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Abstract

A sound gradual type system ensures that untyped components of a program can never break the
guarantees of statically typed components. This assurance relies on runtime checks, which in turn
impose performance overhead in proportion to the frequency and nature of interaction between typed
and untyped components. The literature on gradual typing lacks rigorous descriptions of methods for
measuring the performance of gradual type systems. This gap has consequences for the implementors
of gradual type systems and developers who use such systems. Without systematic evaluation of
mixed-typed programs, implementors cannot precisely determine how improvements to a gradual
type system affect performance. Developers cannot predict whether adding types to part of a program
will significantly degrade (or improve) its performance. This paper presents the first method for
evaluating the performance of sound gradual type systems. The method quantifies both the absolute
performance of a gradual type system and the relative performance of two implementations of the
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2 B. Greenman et al.

same gradual type system. To validate the method, the paper reports on its application to 20 programs
and 3 implementations of Typed Racket.

A video abstract can be found at: https://youtu.be/7d6iJdSRFtQ

1 The gradual typing design space

Programmers use dynamically typed languages to build all kinds of applications. Telecom
companies have been running Erlang programs for years; Sweden’s pension system is a
Perl program (Lemonnier, 2006); web developers build large programs with JavaScript
and Node.js; and the server-side applications of Dropbox, Facebook, and Twitter were
originally written in Python, PHP, and Ruby, respectively.

Regardless of why programmers choose dynamically typed languages, the maintainers
of these applications often face a problem; namely, the lack of explicit and reliable type
annotations poses an obstacle to their work. Researchers have tried to overcome the lack
of type annotations with type inference for at least two decades (Suzuki, 1981; Cartwright
& Fagan, 1991; Aiken et al., 1994; Henglein & Rehof, 1995; Flanagan et al., 1996;
Anderson et al., 2005; Furr et al., 2009), but most have come to realize that there is no sub-
stitute for programmer-supplied annotations. Unlike types inferred from the structure of the
code, explicit annotations communicate the original programmer’s specification to other
human readers and thereby serve as a guide when it comes time to repair or extend the code.

One approach to the maintenance problem is to rewrite the entire application in a stati-
cally typed language. For example, engineers at Twitter ported their server-side code from
Ruby to Scala because they decided the long-term performance and readability benefits
outweighed the cost of the rewrite.1

Another approach is gradual typing (Siek & Taha, 2006; Tobin-Hochstadt & Felleisen,
2006).2 In a sound gradually typed language, programmers can incrementally add type
annotations to dynamically typed code. At the lexical boundaries between annotated code
and dynamically typed code, the type system inserts runtime checks to guarantee type
soundness (Tobin-Hochstadt et al., 2017), which ensures that no typed operation is applied
to arguments outside its domain.

From a syntactic perspective the interaction between annotated and unannotated code is
seamless, but dynamic checks introduce runtime overhead. If, during execution, an untyped
function flows into a variable f with type τ1 → τ2, then a dynamic check must guard every
subsequent call to f because typed code cannot assume that values produced by the func-
tion have the syntactic type τ2. Conversely, typed functions invoked by dynamically typed
code must check their argument values. If functions or large data structures frequently
cross these type boundaries, enforcing type soundness might impose a significant runtime
cost and thus make the entire approach impractical.

Optimistically, researchers have continued to explore the theory of sound gradual typ-
ing (Knowles et al., 2007; Siek & Vachharajani, 2008; Wolff et al., 2011; Takikawa et al.,
2012; Garcia & Cimini, 2015; Garcia et al., 2016).3 Some research groups have invested

1 http://www.artima.com/scalazine/articles/twitter_on_scala.html
2 Tobin-Hochstadt et al. (2017) refer to this use of gradual typing as migratory typing.
3 See https://github.com/samth/gradual-typing-bib for a bibliography.
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How to evaluate the performance of gradual type systems 3

significant resources implementing sound gradual type systems (Allende et al., 2013;
Rastogi et al., 2015; Tobin-Hochstadt et al., 2017; Vitousek et al., 2017). But surpris-
ingly few groups have evaluated the performance of gradual typing. Many acknowledge
an issue with performance in passing (Tobin-Hochstadt & Felleisen, 2008; Allende et al.,
2013; Vitousek et al., 2014). Others report only the performance of fully annotated
programs relative to fully unannotated programs (Rastogi et al., 2015; Vitousek et al.,
2017), ignoring the entire space of programs that mix typed and untyped components.

This archival paper presents the first method for evaluating the performance of a gradual
type system (Section 3), integrating new results with a conference version (Takikawa et al.,
2016). Specifically, this paper contributes:

• validation that the method can effectively compare the performance of three
implementations of the same gradual type system (Section 5.3);

• evidence that simple random sampling can approximate the results of an exhaustive
evaluation with asymptotically fewer measurements (Section 6);

• eight object-oriented benchmark programs to augment the functional benchmarks
of Takikawa et al. (2016) (Section 4); and

• a discussion of the pathological overheads in the benchmark programs (Section 8).

The discussion in Section 8 is intended to guide implementors of gradual type systems
toward promising future directions (Section 9). In particular, there are challenges to
address both in the implementation of sound gradual type systems and in helping users
find combinations of typed and untyped code that meet their performance requirements.

2 Gradual typing in Typed Racket

Typed Racket (Tobin-Hochstadt & Felleisen, 2008; Tobin-Hochstadt et al., 2017) is a
sound gradual type system for Racket. Its syntax is an extension of Racket’s; its static type
checker supports idioms common in dynamically typed Racket programs (Strickland et al.,
2009; Takikawa et al., 2015); and a Typed Racket module may import definitions from a
Racket module. A Racket module may likewise import definitions from a Typed Racket
module. To ensure type soundness, Typed Racket compiles static types to higher-order
contracts and attaches these contracts at the lexical boundaries between Typed Racket and
Racket modules (Tobin-Hochstadt et al., 2017).

Figure 1 demonstrates gradual typing in Typed Racket with a toy application. The mod-
ule on the top left implements a guessing game with the function play. Each call to play
generates a random number and returns a function that compares a given number to this
chosen number. The module on the top right implements a simple player. The driver
module at the bottom combines the game and player. It instantiates the game, prompts
stubborn-player for 10 guesses, and counts the number of correct guesses using the
for/sum comprehension. Of the three modules, only the driver is implemented in Typed
Racket. This means that Typed Racket statically checks the body of the driver module
under the assumption that its annotations for the play and stubborn-player functions
are correct. Typed Racket guarantees this assumption about these functions by compil-
ing their type annotations into dynamically checked contracts. One contract checks that
(play) returns a function from natural numbers to booleans (by attaching a new contract to
the returned value), and the other checks that stubborn-player returns natural numbers.
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guess-game player

driver

Fig. 1. A gradually typed application.

2.1 How mixed-typed code emerges

The close integration of Racket and Typed Racket makes it easy to migrate a code base
from the former to the latter on an incremental basis. By converting modules to Typed
Racket, the maintainer obtains several benefits:

• assurance from the typechecker against basic logical errors;
• documentation in the form of reliable type annotations;
• protection against dynamically typed clients; and
• speed, when the compiler can use types to improve the generated bytecode.

These benefits draw many Racket programmers to Typed Racket.
Another way that Racket programs may rely on Typed Racket is by importing definitions

from a typed library. For example, the creator of Racket’s plot library wrote part of the
library in Typed Racket, and thus the program that typeset this paper interacts with typed
code. This kind of import is indistinguishable from importing definitions from a Racket
library and is a rather subtle way of creating a mixed-typed codebase.

Conversely, developers who start with Typed Racket programs may rely on Racket in
the form of legacy libraries. For such libraries, the programmer has a choice between writ-
ing a type-annotated import statement for the library API and converting the entire library
to Typed Racket. Most choose the former approach.

In summary, the introduction of Typed Racket has given rise to a fair number of projects
that mix typed and untyped code.4 The amount of mixed-typed code in the ecosystem is
likely to grow; therefore, it is essential that Typed Racket programs interact smoothly with
existing Racket code.

2.2 The need for performance evaluation

Typed Racket is an evolving research project. The initial release delivered a sound
type system that could express the idioms in common Racket programs. Subsequent
improvements focused on growing the type system to support variable-arity polymorphism

4 See https://pkgd.racket-lang.org/pkgn/search?q=typed-racket for a sample.
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How to evaluate the performance of gradual type systems 5

(Strickland et al., 2009), control operators (Takikawa et al., 2013), and the object-oriented
extensions to Racket (Takikawa et al., 2015). All along, the Typed Racket developers
knew that the performance cost of enforcing type soundness could be high (see Section 8
for rationale); however, this cost was not an issue in many of their programs.

