BULL. AUSTRAL. MATH. SOC. VOL. 25 (1982), 425-431.

A CHARACTERIZATION OF THE EXISTENCE OF A SOUSLIN LINE

Νοβυγυκι Κεμοτο

The main purpose of this paper is to show that there exists a Souslin line if and only if there exists a countable chain condition space which is not weak-separable but has a generic π -base. If I is the closure of the isolated points in a space X, then X is said to be weak-separable if a first category set is dense in X - I. A π -base \underline{B} is said to be generic if, whenever a member of \underline{B} is included in the disjoint union of members of \underline{B} , it is included in one of them.

Miller [4], showed that the equivalence of the existence of a Souslin line and the existence of a Souslin tree. Furthermore Tall [7] obtained a topological condition of the existence of a Souslin line without mentioning the orderability. In this paper we shall give a simpler equivalence condition for the existence of a Souslin line.

A Souslin line is a linearly ordered countable chain condition topological space which is not separable. A *tree* is a partial ordered set in which for each element, the set of its predecessors is well ordered. A tree T is said to be Souslin if T is uncountable for which every chain and every antichain are countable.

It is well known that the existence of a Souslin line can not be proved or refuted from the usual axioms of set theory; see Solovay and Tennenbaum [6].

Received 4 January 1982. The author wishes to express his thanks to the referee for observing his paper.

DEFINITION 1. Let X be a topological space. A π -base \underline{B} for X is a collection of open sets of X such that for each non-empty open set there exists a member of \underline{B} which is included in it. A π -base \underline{B} is said to be *generic* if, whenever a member of \underline{B} is included in the disjoint union of \underline{B} , it is included in one of them.

Next we shall give a new class of topological spaces.

DEFINITION 2. A topological space X is said to be *weak-separable* if a first category set is dense in X - I, where I is the closure of the isolated points in X.

Clearly, separable space is weak-separable. But the converse is not true; see the example on p.

LEMMA 1. Let I = (u, v) be a separable open interval without isolated points of a linearly ordered topological space; then I has a generic π -base for I.

Proof. Let $A = \{a_k : k < \omega_0\}$ be a dense subset of I. By induction on ω_0 , we will construct \underline{B}_m of a finite family of disjoint intervals and a finite subset C_m of A for each $m < \omega_0$. First let $\underline{B}_0 = \{I\}$ and $C_0 = \{a_0\}$. Assume we have constructed $\underline{B}_m = \{(x_n, y_n) : n < m_0\}$ and C_m , where x_n, y_n are elements of $A \cup \{u, v\}$ for each $n < m_0$. For each $n < m_0$, let k_n be the least ksuch that a_k is in (x_n, y_n) . Then put

$$C_{m+1} = \{a_{k_n} : n < m_0\}$$

and

$$\underline{B}_{m+1} = \{ (x_n, a_{k_n}) : n < m_0 \} \cup \{ (a_{k_n}, y_n) : n < m_0 \} .$$

Then easily we can prove that $\bigcup_{\substack{m < \omega_0 \\ m}} B$ is a generic π -base for I.

THEOREM 1. A Souslin line is a countable chain condition space which is not weak-separable but has a generic π -base.

Proof. Let S be a Souslin line. S has a countable chain condition

by definition. Since S is linear and has countable chain condition, the isolated points of S are countable, and every nowhere dense subset of S is separable. Thus, since S is not separable, S is not weak-separable.

