 1 is not penalized, otherwise
it will incur in a linear penalization. The “C penalization factor,”
the “insensitive zone,” and the “kernel parameter” are the three
hyperparameters that must be defined in the SVR model. In
this research, a cross-validation procedure was performed to
tune all these parameters. More discussions for further SVR
explanations are accessible in the literature (Drucker et al., 1996).

Classification and regression tree
Classification and regression tree (CART) is a technique for par-
titioning variable space based on a set of rules encoded in a deci-
sion tree, where each node divides depending on a decision rule
(Breiman et al., 1984). The technique may be used as a classifica-
tion tree or a regression tree depending on the data type. This
method aims to find the optimal split and is capable of handling
huge continuous variables. The CART is built by iteratively divid-
ing subsets of the dataset into two child nodes using all predictor
variables, to produce subsets of the dataset that are as homoge-
neous as feasible concerning the target variable (Mahjoobi and
Etemad-Shahidi, 2008).

Gradient boosting machines
Gradient boosting machines (GBMs), proposed by Friedman
(2001), is another approach applied for conducting supervised
machine learning techniques. There are three main tuning param-
eters in a “gbm” model including the maximum number of trees
“ntree”, the maximum number of interactions between indepen-
dent values “tree depth” and “learning rate” (Kuhn and
Johnson, 2013). In this work, the general parameters employed
in the development of the “gbm” model were identified.

Extreme gradient boosting
The principle of the gradient boosting machine algorithm is also
followed by the extreme gradient boosting (XGBoost) algorithm
(Chen and Guestrin, 2016). XGBoost requires many parameters,
however, model performance frequently depends on the optimum
combination of parameters. The XGBoost algorithm works like
this: consider a dataset with m features and an n number of
instances DS = {(xi, yi):i = 1 . . . n, xieR

m, yieR}. By reducing
the loss and regularization goal, we should ascertain which set
of functions works best.

L(f) =
∑
i

l(yi, f(xi))+
∑
k

V( fk), (5)

where l represents the loss function, fk represents the (k-th tree),
to solve the above equation, while Ω is a measure of the model’s
complexity, this prevents over-fitting of the model (Çakıt and
Dağdeviren, 2022).

Light gradient boosting machine
Light gradient boosting machine (LightGBM) is an open-source
implementation of the gradient-boosting decision tree algorithm
that uses the leaf-wise strategy to best splits that maximize gains
(Ke et al., 2017). For better prediction outcomes, several model
parameters must be adjusted, including number of leaves, learning
rate, maximum depth, and boosting type (Ke et al., 2017).

Categorical boosting
Categorical boosting (CatBoost) is a gradient boosting library with
the goal of reducing prediction shift during training (Prokhorenkova
et al., 2018). The CatBoost technique, in contrast to other
machine learning algorithms, only needs a modest amount of
data training and can handle a variety of data types, including cat-
egorical features. For further information on the CatBoost algo-
rithm, there are several resources accessible in the literature
(Azizi and Hu, 2019).

Performance criteria

Various performance measures were used to compute the differ-
ence between actual and estimated values in the model (Çakıt and
Karwowski, 2015, 2017; Çakıt et al., 2020). The accuracy of the
model was tested in this study to assess the effectiveness of
machine learning techniques. Four performance measures were
used: mean absolute error (MAE), the root mean-squared error
(RMSE), the mean square error (MSE), and the coefficient of
determination (R2) to measure the performance of the methods.
The model findings are more accurate when the RMSE, MSE,
and MAE values are low. Higher R2 values are a better match
between the values observed and estimated. These calculations
were performed using the following equations:

RMSE =
�����������������
1
n

∑n
i=1

(Pi − Ai)
2

√
, (6)

MSE = 1
n

∑n
i=1

(Pi − Ai)
2, (7)

MAE = 1
n

∑n
i=1

|ei|, (8)

R2 = 1−
∑n

i=1 (Pi − Ai)
2∑n

i=1 A
2
i

( )
, (9)

where “Ai” and “Pi” are the measured (experimental) and esti-
mated parameters, respectively,

ei is “the prediction error”; n is “total number of testing data”

i = 1, 2, 3, . . . , n. (10)

Results and discussion

Model evaluation

Python/Jupyter Notebook was used for model developing, and all
machine learning methods were implemented using the scikit-
learn packages (Scikit-Learn: Machine Learning in Python,
2021). RMSE, MSE, MAE, and R2 statistics were provided and
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the model results followed real values slightly for the performed
multiple regression model (Fig. 3a). Similarly, Figure 3b shows
a comparison between the forecasted and the ridge regression out-
put. The ridge regression results show that the real values are
somewhat followed by the predicted values. For the developed
lasso regression model, RMSE, MSE, MAE, and R2 statistics
were provided and the model results followed real values slightly
(Fig. 3c). On the basis of the elastic-net regression model results,
59.02, 3483.29, 24.50, and 0.557 were reported for the RMSE,
MSE, MAE and R2 values, respectively (Fig. 3d).