As other programmers began using Typed Racket, a few discovered issues with its per-
formance. For instance, one user experienced a 1.5× slowdown in a web server, others
found 25×–50× slowdowns when using an array library, and two others reported over
1,000× slowdowns when using a library of functional data structures.5 Programmers found
these performance issues unacceptable (because the slowdowns were large), difficult to
predict, and difficult to debug. Instead of making a program run more efficiently, adding
types to the wrong boundary seriously degraded performance, negating an advertised ben-
efit. In short, programmers’ experience with Typed Racket forced the Typed Racket team
to develop a systematic method of performance evaluation.

3 Evaluation method, Part I

A performance evaluation of gradual type systems must reflect how programmers use such
systems. Since experience with Typed Racket shows that programmers frequently com-
bine typed and untyped code within an application, an evaluation method must account
for the large space of code between untyped and fully typed programs. These applications
may also undergo gradual transitions that add or remove some type annotations. In a typ-
ical evolution, programmers compare the performance of the modified program with the
previous version. If type-driven optimizations result in a performance improvement, all is
well. Otherwise, the programmer may need to address the performance overhead. As they
continue to develop the application, programmers repeat this process. Again, an evaluation
method must take into account gradual evolution to reflect practice.

The following subsections build an evaluation method from these observations in three
steps. First, Section 3.1 describes the space over which a performance evaluation must take
place. Second, Section 3.2 defines metrics relevant to the performance of a gradually typed
program. Third, Section 3.3 introduces a visualization that concisely presents the metrics
on exponentially large spaces.

3.1 Performance lattice

The promise of Typed Racket’s macro-level gradual typing is that programmers can add
types to any subset of the modules in an untyped program. In principle, this promise
extends to third-party libraries and modules from the Racket runtime system, but in prac-
tice a programmer has no control over such modules. Thus we distinguish between two
kinds of modules: the migratable modules that a programmer may add types to, and the
contextual modules in the software ecosystem, which remain unchanged. A comprehensive
performance evaluation must therefore consider the configurations a programmer could
possibly create given type annotations for each migratable module. These configurations
form a lattice, ordered by the subset relation on the set of typed modules in a configuration.

5 The appendix samples these user reports.
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0.7×

99×

45×

38×

38× 38× 13× 41× 5×9×

9× 39× 1×

1×

5× 87× 71×

41× 13× 42× 96× 89× 102× 102× 89×

89× 87× 88× 74× 80× 69× 70× 12×102×

79× 73× 80× 73× 81× 70× 13× 5× 11× 10×90×

96× 96× 92× 103× 79× 80× 75× 80× 2× 13× 4× 12× 3× 10×

81× 2× 0.7× 12× 3×

Fig. 2. Performance overhead in suffixtree, on Racket v6.2.

Figure 2 demonstrates one such lattice for a program with six migratable modules. The
black rectangle at the top of the lattice represents the configuration in which all six modules
are typed. The other 63 rectangles represent configurations with some untyped modules.

A given row in the lattice groups configurations with the same number of typed modules
(black squares). For instance, configurations in the second row from the bottom contain
two typed modules. These represent all possible ways of converting two modules in the
untyped configuration to Typed Racket. Similarly, configurations in the third row repre-
sent all possible configurations a programmer might encounter after applying three such
type conversion steps to the untyped configuration. In general, let the notation c1 →k c2

express the idea that a programmer starting from configuration c1 (in row i) could reach
configuration c2 (in row j) after taking at most k type conversion steps (j − i ≤ k).

Configurations in Figure 2 are furthermore labeled with their performance overhead
relative to the untyped configuration on Racket version 6.2. With these labels, a language
implementor can draw several conclusions about the performance overhead of gradual
typing in this program. For instance, eight configurations run within a 2× overhead and 22
configurations are at most one type conversion step from a configuration that runs within
a 2× overhead. High overheads are common (38 configurations have over 20× overhead),
but the fully typed configuration runs faster (0.7× overhead) than the untyped configuration
because Typed Racket uses the type annotations to compile efficient bytecode.

A labeled lattice such as Figure 2 is a performance lattice. The same lattice without
labels is a configuration lattice. Practically speaking, users of a gradual type system explore
configuration lattices, and maintainers of such systems may use performance lattices to
evaluate overall performance.

3.2 Performance metrics

The most basic question, and least important, about a gradually typed language is how fast
fully typed programs are in comparison to their fully untyped relative. In principle and
in Typed Racket, static types enable optimizations and can serve in place of runtime tag
checks. The net effect of such improvements may, however, be offset by the runtime cost
of enforcing type soundness. Relative performance is therefore best described as a ratio, to
capture the possibility of speedups and slowdowns.
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0.5×

5×

1×

3.3×

2.5× 1.5×

1.7× 1.7×

Fig. 3. Sample performance lattice.

Definition (typed/untyped ratio) The typed/untyped ratio of a performance lattice is the time
needed to run the top (fully typed) configuration divided by the time needed to run the bottom
(untyped) configuration.

For users of a gradual type system, the important performance question is how much
overhead their current configuration suffers. If the performance overhead is low enough,
programmers can release the configuration to clients. Depending on the nature of the
application, some developers might not accept any performance overhead. Others may
be willing to tolerate an order-of-magnitude slowdown. The following parameterized
definition of a deliverable configuration accounts for these varying requirements.

Definition (D-deliverable) A configuration is D-deliverable if its performance is no worse
than a factor of D slowdown compared to the untyped configuration.

If an application is currently in a non-D-deliverable configuration, the next question is how
much work a team must invest to reach a D-deliverable configuration. One coarse measure
of “work” is the number of additional modules that must be annotated with types before
performance improves.

Definition (k-step D-deliverable) A configuration c1 is k-step D-deliverable if c1 →k c2 and
c2 is D-deliverable.

The number of k-step D-deliverable configurations captures the experience of a prescient
programmer that converts the k modules that maximize the performance improvement.

Let us illustrate these terms with an example. Suppose there is a project with three
modules where the untyped configuration runs in 20 s and the typed configuration runs
in 10 s. Furthermore, suppose half the mixed configurations run in approximately 50 s
and the other half run in approximately 30 s. Figure 3 is a performance lattice for this
hypothetical program. The label below each configuration is its overhead relative to the
untyped configuration.

The typed/untyped ratio is 1/2, indicating a performance improvement due to adding
types. The typed configuration is also 1-deliverable because it runs within a 1× slowdown
relative to the untyped configuration. All mixed configurations are 5-deliverable, but only
three are, e.g., 2-deliverable. Lastly, the mixed configurations are all 2-step 1-deliverable
because they can reach the typed configuration in at most two type conversion steps.

The ratio of D-deliverable configurations in a performance lattice is a measure of the
overall feasibility of gradual typing. When this ratio is high, then no matter how the
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Fig. 4. Overhead plots for suffixtree, on Racket v6.2. The unlabeled vertical ticks mark, from
left to right: 1.2×, 1.4×, 1.6×, 1.8×, 4×, 6×, 8×, 10×, 12×, 14×, 16×, and 18×.

application evolves, performance is likely to remain acceptable. Conversely, a low ratio
implies that a team may struggle to recover performance after typing a few modules.
Practitioners with a fixed performance requirement D can therefore use the number of
D-deliverable configurations to extrapolate the performance of a gradual type system.

3.3 Overhead plots

Although a performance lattice contains a comprehensive description of performance over-
head, it does not effectively communicate this information. It is difficult to tell, at a
glance, whether a program has good or bad performance relative to its users’ require-
ments. Comparing the relative performance of two or more lattices is also difficult and is
in practice limited to programs with an extremely small number of modules.

The main lesson to extract from a performance lattice is the proportion of k-step
D-deliverable configurations for various k and D. In other words, this proportion describes
the number of configurations (out of the entire lattice) that are at most k upward steps from
a D-deliverable configuration. One way to plot this information is to fix a value for k, say
k = 0, and consider a set of values d0, . . . , dn−1 for D. The set of proportions of 0-step
di-deliverable configurations defines a cumulative distribution function with the value of
D on the independent axis and the proportion of configurations on the dependent axis.

Figure 4 demonstrates two such overhead plots, summarizing the data in Figure 2.
Specifically, each plots the 64 configurations of a program called suffixtree using data
measured on Racket v6.2. The plot on the left fixes k = 0 and plots the proportion of 0-step
D-deliverable configurations. The plot on the right fixes k = 1 and plots the proportion
of 1-step D-deliverable configurations. Both plots consider 250 values of D evenly spaced
between 1× and 20×. The line on each plot represents the cumulative distribution function.
The x-axis is log scaled to focus on low overheads.