Next let $\underline{I} = \{\{p\} : p \text{ is an isolated point of } S\}$, and $\underline{S} = \{I_n : n < \omega_0\}$ be a maximal family of separable open intervals of S. Then, by Lemma 1, there exists a generic π -base $\underline{\mathbb{B}}(I_n)$ for I_n for each $n < \omega_0$. Next, by induction on ω_1 , we will construct $\underline{\mathbb{B}}_{\alpha}$ of pairwise disjoint open intervals of S and countable subsets C_{α} and D_{α} of S for each $\alpha < \omega_1$. First, let $C_0 = \emptyset$ and let $\underline{\mathbb{B}}_0 = \{(x_n, y_n) : n < \omega_0\}$ be a maximal family of pairwise disjoint open intervals of S such that each member of $\underline{\mathbb{B}}_0$ is disjoint from $(U \ \underline{\mathbb{I}}) \cup (U \ \underline{\mathbb{S}})$. Furthermore for each $n < \omega_0$, take $z_n \in (x_n, y_n)$, and put $D_0 = \{x_n, y_n, z_n : n < \omega_0\}$. Next assume that we have constructed C_{β} , D_{β} and $\underline{\mathbb{B}}_{\beta}$ for each $\beta < \alpha$. Let $C_{\alpha} = \bigcup_{\beta < \alpha} D_{\beta}$ and $\underline{\mathbb{B}}_{\alpha} = \{(x_n, y_n) : n < \omega_0\}$ be a maximal family of pairwise disjoint open intervals $\beta < \alpha$. Let $C_{\alpha} = \bigcup_{\beta < \alpha} D_{\beta}$ and $\underline{\mathbb{B}}_{\alpha} = \{(x_n, y_n) : n < \omega_0\}$ be a maximal family of pairwise disjoint open intervals $\beta < \alpha$. Let $C_{\alpha} = (\bigcup_{\beta < \alpha} D_{\beta}) = (\bigcup_{\alpha} (\bigcup_{\alpha} (\square) = (\bigcup_{\alpha} (\square) \cup (\bigcup_{\alpha} (\square) \cup (\bigcup_{\alpha} (\square) \cup (\square)$

CLAIM 1. $S = \overrightarrow{U} \underline{\underline{I}} \cup \overrightarrow{U} \underline{\underline{S}} \cup (\bigcup_{\alpha < \omega_{\underline{I}}} \overrightarrow{C_{\alpha}})$.

To prove this we assume $p \notin \overline{U \ \underline{I}} \cup \overline{U \ \underline{S}} \cup \begin{pmatrix} U & \overline{C} \\ \alpha < \omega_{\underline{I}} \end{pmatrix}$. Then for each

 $\alpha < \omega_1$, there exists a member I_{α} of $\underline{\mathbb{B}}_{\alpha}$ such that $p \in I_{\alpha}$. Since $I_{\alpha+1} \subset I_{\alpha}$ and by the construction, there exists a non-empty open interval J_{α} included in $I_{\alpha} - I_{\alpha+1}$ for each $\alpha < \omega_1$. Hence $\{J_{\alpha} : \alpha < \omega_1\}$ is an uncountable family of pairwise disjoint open intervals, which is a contradiction.

CLAIM 2. $\underline{\underline{B}} = \bigcup \{\underline{\underline{B}}(I_n) : I_n \in \underline{\underline{S}}\} \cup \underline{\underline{I}} \cup \bigcup \{\underline{\underline{B}}_{\alpha} : \alpha < \omega_1\}$ is a π -base for S.

To prove this let (x, y) be a non-empty interval of S . If (x, y)

has an isolated point p then $\{p\} \subset (x, y)$ and $\{p\} \in I$. If (x, y)has no isolated point and $(x, y) \cap I_n \neq \emptyset$ for some $I_n \in \underline{S}$, then there exists an $I \in \underline{B}(I_n)$ such that $I \subset (x, y) \cap I_n$, because $\underline{B}(I_n)$ is a π -base for I_n . Let (x, y) has no isolated point and $(x, y) \cap (\bigcup \underline{S}) = \emptyset$. Take $a, b \in S$ such that x < a < b < y, then there exists an $\alpha < \omega_1$ such that $a, b \in \overline{C_\alpha}$. By the maximality of \underline{S} , $(a, b) - \overline{C_\alpha} \neq \emptyset$. Then by the construction of \underline{B}_α , there exists an $I \in \underline{B}_\alpha$ such that $I \subset (a, b) - \overline{C_\alpha}$. Hence $I \subset (x, y)$. Thus \underline{B} is a π -base for S.

Also one can easily prove the genericity of \underline{B} . This completes the proof.