Similarly, RMSE, MSE, MAE, and R2 statistics were provided
for nonlinear models. On the basis of the random forests model
results, 8.89, 79.18, 2.76, and 0.989 were reported for the
RMSE, MSE, MAE, and R2 values, respectively (Fig. 4a). Based
on the KNN model results, 1.48, 2.20, 0.91, and 0.998 were
reported for the RMSE, MSE, MAE, and R2 values, respectively
(Fig. 4b). The outputs of the KNN model show that the actual
values are closely followed. MLP from the scikit-learn library
was conducted in this study. It was decided to use the following
criteria: (“alpha = 0.01, beta_1 = 0.8, beta_2 = 0.999, epsilon = 1 ×
10−07, hidden layer sizes = (100,100), learning_rate_init = 0.002,
max_iter = 300, momentum = 0.9, n_iter_no_change = 10”).
According to the ANN model results, 61.17, 3742.60, 32.95, and
0.998 were reported for the RMSE, MSE, MAE, and R2 values,
respectively (Fig. 4c). The support vector machines class of the
sklearn python library was used to select the model parameters

for this study (C = 0.2, 1 = 0.05, and kernel = “rbf”) and the sup-
port vector regression model was imported.

On the basis of the support vector regression model results, 9.41,
8.62, 3.89, and 0.920 were reported for the RMSE, MSE, MAE, and
R2 values, respectively (Fig. 4d). For the developed CART model,
RMSE, MSE, MAE, and R2 statistics were provided and the
model results were shown to closely follow real values (Fig. 4e).
For GBM model development, the following parameters were
selected: (“learning rate”: 0.02, “loss”: “ls”, “max depth”: 2, “n esti-
mators”: 500, “subsample”: 1). The remaining parameters were left
with the default settings. The “gbm” development was then initiated
using the provided parameters. RMSE, MSE, MAE, and R2 statistics
were provided and the model results were shown to closely follow
real values for the performed GBM model (Fig. 4f).

10-fold cross-validation was used to tune the parameters and
launched “xgb” development using the parameters provided to
it. Based on the optimum parameters (“colsample bytree”: 1,
“learning rate”: 0.02, “max depth”: 3, “n estimators”: 500), the
developed “xgb” model was selected. On the basis of the “xgb”
model results, 41.31, 1707.07, 17.51, and 0.782 were reported
for the RMSE, MSE, MAE, and R2 values, respectively (Fig. 4g).
For “lightgbm” model development, trial-and-error methods
were used to set the parameters, and the developed “lightgbm”
model based was selected (“learning rate”: 0.2, “max depth”: 2,
“n_estimators”: 30). On the basis of the “lightgbm” model results,
51.37, 2639.71, 25.40, and 0.664 were reported for the RMSE,

Fig. 3. Actual and predicted values for linear models (regression models).
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Fig. 4. Actual and predicted values for nonlinear models.
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MSE, MAE, and R2 values, respectively (Fig. 4h). The “CatBoost”
algorithm was conducted with the required parameters (“learning
rate,” “the maximum depth of the tree,” etc.) in this research. The
best parameters (“depth”: 2, “iterations”: 500, “learning rate”:
0.09) were used to choose the developed “CatBoost” model. On
the basis of the “CatBoost” model results, 44.31, 1963.91, 19.64,
and 0.750 were reported for the RMSE, MSE, MAE, and R2 val-
ues, respectively (Fig. 4i).

Comparison of the algorithm performance

Performance criteria were used to assess the algorithms on the
same basis in order to investigate the effectiveness of modeling

strategies in forecasting the standard time and to choose the
best strategy among the machine learning approaches employed
in this study. Based on the comparison of performance metrics,
the KNN algorithm outperformed other machine learning
approaches in estimating the standard time (Table 1). Figure 5
shows that the KNN outputs closely follow the actual values.
The results of the paired t-test analysis show that there was statis-
tically no significant difference between actual and estimated stan-
dard time testing data based on the KNN method at the α value of
0.05 ( p = 0.193). Gradient boosting machines are in second place
in terms of performance compared to the KNN method and
RMSE findings. The RF method surpasses the classification and
regression tree approach, which is ranked fourth. The extreme
gradient boosting algorithm was unable to exceed KNN perfor-
mance. Based on the findings acquired using machine learning
methods, the standard time can be easily and accurately predicted
based on various parameters including the number of products,
the number of welding operations, product’s surface area factor,
difficulty/working environment factor, and the number of metal
forming processes.