The plot on the left, in which k = 0, confirms the observation made in Section 3.1 that
12% of the 64 configurations (eight configurations) run within a 2× overhead. For values of
D larger than 2×, the proportion of D-deliverable configurations is slightly larger, but even
at a 20× overhead, this proportion is only 41%. The plot on the right shows that the pro-
portion of 1-step D-deliverable is typically twice as high as the proportion of D-deliverable
configurations for this benchmark.

This presentation scales to arbitrarily large programs because the y-axis plots the pro-
portion of D-deliverable configurations; in contrast, a performance lattice contains expo-
nentially many nodes. Furthermore, plotting the overhead for multiple implementations of
a gradual type system on the same set of axes conveys their relative performance.
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3.3.1 Assumptions and limitations

Plots in the style of Figure 4 rest on two assumptions and have two significant limitations,
which readers must keep in mind as they interpret the results.

The first assumption is that configurations with less than 2× overhead are significantly
more practical than configurations with a 10× overhead or more. Hence the plots use a
log-scaled x-axis to simultaneously encourage fine-grained comparison in the 1.2×–1.6×
overhead range and blur the distinction between, e.g., 14× and 18× slowdowns.

The second assumption is that configurations with more than 20× overhead are com-
pletely unusable in practice. Pathologies like the 100× slowdowns in Figure 2 represent
a challenge for implementors, but if these overheads suddenly dropped to 30×, the
configurations would still be useless to developers.

The first limitation of the overhead plots is that they do not report the number of types
in a configuration. The one exception is the fully typed configuration; its overhead is given
explicitly through the typed/untyped ratio above the left plot.

The second limitation is that the 1-step D-deliverable plot does not show how we opti-
mistically chose the best type conversion step. In a program with N modules, a programmer
has at most N type conversion steps to choose from, some of which may not lead to a
D-deliverable configuration. For example, there are six configurations with exactly one
typed module in Figure 2 but only one of these is 1-deliverable.

4 The GTP benchmark programs

This section introduces 20 gradual typing performance (GTP) benchmark programs that are
representative of actual user code yet small enough to make exhaustive performance eval-
uation tractable. The following descriptions of the benchmark programs—arranged by size
as measured in number of migratable modules—briefly summarize their relevant charac-
teristics. Each description comes with four fields: Origin indicates the benchmark’s source,
Purpose describes what it computes, Author credits the original author, and Depends lists
any libraries of contextual modules that the benchmark depends on. This section concludes
with a table summarizing the static characteristics of each benchmark.

sieve
Origin : Synthetic
Purpose : Generate prime numbers

Author : Ben Greenman
Depends : N/A

Demonstrates a scenario where client code is tightly coupled to higher-order library code.
The library implements a stream data structure; the client builds a stream of prime numbers.
Introducing a type boundary between these modules leads to significant overhead.

forth
Origin : Library
Purpose : Forth interpreter

Author : Ben Greenman
Depends : N/A

Interprets Forth programs. The interpreter represents calculator commands as a list of first-
class objects. These objects accumulate proxies as they cross type boundaries.
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fsm, fsmoo
Origin : Economics Research
Purpose : Economy Simulator

Author : Linh Chi Nguyen
Depends : N/A

Simulates the interactions of economic agents via finite-state automata (Nguyen, 2014).
This benchmark comes in two flavors: fsm stores the agents in a mutable vector, whereas
fsmoo uses a first-class object.

mbta
Origin : Educational
Purpose : Interactive map

Author : Matthias Felleisen
Depends : graph

Builds a map of Boston’s subway system and answers reachability queries. The map encap-
sulates a boundary to Racket’s untyped graph library; when the map is typed, the (type)
boundary to graph is a performance bottleneck.

morsecode
Origin : Library
Purpose : Morse code trainer

Author : John Clements and Neil Van Dyke
Depends : N/A

Computes Levenshtein distances and morse code translations for a fixed sequence of
pairs of words. Every function that crosses a type boundary in morsecode operates
on strings and integers, thus dynamically type-checking these functions’ arguments is
relatively cheap.

zombie
Origin : Research
Purpose : Game

Author : David Van Horn
Depends : N/A

Implements a game where players dodge computer-controlled “zombie” tokens. Curried
functions over symbols implement game entities and repeatedly cross type boundaries.

dungeon
Origin : Application
Purpose : Maze generator

Author : Vincent St. Amour
Depends : N/A

Builds a grid of wall and floor objects by choosing first-class classes from a list of
“template” pieces. This list accumulates proxies when it crosses a type boundary.

zordoz
Origin : Library
Purpose : Explore Racket bytecode

Author : Ben Greenman
Depends : compiler-lib

Traverses Racket bytecode (.zo files). The compiler-lib library defines the bytecode
data structures. Typed code interacting with the library suffers overhead.

Note: the Racket bytecode format changed between versions 6.2 and 6.3 with the release
of the set-of-scopes macro expander (Flatt, 2016). This change significantly reduced the
overhead of zordoz.

lnm
Origin : Synthetic
Purpose : Graphing

Author : Ben Greenman
Depends : plot, math/statistics

Renders overhead plots (Takikawa et al., 2016). Two modules are tightly coupled to Typed
Racket libraries; typing both modules improves performance.

https://doi.org/10.1017/S0956796818000217 Published online by Cambridge University Press

https://github.com/mfelleisen/sample-fsm
http://github.com/stchang/graph
https://github.com/jbclements/morse-code-trainer/tree/master/morse-code-trainer
https://github.com/philnguyen/soft-contract
http://github.com/bennn/zordoz
http://docs.racket-lang.org/raco/decompile.html#%28mod-path._compiler%2Fdecompile%29
https://docs.racket-lang.org/plot/
https://docs.racket-lang.org/math/stats.html
https://doi.org/10.1017/S0956796818000217


How to evaluate the performance of gradual type systems 11

suffixtree
Origin : Library
Purpose : Ukkonen’s suffix tree algorithm

Author : Danny Yoo
Depends : N/A

Computes longest common subsequences between strings. The largest performance over-
heads are due to a boundary between struct definitions and functions on the structures.

kcfa
Origin : Educational
Purpose : Explanation of k-CFA

Author : Matt Might
Depends : N/A

Performs 1-CFA on a lambda calculus term that computes 2*(1+3) = 2*1 + 2*3 via
Church numerals. The (mutable) binding environment flows throughout functions in the
benchmark. When this environment crosses a type boundary, it acquires a new proxy.

snake
Origin : Research
Purpose : Game

Author : David Van Horn
Depends : N/A

Implements the Snake game; the benchmark replays a fixed sequence of moves. Modules
in this benchmark frequently exchange first-order values, such as lists and integers.

take5
Origin : Educational
Purpose : Game

Author : Matthias Felleisen
Depends : N/A

Manages a card game between AI players. These players communicate infrequently, so
gradual typing adds relatively little overhead.

acquire
Origin : Educational
Purpose : Game

Author : Matthias Felleisen
Depends : N/A

Simulates a board game via message-passing objects. These objects encapsulate the core
data structures; few higher-order values cross type boundaries.

tetris
Origin : Research
Purpose : Game

Author : David Van Horn
Depends : N/A

Replays a pre-recorded game of Tetris. Frequent type boundary crossings, rather than
proxies or expensive runtime checks, are the source of performance overhead.

synth
Origin : Application
Purpose : Music synthesis DSL

Author : Vincent St. Amour & Neil Toronto
Depends : N/A

Converts a description of notes and drum beats to WAV format. Modules in the benchmark
come from two sources, a music library and an array library. The worst overhead occurs
when arrays frequently cross type boundaries.

gregor
Origin : Library
Purpose : Date and time library

Author : Jon Zeppieri
Depends : cldr, tzinfo

Provides tools for manipulating calendar dates. The benchmark builds tens of date values
and runs unit tests on these values.
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quadBG, quadMB
Origin : Application
Purpose : Typesetting

Author : Matthew Butterick
Depends : csp

Converts S-expression source code to PDF format. The two versions of this benchmark
differ in their type annotations but have nearly identical source code.

The original version, quadMB, uses type annotations by the original author. This version
has a high typed/untyped ratio because it explicitly compiles types to runtime predicates
and uses these predicates to eagerly check data invariants. In other words, the typed
configuration is slower than the untyped configuration because it performs more work.

The second version, quadBG, uses identical code but weakens types to match the untyped
configuration. This version is therefore suitable for judging the implementation of Typed
Racket rather than the user experience of Typed Racket. The conference version of this
paper included data only for quadMB.

Figure 5 tabulates the size and complexity of the benchmark programs. The lines of
code (Untyped LOC) and number of migratable modules (# Mod.) approximate program
size. The type annotations (Annotation LOC) count additional lines in the typed configura-
tion. These lines are primarily type annotations but also include type casts and assertions.6

Adaptor modules (# Adp.) roughly correspond to the number of user-defined datatypes in
each benchmark; the next section provides a precise explanation. Lastly, the boundaries
(# Bnd.) and exports (# Exp.) distill each benchmark’s graph structure.7 Boundaries are
import statements from one module to another, excluding imports from runtime or third-
party libraries. An identifier named in such an import statement counts as an export. For
example, the one import statement in sieve names nine identifiers.

4.1 From programs to benchmarks

Seventeen of the benchmark programs are adaptations of untyped programs. The other
three benchmarks (fsm, synth, and quad) use most of the type annotations and code
from originally typed programs. Any differences between the original programs and the
benchmarks are due to the following five complications.

First, the addition of types to untyped code occasionally requires type casts or small
refactorings. For example, the expression (string->number "42") has the Typed
Racket type (U Complex #f). This expression cannot appear in a context expecting an
Integer without an explicit type cast. As another example, the quad programs call a
library function to partition a (Listof (U A B)) into a (Listof A) and a (Listof B)
using a predicate for values of type A. Typed Racket cannot currently prove that values
which fail the predicate have type B, so the quad benchmarks replace the call with two
filtering passes.

Second, Typed Racket cannot enforce certain types across a type boundary. For
example, the core datatypes in the synth benchmark are monomorphic because Typed
Racket cannot dynamically enforce parametric polymorphism on instances of an
untyped structure.

6 The benchmarks use more annotations than Typed Racket requires because they give full type signatures for
each import. Only imports from untyped modules require annotation.

7 The appendix contains actual module dependence graphs.
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Benchmark Untyped
LOC

Annotation
LOC

# Mod. # Adp. # Bnd. # Exp.

sieve 35 17 (49%) 2 0 1 9

forth 255 30 (12%) 4 0 4 10

fsm 182 56 (31%) 4 1 5 17

fsmoo 194 83 (43%) 4 1 4 9

mbta 266 71 (27%) 4 0 3 8

morsecode 159 38 (24%) 4 0 3 15

zombie 302 27 (9%) 4 1 3 15

dungeon 534 68 (13%) 5 0 5 37

zordoz 1,378 215 (16%) 5 0 6 11

lnm 488 114 (23%) 6 0 8 28

suffixtree 537 129 (24%) 6 1 11 69

kcfa 229 53 (23%) 7 4 17 62

snake 160 51 (32%) 8 1 16 31

take5 327 27 (8%) 8 1 14 25

acquire 1,654 304 (18%) 9 3 26 106

tetris 246 107 (43%) 9 1 23 58

synth 835 139 (17%) 10 1 26 51

gregor 945 175 (19%) 13 2 42 142

quadBG 6,780 221 (3%) 14 2 27 160

quadMB 6,706 294 (4%) 16 2 29 174

Fig. 5. Static characteristics of the GTP benchmarks.

Third, any contracts present in the untyped programs are represented as type anno-
tations and in-line assertions in the derived benchmarks. The acquire program in
particular uses contracts to ensure that certain lists are sorted and have unique elements.
The benchmark enforces these conditions with explicit pre- and post-conditions on the
relevant functions.

Fourth, each static import of an untyped struct type into typed code generates a unique
datatype. Typed modules that share instances of an untyped struct must therefore reference
a common static import site. The benchmarks include additional contextual modules, called
adaptor modules, to provide this canonical import site; for each module M in the original
program that exports a struct, the benchmark includes an adaptor module that provides type
annotations for every identifier exported by M. Adaptor modules add a layer of indirection,
but this indirection does not add measurable performance overhead.

Fifth, some benchmarks use a different modularization than the original program. The
kcfa benchmark is modularized according to comments in the original, single-module
program. The suffixtree, synth, and gregor benchmarks each have a single file con-
taining all their data structure definitions; the original programs defined these structures in
the same module as the functions on the structures. Lastly, the quadBG benchmark has two
fewer modules than quadMB because it inlines the definitions of two (large) data structures
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that quadMB keeps in separate files. Removing these boundaries has a negligible effect on
performance overhead and greatly reduces the number of configurations.

5 Evaluating Typed Racket

5.1 Experimental protocol

Sections 5.2 and 5.3 present the results of an exhaustive performance evaluation of the 20
benchmark programs on three versions of Racket. The data is the result of applying the
following protocol for each benchmark and each version of Typed Racket:

• Select a random permutation of the configurations in the benchmark.8

• For each configuration: recompile, run once ignoring the result to control against JIT
warmup, and run once more and record the running time. Use the standard Racket
bytecode compiler, JIT compiler, and runtime settings.

• Repeat the above steps N ≥ 10 times to produce a sequence of N running times for
each configuration.

• Summarize each configuration with the mean of the corresponding running times.

Specifically, a Racket script implementing the above protocol collected the data in
this paper. The script ran on a dedicated Linux machine; this machine has two physical
AMD Opteron 6376 processors (with 16 cores each) and 128 GB RAM.9 For the quadBG
and quadMB benchmarks, the script utilized 30 of the machine’s physical cores to collect
data in parallel.10 For all other benchmarks, the script utilized only two physical cores.
Each core ran at minimum frequency as determined by the powersave CPU governor
(approximately 1.40 GHz).

The online supplement to this paper contains both the experimental scripts and the full
data sets (available at: http://dx.doi.org/10.1017/S0956796818000217). Section 7
reports threats to validity regarding the experimental protocol. The Appendix discusses
the stability of individual measurements and reports the number of running times for each
configuration and version of Racket.

5.2 Evaluating absolute performance

Figures 6, 7, 8, and 9 present the results of measuring the benchmark programs in a series
of overhead plots. As in Figure 4, the left columns of the figures are cumulative distribution
functions for D-deliverable configurations and the right columns are cumulative distribu-
tion functions for 1-step D-deliverable configurations. These plots include data for three
versions of Racket released between June 2015 and February 2016. Data for version 6.2
are thin red curves with short dashes. Data for version 6.3 are mid-sized green curves with
long dashes. Data for version 6.4 are thick, solid, blue curves. The typed/untyped ratio for
each version appears above each plot in the left column.

8 In principle, there is no need to randomize the order, but doing so helps control against possible confounding
variables (Mytkowicz et al., 2009).

9 The Opteron is a NUMA architecture and uses the x86_64 instruction set.
10 Specifically, the script invoked 30 OS processes, pinned each to a CPU core using the taskset Linux

command, waited for each process to report a running time, and collected the results.
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Fig. 6. GTP overhead plots (1/4).

Many curves are quite flat; they demonstrate that gradual typing introduces large and
widespread performance overhead in the corresponding benchmarks. Among benchmarks
with fewer than six modules, the most common shape is a flat line near the 50% mark. Such
lines imply that the performance of a group of configurations is dominated by a single type
boundary. Benchmarks with six or more modules generally have smoother slopes, but five
such benchmarks have essentially flat curves. The overall message is that for many values
of D between 1 and 20, few configurations are D-deliverable.
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Fig. 7. GTP overhead plots (2/4).

For example, in 14 of the 20 benchmark programs, at most half the configurations are
2-deliverable on any version. The situation is worse for lower (more realistic) overheads
and does not improve much for higher overheads. Similarly, there are 10 benchmarks in
which at most half the configurations are 10-deliverable.

The curves’ endpoints describe the extremes of gradual typing. The left endpoint gives
the percentage of configurations that run at least as quickly as the untyped configuration.
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Fig. 8. GTP overhead plots (3/4).

Except for the lnm benchmark, such configurations are a low proportion of the total.11 The
right endpoint shows how many configurations suffer over 20× performance overhead.12

Nine benchmarks have at least one such configuration.

11 The sieve case is degenerated. Only its untyped and fully typed configurations are 1-deliverable.
12 Half the configurations for dungeon do not run on versions 6.2 and 6.3 due to a defect in the way these

versions proxy first-class classes. The overhead plots report an “over 20×” performance overhead for these
configurations.
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Fig. 9. GTP overhead plots (4/4).

Moving from k = 0 to k = 1 in a fixed version of Racket does little to improve the number
of D-deliverable configurations. Given the slopes of the k = 0 plots, this result is not surpris-
ing. One type conversion step can eliminate a pathological boundary, such as those in fsm
and zombie, but the overhead in larger benchmarks comes from a variety of type bound-
aries. Except in configurations with many typed modules, adding types to one additional
module is not likely to improve performance.