Sensitivity analysis

In the previous section, the KNN algorithm outperformed other
machine learning approaches in terms of prediction accuracy.
To what degree the input parameters contribute to the determina-
tion of the output parameter was determined via a sensitivity
analysis using the KNN technique. Based on the results obtained
in Figure 6, the most effective parameter was determined to be
“the number of welding operations”. Another input variable was
found to be another efficient parameter, namely, “the number
of pieces.”

Comparison with previous studies

Differently from the previous study by Dağdeviren et al. (2011),
more data were collected to build and test 13 machine learning
algorithms to predict the standard time. In comparison to
Dağdeviren et al. (2011), and to learn more about the prediction
capability of the KNN method, forecasting accuracy was com-
pared on the basis of RMSE values. Based on the results in
Table 2, the calculated RMSE of KNN algorithm was 1.48,

Table 1. Comparison of algorithm performance

Testing data (n = 61)

RMSE MSE MAE R2

Multiple regression 57.58 3315.36 24.63 0.578

Ridge regression 57.96 3360.37 24.51 0.573

Lasso regression 57.99 3363.44 25.25 0.572

Elastic-net regression 59.02 3483.29 24.51 0.557

Random forests 8.89 79.18 2.76 0.989

k-nearest neighbors 1.48 2.20 0.91 0.998

Artificial neural
network

61.17 3742.60 32.96 0.524

Support vector
regression

64.51 4162.24 26.65 0.470

Classification and
regression tree

38.42 1476.21 16.14 0.813

Gradient boosting
machines

5.59 31.29 3.58 0.996

Extreme gradient
boosting

41.31 1707.07 17.51 0.782

Light gradient
boosting machine

51.37 2639.71 25.41 0.664

Categorical boosting 44.31 1963.91 19.64 0.751

Fig. 5. Predicted and actual values of KNN algorithm.
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indicating that the predictive accuracy for the KNN algorithm
developed in this study has a higher prediction accuracy than
the models developed by Dağdeviren et al. (2011).

Conclusion

Some of the biggest problems with today’s sophisticated manufac-
turing systems can be solved using machine learning approaches.
These data-driven approaches are capable of identifying extremely
intricate and nonlinear patterns in data from various types and
sources. They convert raw data into feature spaces, or models,
which are then used not only for prediction, as in the case of
this study, but also for detection and classification in manufactur-
ing settings. Machine learning has also been effectively applied in
various manufacturing settings for process optimization, moni-
toring, and control (Gardner and Bicker, 2000; Pham and Afify,
2005; Kwak and Kim, 2012; Susto et al., 2015).

This study was aimed primarily at using machine learning
algorithms to predict the standard time based on various param-
eters, including the number of products, the number of welding
operations, product’s surface area factor, the difficulty of the
working environment, and the number of metal forming pro-
cesses. To obtain the best results in terms of RMSE, MSE,
MAE, and R2 values, 13 machine learning algorithms were

used, including linear and nonlinear models. When the perfor-
mance values were calculated, the estimated output values pro-
vided using the KNN method were determined to be the most
satisfactory. The number of welding operations and the number
of pieces were the two most sensitive variables, accounting for
nearly 90% of the sensitive weights. Machine learning algorithms
are largely reliable based on their capacity to learn from past data.
To improve the effectiveness of machine learning techniques,
additional research using machine learning methods should
gather more training records and incorporate other factors
when conducting future studies.

Employing the suggested estimate technique and designating
people specifically for this task might be very beneficial for busi-
nesses who do not know the true standard time of their items due
to measurement issues. Therefore, the study’s prediction results
can be applied in various ways, such as by reducing manufacturing
costs, increasing productivity, minimizing time study experiments,
and ensuring efficiency in the execution of manufacturing pro-
cesses. In addition to reducing the total cost, the obtained results
may shorten time measurements and enhances standard time
accuracy.

The main limitation of the study is the fact that the machine
learning algorithms may not be easily applicable to every product
or semi-product, many of which have complicated production
processes, and it is difficult to establish the time-affecting factors
in each situation.

Conflict of interest. The authors declare no competing interests.
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