In summary, the application of the evaluation method projects a negative image of
Typed Racket’s sound gradual typing. Only a small number of configurations in the
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Fig. 10. Relative performance of v6.4 versus v6.2.

benchmark suite run with low overhead; a mere 2% of all configurations are 1.4-deliverable
on Racket v6.4. Many demonstrate extreme overhead; 66% of all configurations are not
even 20-deliverable on version 6.4.

5.3 Evaluating relative performance

Although the absolute performance of Racket version 6.4 is underwhelming, it is a sig-
nificant improvement over versions 6.2 and 6.3. This improvement is manifested in the
difference between curves on the overhead plots. For example, in gregor (third plot in
Figure 9), version 6.4 has at least as many deliverable configurations as version 6.2 for any
overhead on the x-axis. The difference is greatest near x = 2; in terms of configurations,
over 80% of gregor configurations are not 2-deliverable on v6.2 but are 2-deliverable on
v6.4. The overhead plots for many other benchmarks demonstrate a positive difference
between the number of D-deliverable configurations on version 6.4 relative to version 6.2.

The plot of Figure 10 explicitly shows the improvement of version 6.4 over ver-
sion 6.2. It consists of 20 purple lines, one for each benchmark. These lines plot the
difference between the curves for v6.4 and v6.2 on the corresponding overhead plot. For
example, the line for gregor (labeled r) demonstrates a large improvement in the num-
ber of 2-deliverable configurations. The plot also shows that 15 of the 20 benchmarks
significantly benefit from running on version 6.4. Only the line for the forth bench-
mark demonstrates a significant regression; the zombie benchmark demonstrates a small
regression due to an increase in the cost of type casts.

The improved performance of Racket version 6.4 is due to revisions of the contract
system and Typed Racket’s use of contracts to enforce static types. In particular, the
contract system allocates fewer closures to track the labels that Typed Racket uses to
report type boundary errors. The regression in the forth benchmark is due to a bug in
the implementation of class contracts in version 6.2. This bug would suppress the alloca-
tion of certain necessary class contracts. With the bug fixed, forth generates the contracts
but suffers additional performance overhead.
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Fig. 11. Approximating absolute performance.

Fig. 12. Approximating relative performance.

6 Evaluation method, Part II

The evaluation method of Section 3 does not scale to benchmarks with a large number of
migratable modules. Benchmarking a full performance lattice for a program with N such
components requires 2N measurements. In practice, this limits an exhaustive evaluation
of Typed Racket to programs with approximately 20 migratable modules. An evaluation
of micro-level gradual typing would be severely limited; depending on the definition of a
migratable component, such an evaluation might be limited to programs with 20 functions.

Fortunately, simple random sampling can approximate the ground truth presented in
Section 5. Instead of measuring every configuration in a benchmark, it suffices to randomly
sample a linear number of configurations and plot the overhead apparent in the sample.

Figure 11 plots the true performance of the snake benchmark against confidence inter-
vals (Neyman, 1937) generated from random samples. The plot on the left shows the
absolute performance of snake on version 6.2 (dashed red line) and version 6.4 (solid
blue line). The plot on the right shows the improvement of version 6.4 relative to ver-
sion 6.2 (solid purple line). Each line is surrounded by a thin interval generated from five
samples of 80 configurations each.

The plots in Figure 11 suggest that the intervals provide a reasonable approximation
of the performance of the snake benchmark. These intervals capture both the absolute
performance (left plot) and relative performance (right plot) of snake.

Figure 12 provides evidence for the linear sampling suggestion of Figure 11 using data
for the 11 largest benchmarks in the GTP suite. The solid purple lines from Figure 10
alongside confidence intervals generated from a small number of samples. Specifically,
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the interval for a benchmark with N modules is generated from five samples of 10N con-
figurations. Hence the samples for lnm use 60 configurations and the samples for quadMB
use 160 configurations. For every benchmark, the true relative performance (solid purple
line) lies within the corresponding interval. In conclusion, a language designer can quickly
approximate performance by computing a similar interval.

6.1 Statistical protocol

For readers interested in reproducing the above results, this section describes the protocol
that generated Figure 11. The details for Figure 12 are analogous:

• To generate one random sample, select 80 configurations (10 times the number of
modules) without replacement and associate each configuration with its overhead
from the exhaustive performance evaluation reported in Section 5.

• To generate a confidence interval for the number of D-deliverable configurations
based on five such samples, calculate the proportion of D-deliverable configura-
tions in each sample and generate a 95% confidence interval from the proportions.
This is the so-called index method (Franz, 2007, unpublished data) for computing a
confidence interval from a sequence of ratios. This method is intuitive, but admit-
tedly less precise than a method such as Fieller’s (1957). The two intervals in the
left half of Figure 11 are a sequence of such confidence intervals.

• To generate an interval for the difference between the number of D-deliverable con-
figurations on version 6.4 and the number of D-deliverable configurations on version
6.2, compute two confidence intervals as described in the previous step and plot the
largest and smallest difference between these intervals.
In terms of Figure 12 the upper bound for the number of D-deliverable configura-
tions on the right half of Figure 11 is the difference between the upper confidence
limit on the number of D-deliverable configurations in version 6.4 and the lower
confidence limit on the number of D-deliverable configurations in version 6.2. The
corresponding lower bound is the difference between the lower confidence limit on
version 6.4 and the upper confidence limit on version 6.2.

7 Threats to validity

Although the evaluation method addresses the goals of gradual typing, its application in
Section 5 manifests a few threats to validity. In particular, both the experimental protocol
and the conclusions have limitations.

There are three significant threats to the protocol. First, some benchmarks have minor
interactions with the filesystem. The following benchmarks read from a configuration file:
forth, zordoz, lnm, suffixtree, snake, and tetris. The following benchmarks write
output to a file: sieve, quadBG, and quadMB. Removing these I/O actions does not change
the overhead presented in Section 5.2, thus we consider our results representative.

Second, the quadBG and quadMB configurations that ran in parallel referenced the same
Racket executable and external libraries. This cross-reference is a potential source of bias,
but we have been unable to detect adverse effects.
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Third, the protocol of compiling and running once before collecting data is a simplistic
way to control the effects of JIT compilation. Nevertheless, the overheads evident in the
results are much larger than those attributed to systematic biases in the literature (Gu et al.,
2005; Mytkowicz et al., 2009; Curtsinger & Berger, 2013).

The conclusions have five limitations. First, the evaluation does not systematically mea-
sure the effects of annotating the same code with different types. This is an issue because
type annotations determine the runtime constraints on untyped code. Therefore, if two pro-
grammers give the same code for different type annotations, they may experience different
performance problems. For example, quadBG and quadMB describe similar code with
different types and have extremely different performance characteristics. Whereas all con-
figurations of the former are 6-deliverable, only a small fraction of quadMB configurations
are 20-deliverable.

Second, the benchmark programs are relatively small. Larger programs might avoid
the pathological overheads in the benchmarks, though the results for quadMB and synth
constitute evidence to the contrary.

Third, the evaluation does not vary the inputs to the benchmark programs; the conclu-
sions are therefore based on one trace through each program. We consider these traces
representative, but some users may observe different traces that stress a different set of
type boundaries.

Fourth, the conclusions rely on Typed Racket’s implementation technology and do not
necessarily generalize to other implementations of gradual typing. Typed Racket re-uses
Racket’s runtime, a conventional JIT technology. In particular, the JIT makes no attempt to
reduce the overhead of contracts. Contract-aware implementation techniques such as soft
contracts (Nguyen et al., 2014) or the Pycket tracing JIT compiler (Bauman et al., 2015,
2017) may significantly reduce the overhead of gradual typing.

Finally, Typed Racket relies on the complete monitoring property (Dimoulas et al.,
2012) of the Racket contract system to provide a strong form of type soundness
(Tobin-Hochstadt et al., 2017). When a type boundary error occurs, Racket produces the
original type annotation and the dynamically typed value that violates the annotation.
This protocol generates extremely precise error messages, but the runtime system must
dynamically track contextual information to implement it. On one hand, there may be inef-
ficiencies in Racket’s implementation of this runtime monitoring. On the other hand, a
different gradual type system could offer a different soundness guarantee and circumvent
the need for this runtime accounting altogether. For example, Thorn (Bloom et al., 2009)
and StrongScript (Richards et al., 2015) let the programmer chose whether to enforce a
type annotation at runtime. Reticulated Python provides an alternative, type-tag notion
of soundness (Vitousek et al., 2014, 2017) that may impose less overhead (Greenman &
Felleisen, 2018), but gives programmers far less precise information than Typed Racket
for debugging type boundary errors.

8 Dissecting performance overhead

Our evaluation demonstrates that adding types to an arbitrarily chosen subset of Racket
modules in a program can severely degrade the performance of the program. This section
explains the aspects of Typed Racket that influence performance and investigates sources
of high overhead in the benchmark programs.
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8.1 How Typed Racket enforces type soundness

Performance overhead in Typed Racket is due to its type soundness guarantee. When a
value flows from Racket to a typed context, there is a runtime cost to check that the value
matches the assumptions of the static type checker.

Typed Racket’s strategy for checking the type of a Racket value at runtime follows the
natural embedding technique for a multi-language program (Matthews & Findler, 2009).
When a typed context expects a value of base type, Typed Racket enforces the boundary
with a predicate for the type. When a typed context expects a value of an inductive type,
Typed Racket checks the constructor of the value and recursively checks its components.
Lastly, when a typed context expects a value of a coinductive type (e.g. a mutable cell or a
function), Typed Racket checks the constructor, recursively checks its components when
possible, and wraps the incoming value with a proxy (Strickland et al., 2012) to monitor
its future interactions with typed code.

To illustrate this strategy, we describe for a few types τ how Typed Racket enforces the
invariant by applying a contract �τ � when an untyped value v flows into a typed region:13

• If τ is Integer, then (�τ � v) checks that v is an integer constant.
• If τ is Boolean ∪ Integer, then (�τ � v) checks that v is either a boolean constant or

an integer constant.
• If τ is (Listof Integer), then (�τ � v) checks that v is a list and checks �Integer� for

every value in the list.
• If τ is (Vectorof Integer), then (�τ � v) checks that v is a vector and wraps v in a

proxy that checks �Integer� for every read from the vector.
• If τ is (Integer→Integer), then (�τ � v) checks that v is a function and wraps v in a

proxy that checks �Integer� for every result computed by the function.

Note that the cost of checking a type like τ0 ∪ τ1 is linear in the number of types in the
union, and the cost of a type like (Listof τ ) is linear in the size of the list value. Furthermore,
if (�τ � v) wraps v in a proxy, then (�τ � (�τ � v)) may wrap v in two proxies, and thereby
add two levels of indirection. See Tobin-Hochstadt & Felleisen (2006) and Takikawa et al.
(2015) for additional details regarding the type-to-contract translation.

This strategy clearly suffers from three kinds of performance costs: the cost of checking
a value as it crosses a boundary, the cost of allocating a proxy to monitor the value, and the
cost of the indirection that the proxy adds to subsequent operations. The rest of this section
demonstrates how these costs arise in practical examples.

8.2 High-frequency typechecking

If values frequently cross one type boundary, then the program suffers even if the cost of
each boundary-crossing is relatively low. The program in Figure 13, for example, calls the
typed function stack-empty? one million times from untyped code. Each call is type-
correct; nevertheless, Typed Racket validates the argument stk against the specification
�Listof A� one million times.

13 When a typed value flows into an untyped region, Typed Racket dualizes these contracts.
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Fig. 13. A high-frequency type boundary.

Fig. 14. Performance pitfall, discovered by John Clements.

High-frequency module boundaries are common in the GTP benchmarks. To give an
extreme example, over six million values flow across four separate boundaries in snake.
In suffixtree, over one hundred million values flow across two boundaries. When these
module boundaries are type boundaries, the benchmarks suffer considerable overhead;
their respective worst cases are 32× and 28× on Racket v6.4.

8.3 High-cost types

Certain types require computationally expensive runtime checks in Typed Racket.
Immutable lists require a linear number of checks. Functions require proxies, whose total
cost then depends on the number of subsequent calls. Mutable data structures (hash tables,
objects) are the worst of both worlds, as they require a linear number of such proxies.

In general Typed Racket programmers are aware of these costs, but predicting the cost
of enforcing a specific type in a specific program is difficult. One example comes from
quadMB, in which the core datatype is a tagged n-ary tree type. Heavy use of a predicate
for this type causes the 19.4× typed/untyped ratio in Racket v6.4. Another example is the
kcfa benchmark, in which hashtable types account for up to a 3× slowdown.

High-cost types may also come from a library that the programmer has no control over.
For example, the script in Figure 14 executes in approximately 12 s. Changing its lan-
guage to #lang typed/racket improves performance to under 1 ms by removing a type
boundary to the trie library.14 Michael Ballantyne encountered a similar issue with a
queue library that led to a 1,275× slowdown (see Appendix).

8.4 Complex type boundaries

Higher-order values and metaprogramming features introduce fine-grained, dynamic type
boundaries. For example, every proxy that enforces a type specification is a dynamically

14 There is no way for a programmer to predict that the dynamic check for the trie type is expensive, short of
reading the implementation of Typed Racket and the pfds/trie library.
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Fig. 15. Accumulating proxies in fsm.

Fig. 16. Accumulating proxies in forth.

generated type boundary. These boundaries make it difficult to statically predict the
overhead of gradual typing.

The synth benchmark illustrates one problematic use of metaprogramming. One mod-
ule in synth exports a macro that expands to a low-level iteration construct. The expanded
code introduces a reference to a server module, whether or not the macro client statically
imports the server. Thus, when the server and client are separated by a type boundary, the
macro inserts a type boundary in the expanded looping code. In order to predict such costs,
a programmer must recognize macros and understand each macro’s namespace.

8.5 Layered proxies

Higher-order values that repeatedly cross type boundaries may accumulate layers of type-
checking proxies. These proxies add indirection and space overhead.

Racket’s proxies implement a predicate that tells whether the current proxy subsumes
another proxy. These predicates often remove unnecessary indirections, but a few of the
benchmarks still suffer from redundant layers of proxies.

For example, the fsm, fsmoo, and forth benchmarks update mutable data structures in
a loop. Figures 15 and 16 demonstrate the problematic functions in each benchmark. In
fsm, the value p accumulates one proxy every time it crosses a type boundary; that is, four
proxies for each iteration of evolve. The worst case overhead for this benchmark is 235×
on Racket v6.4. In forth, the loop functionally updates an environment env of calculator
command objects; its worst-case overhead is 27× on Racket v6.4.15

15 Modifying both functions to use an imperative message-passing style removes the performance overhead,
though it is a failure of gradual typing if programmers must resort to such refactorings.
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Fig. 17. Adapted from the zombie benchmark.

The zombie benchmark exhibits similar overhead due to higher-order functions. For
example, the Posn datatype in Figure 17 is a higher-order function that responds to sym-
bols 'x, 'y, and 'move with a tagged method. Helper functions such as posn-move
manage tags on behalf of clients, but calling such functions across a type boundary leads to
layered proxies. This benchmark replays a sequence of a mere 100 commands yet reports
a worst-case overhead of 300× on Racket v6.4.

8.6 Library boundaries

Racket libraries are either typed or untyped. There is no middle ground; therefore, one
class of library clients must communicate across a type boundary. For instance, the mbta
and zordoz benchmarks rely on untyped libraries and consequently have relatively high
typed/untyped ratios on Racket v6.2 (2.28× and 4.01×, respectively). In contrast, the lnm
benchmark relies on two typed libraries and runs significantly faster when fully typed.

9 The future of gradual typing

Gradual typing emerged as a new research area 10 years ago. Researchers began by asking
whether one could design a programming language with a sound type system that inte-
grated untyped components (Siek & Taha, 2006; Tobin-Hochstadt & Felleisen, 2006).
The initial series of papers on gradual typing provided theoretical models that served
as proofs of concept. Eight years ago, Tobin-Hochstadt & Felleisen (2008) introduced
Typed Racket, the first implementation of a gradual type system designed to accommo-
date existing, dynamically typed programs. At this point, the important research question
changed to whether the models of gradual typing could scale to express the grown idioms
found in dynamic languages. Others have since explored this and similar questions in lan-
guages ranging from Smalltalk to JavaScript (Allende et al., 2013; Vitousek et al., 2014;
Rastogi et al., 2015; Richards et al., 2015).

From the beginning, researchers speculated that the cost of enforcing type soundness
at runtime would be high. Tobin-Hochstadt & Felleisen (2006) anticipated this cost and
attempted to reduce it by permitting only module-level type boundaries. Herman et al.
(2010) and Siek & Wadler (2010) developed calculi to remove the space-inefficiency
apparent in models of gradual typing. Industry labs instead built languages with optional
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type annotations (Moon, 1974; Steele, 1990) that provide static checks but sacrifice type
soundness (see TypeScript, Hack, Flow, and mypy). Programs written in such languages
run with zero overhead, but are susceptible to silent failures (Tobin-Hochstadt et al., 2017).
At least three research languages attempted to provide a middle ground (Bloom et al.,
2009; Richards et al., 2015; Vitousek et al., 2017).

As implementations of gradual typing matured, programmers using them had mixed
experiences about the performance overhead of gradual typing. Some programmers did not
notice any significant overhead. Others experienced orders-of-magnitude slowdowns. The
burning question thus became how to systematically measure the performance overhead of
a gradual type system. This paper provides an answer:

1. To measure the performance of a gradual type system, fully annotate a suite of rep-
resentative benchmark programs and measure the running time of all typed/untyped
configurations according to a fixed granularity. In Typed Racket, the granularity is
by-module. In a micro-level gradual type system such as Reticulated Python, exper-
imenters may choose by-module, by-variable, or any granularity in between. If an
exhaustive evaluation is not feasible, the sampling technique of Section 6 provides
an approximate measure.

2. To express the absolute performance of the gradual type system, report the pro-
portion of configurations in each benchmark that are k-step D-deliverable using
overhead plots. Ideally, many configurations should be 0-step 1.1-deliverable.

3. To express the relative performance of two implementations of a gradual type
system, plot two overhead plots on the same axis and test whether the distance is sta-
tistically significant. Ideally, the curve for the improved system should demonstrate
a complete and significant “left shift.”

Applying the evaluation method to Typed Racket has confirmed that the method works
well to uncover performance issues in a gradual type system and to quantify improvements
between distinct implementations of the same gradual type system.

The results of the evaluation in Section 5 suggest three vectors of future research for
gradual typing in general. The first vector is to evaluate other gradual type systems.
The second is to apply the sampling technique to large applications and to micro-level
gradual typing. The third is to build tools that help developers navigate a performance lat-
tice, such as the feature-specific profiler of St-Amour et al. (2015). Greenman & Migeed
(2018) have made progress on the first and second vectors with a performance evaluation
of Reticulated; consequently, Greenman & Felleisen (2018) have confirmed that porting
Reticulated’s notion of soundness (Vitousek et al., 2017) to Typed Racket can improve its
performance at the cost of detailed error messages. These are encouraging first steps.

Typed Racket in particular must address the pathologies identified in Section 8. Here are
a few suggestions. To reduce the cost of high-frequency checks, the runtime system could
cache the results of successful checks (Ren & Foster, 2016) or implement a tracing JIT
compiler tailored to identify dynamic type assertions (Bauman et al., 2015, 2017). High-
cost types may be a symptom of inefficiencies in the translation from types to dynamic
checks. Recent calculi for space-efficient contracts (Herman et al., 2010; Garcia, 2013;
Greenberg, 2015, 2016; Siek et al., 2015a) may provide insight for eliminating proxies.
Storing runtime type information in the heap may prove to be more efficient than encoding
it with contracts (Rastogi et al., 2015; Siek et al., 2015b). Lastly, there is a long history
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of related work on improving the performance of dynamically typed languages (Consel,
1988; Henglein, 1992; Gallesio & Serrano, 1995; Jagannathan & Wright, 1995); some of
it may apply here.

Finally, researchers must ask whether the specific problems reported in this paper indi-
cate a fundamental limitation of gradual typing. The only way to know is through further
systematic evaluation of gradual type systems.
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Appendix

Anecdotal evidence of performance costs

The following enumeration presents links to some of the anecdotes that triggered this
investigation into the performance of gradual typing:

re: Unsafe version of require/typed?. Neil Toronto. May 1, 2015
https://groups.google.com/d/msg/racket-users/oo_FQqGVdcI/

p4-bqol5hV4J

re: Unsafe version of require/typed?. Michael Ballantyne. May 1, 2015
https://groups.google.com/d/msg/racket-users/oo_FQqGVdcI/

leUnIAn7yqwJ

Rocking with Racket. Marc Burns. September 27, 2015
http://con.racket-lang.org/2015/burns.pdf

Typed/Untyped cost reduction and experience. John Griffin. December 26, 2015
https://groups.google.com/d/msg/racket-users/rfM6koVbOS8/

klVzjKJ9BgAJ

warning on use trie functions in #lang racket?. John B. Clements. January 5, 2016
https://groups.google.com/d/msg/racket-users/WBPCsdae5fs/

J7CIOeV-CQAJ

Generative Art in Racket. Rodrigo Setti. September 18, 2016
http://con.racket-lang.org/2016/setti.pdf

The online supplement to this paper includes copies of these email threads and documents.

The GTP benchmarks, by module

The following summaries describe the module-level structure of benchmarks in the GTP

suite. In particular, the summaries include:

• the name and size of each module;
• information about any adaptor modules;
• the number of identifiers imported and exported by the module; and
• a graph of inter-module dependencies, with edges from each module to the modules

it imports from.

The modules in each benchmark are ordered alphabetically. Figure 2 uses this order-
ing on modules to represent configurations as black and white rectangles. For example,
the node in Figure 2 in which only the left-most segment is white represents the config-
uration where module data.rkt is untyped and all other modules are typed. Similarly,
Figure A1 derives a natural number for each configuration using the alphabetical order of
module names. Configuration 4 in Figure A1 (binary: 0100) is the configuration where
only main.rkt is typed.
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sieve
0. main 1. streams

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 16 13 9 0
1 19 4 0 9

10

forth
0. command
1. eval

2. main
3. stack

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 132 14 7 2
1 79 4 9 1
2 9 3 1 0
3 35 9 0 14

3012

fsm
0. automata
1. main

2. population
3. utilities

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 84 28 0 20
1 24 10 17 0
2 46 12 13 4
3 28 6 0 6

0

3

21
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fsmoo

0. automata
1. main

2. population
3. utilities

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 111 35 0 5
1 18 11 4 0
2 42 28 8 1
3 23 9 0 6

0

3

21

mbta

0. main
1. run-t

2. t-graph
3. t-view

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 41 10 6 0
1 40 4 1 6
2 98 44 0 1
3 87 13 1 1

2310

morsecode

0. levenshtein
1. main

2. morse-code-strings
3. morse-code-table

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 88 23 0 13
1 25 6 14 0
2 13 5 1 1
3 33 4 0 1

0

32

1

https://doi.org/10.1017/S0956796818000217 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000217


34 B. Greenman et al.

zombie
0. image
1. main

2. math
3. zombie

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 16 4 0 7
1 38 9 3 0
2 12 6 0 5
3 236 8 12 3

0

2

31

dungeon
0. cell
1. grid
2. main

3. message-queue
4. utils

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 114 14 2 38
1 61 12 19 10
2 318 31 35 0
3 9 4 0 2
4 32 7 0 6

3

4

012

zordoz
0. main
1. zo-find
2. zo-shell

3. zo-string
4. zo-transition

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 15 1 1 0
1 55 16 4 6
2 295 38 10 1
3 613 107 0 6
4 400 53 0 2

3

4

120
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lnm

0. bitstring
1. lnm-plot
2. main

3. modulegraph
4. spreadsheet
5. summary

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 36 7 0 12
1 153 41 17 1
2 22 13 15 0
3 142 32 0 9
4 38 8 4 1
5 97 13 13 26

0

3

4

5

12

suffixtree

0. data
1. label
2. lcs

3. main
4. structs
5. ukkonen

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 8 0 0 108
1 119 40 27 66
2 110 11 66 3
3 13 2 3 0
4 101 40 49 20
5 186 36 59 7

014523
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kcfa
0. ai
1. benv
2. denotable
3. main

4. structs
5. time
6. ui

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 49 7 53 3
1 24 7 21 56
2 38 10 39 28
3 29 9 27 0
4 18 0 0 126
5 20 6 35 12
6 51 14 56 6

4152063

snake
0. collide
1. const
2. cut-tail
3. data

4. handlers
5. main
6. motion
7. motion-help

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 20 9 21 2
1 17 0 16 15
2 8 1 16 1
3 12 8 0 112
4 16 6 21 2
5 33 10 26 0
6 31 12 23 6
7 23 5 17 2

31

2

0

6

745
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take5
0. basics
1. card
2. card-pool
3. dealer

4. deck
5. main
6. player
7. stack

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 25 2 0 24
1 15 2 0 35
2 32 3 15 1
3 101 11 19 1
4 71 4 20 1
5 33 0 3 0
6 27 7 7 4
7 23 −2 7 5

0

2

1

6

7

435

acquire
0. admin
1. auxiliaries
2. basics
3. board
4. main

5. player
6. state
7. strategy
8. tree

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 262 26 96 4
1 35 4 0 15
2 214 46 3 162
3 433 68 30 150
4 33 7 72 0
5 71 11 65 3
6 359 81 60 170
7 86 16 94 2
8 161 45 91 5

12367

8

054
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tetris
0. aux
1. block
2. bset
3. consts
4. data

5. elim
6. main
7. tetras
8. world

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 22 3 28 6
1 20 7 22 8
2 59 29 29 64
3 7 3 0 12
4 14 6 0 154
5 14 8 41 1
6 21 13 44 0
7 36 10 45 12
8 53 28 51 3

3

4

125

7

086

synth
0. array-broadcast
1. array-struct
2. array-transform
3. array-utils
4. data

5. drum
6. main
7. mixer
8. sequencer
9. synth

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 102 7 39 6
1 214 9 25 84
2 65 17 42 2
3 132 11 0 45
4 12 0 0 64
5 53 21 44 1
6 94 11 8 0
7 61 17 17 2
8 32 27 20 2
9 70 19 23 12

3

4

10

9

2

7

5

8

6
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gregor
0. clock
1. core-structs
2. date
3. datetime
4. difference
5. gregor-structs
6. hmsn

7. main
8. moment
9. moment-base

10. offset-resolvers
11. time
12. ymd

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 57 7 56 16
1 13 −1 0 104
2 70 19 46 30
3 107 24 62 84
4 57 9 79 3
5 18 −1 13 198
6 37 12 13 45
7 127 7 93 0
8 111 32 61 40
9 33 4 36 6
10 90 21 61 13
11 49 14 44 16
12 176 28 13 22
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quadBG
0. hyphenate
1. main
2. measure
3. ocm
4. ocm-struct
5. penalty-struct
6. quad-main

7. quads
8. quick-sample
9. render

10. sugar-list
11. utils
12. world
13. wrap

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 5,128 42 0 2
1 22 8 71 0
2 56 14 0 15
3 146 10 17 4
4 17 7 0 34
5 6 0 0 5
6 219 25 129 1
7 179 29 0 165
8 30 1 33 1
9 112 2 116 1
10 72 11 0 8
11 212 29 108 45
12 143 1 0 340
13 438 42 151 4

0

2

3

5

7

10

12

4

8

11

9

13

61

https://doi.org/10.1017/S0956796818000217 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796818000217


How to evaluate the performance of gradual type systems 41

quadMB
0. exceptions
1. hyphenate
2. main
3. measure
4. ocm
5. ocm-struct
6. patterns-hashed
7. penalty-struct

8. quad-main
9. quads

10. quick-sample
11. render
12. sugar-list
13. utils
14. world
15. wrap

Untyped LOC Ann. LOC Adaptor? # Imports # Exports

0 3 1 0 1
1 187 47 2 2
2 20 10 71 0
3 55 13 0 15
4 130 14 17 4
5 17 7 0 34
6 4,941 1 0 1
7 5 2 0 5
8 207 39 141 1
9 186 11 0 200
10 31 2 40 1
11 106 10 126 1
12 70 11 0 8
13 179 51 115 54
14 143 30 0 340
15 426 45 161 6
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Fig. A1. Exact running times in morsecode.

The stability of measurements

While the experimental setup runs each benchmark multiple times (Section 5.1), the over-
head plots in Section 5.2 use the mean of these running times. The implicit assumption
is that the mean of a configuration’s running times is an accurate representation of its
performance. Figures A1 and A2 qualify this assumption.

Figure A1 plots exact running times for all 16 morsecode configurations. The data for
one configuration consists of three sequences of color-coded points; the data for version
6.2 are red triangles, the data for version 6.3 are green circles, and the data for version 6.4
are blue squares. Each sequence of running times is arranged left to right in the order in
which they were recorded.

For all configurations, the data in each sequence are similar and there is no appar-
ent pattern between the left-to-right order of points and the running time they represent.
This suggests that the absolute running times for a given configuration in morsecode are
independent samples from a population with a stable mean.

Other benchmarks are too large to plot in this manner, but Figure A2 plots their exact
typed/untyped ratios on a logarithmic scale. Similar to Figure A1, the x-axis is segmented;
these segments represent the 20 benchmark programs. Within a segment, the color-coded
points give the exact typed/untyped ratio from one iteration of the experiment. Finally,
each series of points is surrounded by its 95% confidence interval.

Most sequences of points in Figure A2 have similar y-values, and none of the sequences
evince a strong correlation between their left-to-right (chronological) order and y-value.
The notable exception is quad. Both quadBG and quadMB show larger variation between
measurements because these measurements were collected on 30 cores running in par-
allel on the benchmarking machine. The bias is most likely due to contention over
shared memory. Nevertheless, Figure A2 provides some evidence that the average of a
given sequence of typed/untyped ratios is an accurate representation of the true typed/
untyped ratio.
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Fig. A2. Typed/untyped ratios, on a logarithmic scale.

Miscellaneous figures

The table in Figure A3 lists the number of samples per configuration aggregated in Section
5.2. For a fixed benchmark and fixed version of Racket, all configurations have an equal
number of samples.

The table in Figure A4 answers the hypothetical question of whether there exists any
“deliverable” conversion paths through a performance lattice in the data for Racket ver-
sion 6.4. More precisely, a D-deliverable conversion path for a program of N modules
is a sequence of N configurations c1 →1 . . . →1 cN such that for all i between 1 and N,
configuration ci is D-deliverable. The table lists the number of modules (N) rather than the
number of paths (N!) to save horizontal space.

The table in Figure A5 provides a few worst-case statistics relevant to Section 8.
The second column (“Max Boundary”) reports the number of times that a value flows
across the most-frequently-crossed static module boundary in each benchmark. When this
boundary is a type boundary, each of these crossings triggers a runtime check. The remain-
ing columns report properties of the configuration in each benchmark with the highest
performance overhead. These properties are:

• The maximum number of function, vector or struct proxies layered on any single
value (“Max Wraps”), recorded using the patch described in Strickland et al. (2012).
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Benchmark v6.2 v6.3 v6.4 Benchmark v6.2 v6.3 v6.4

sieve 10 10 10 suffixtree 10 10 10
forth 10 10 10 kcfa 10 10 10
fsm 10 10 10 snake 10 10 10
fsmoo 10 10 11 take5 10 10 10
mbta 10 10 10 acquire 10 10 10
morsecode 10 11 10 tetris 10 10 10
zombie 10 10 10 synth 10 10 10
dungeon 10 10 10 gregor 10 10 11
zordoz 10 10 10 quadBG 10 30 10
lnm 10 10 10 quadMB 10 30 10

Fig. A3. Samples per benchmark.

Benchmark # Mod. D = 1 D = 3 D = 5 D = 10 D = 20

sieve 2 0 0 0 0 50
forth 4 0 0 0 0 0
fsm 4 0 0 0 0 0
fsmoo 4 0 0 0 0 0
mbta 4 0 100 100 100 100
morsecode 4 0 100 100 100 100
zombie 4 0 0 0 0 0
dungeon 5 0 0 0 50 100
zordoz 5 0 100 100 100 100
lnm 6 17 100 100 100 100
suffixtree 6 0 0 0 0 17
kcfa 7 0 13 93 100 100
snake 8 0 0 0 8 50
take5 8 0 100 100 100 100
acquire 9 0 2 83 100 100
tetris 9 0 0 0 17 17
synth 10 0 0 0 0 0

Fig. A4. Percent of D-deliverable conversion paths, v6.4.

• The percentage of overall runtime spent checking contracts (“Contract %”), as
reported by Racket’s contract profiler (St-Amour et al., 2015).

• The percentage of “Contract %” time that was spent checking contracts across a
library boundary (“Library %”). Benchmarks that do not interact with third-party
libraries have a dash (-) in this column.

• The number of garbage collections recorded during one run (“# GC”).

Figure A6 plots the average-case and worst-case overheads in the benchmark programs.
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Benchmark Max boundary Max wraps Contract % Library % #GC

sieve 201,692,321 0 59 - 4,705
forth 16 3 50 - 15
fsm 361,100 4,000 25 - 2,329
fsmoo 1,100 2 93 - 856
mbta 801 2 27 23 38
morsecode 821,060 2 18 - 21
zombie 13,502 67 78 - 73
dungeon 7,392 2 84 - 28
zordoz 116,167 2 32 6 33
lnm 13,064 2 21 96 27
suffixtree 145,826,484 2 95 - 572
kcfa 70,670 2 79 - 8,485
snake 18,856,600 2 95 - 123
take5 39,780 3 66 - 42
acquire 13,240 3 40 - 20
tetris 82,338,320 2 89 - 212
synth 445,637 13 67 - 203
gregor 925,521 2 49 5 20
quadBG 339,674 390 60 0 69
quadMB 281,030 543 81 0 191

Fig. A5. Dissecting performance overhead.

Fig. A6. Average and worst-case overhead.
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