REMARK. If there exists a Souslin line S, then one can construct a connected Souslin line S^* ; see Kunen [2]. Since a connected linearly ordered space is locally connected, all connected open subsets of S^* are generic π -bases for S^* .

THEOREM 2. If X is a countable chain condition space which is not weak-separable but has a generic π -base <u>G</u>, then <u>G</u>, partially ordered by reverse inclusion, contains a Souslin tree.

Proof. Since X is a countable chain condition we can assume without loss of generality that X has no isolated point. By induction, for each $\alpha < \omega_1$, we choose $T_{\alpha} \subset \underline{G}$ as follows. Let T_0 be a maximal family of infinite pairwise disjoint members of \underline{G} . Having chosen $\{T_{\beta} : \beta < \alpha\}$, define $\underline{G} = \{g \in \underline{G} : g \subset \bigcap_{\beta < \alpha} (\bigcup T_{\beta})\}$ and T'_{α} to be a maximal family of infinite pairwise disjoint members of \underline{G}_{α} . For $g' \in T'_{\alpha}$, let $\underline{G}_{\alpha}(g') = \{g \in \underline{G} : g \subset g'\}$ and $T_{\alpha}(g')$ is a maximal family of infinite pairwise disjoint members of $\underline{G}_{\alpha}(g')$. Finally let $T_{\alpha} = \{T_{\alpha}(g') : g' \in T'_{\alpha}\}$. Since \underline{G} is generic, $T = \bigcup_{\alpha < \omega_1} T_{\alpha}$, ordered by $\alpha < \omega_1$

reverse inclusion, is a tree, and X is a countable chain condition, and by construction, each chain and each antichain are countable. To see that T

is uncountable, we will show that $X - \operatorname{int} \begin{pmatrix} \cap & \cup & T_{\beta} \end{pmatrix}$ has a dense first category set for each $\alpha < \omega_{1}$. Then, since X is not weak-separable, $\underline{G}_{\alpha} \neq \not{\rho}$ and thus $T_{\alpha} \neq \not{\rho}$. Hence T is uncountable. Clearly $X - \operatorname{int} (\cup & T_{0}) = X - (\cup & T_{0})$ is nowhere dense. Assume that $X - \operatorname{int} (\cap & \cup & T_{\beta})$ has a dense first category set. By the maximality of $\beta < \alpha$ T_{α} , $\operatorname{int} (\cap & \cup & T_{\beta}) - (\cup & T_{\alpha})$ is nowhere dense. Also $g' - (\cup & T_{\alpha}(g'))$ is nowhere dense for each $g' \in T_{\alpha}$. Since

$$\begin{array}{rcl} X & - & \left(\operatorname{int} \left(\begin{array}{c} \cap & \cup & T_{\beta} \end{array} \right) \right) = & \left(X - \left(\operatorname{int} \left(\begin{array}{c} \cap & \cup & T_{\beta} \end{array} \right) \right) \right) \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & &$$

and X is a countable chain condition, $X = (int (\bigcap_{\beta < \alpha+1} \cup T_{\beta}))$ has a dense

first category set. Assume that $\,\alpha\,$ is limit and

$$X = \left(\operatorname{int} \left(\bigcap_{\beta < \gamma} \bigcup_{\beta < \gamma} T_{\beta} \right) \right) = \frac{\bigcup_{n < \omega} F_{n}(\gamma)}{n^{<\omega}}$$

for each $\gamma < \alpha$, where $F_n(\gamma)$ is a nowhere dense set of X for each $n < \omega_0$. Then clearly

$$X - (int(\bigcap \cup T_{\beta})) = \overline{\bigcup (X - (\bigcap \cup T_{\beta}))} = \overline{\bigcup \bigcup F_{n}(\gamma)}$$

Hence $X = \left(\operatorname{int} \left(\bigcap_{\beta < \alpha} U T_{\beta} \right) \right)$ has a dense first category set. This completes the proof.

The following is a consequence of the above theorems.

COROLLARY. The following conditions are equivalent:

- (1) there exists a Souslin line;
- (2) there exists a connected Souslin line;
- (3) there exists a Souslin tree;
- (4) there exists a countable chain condition space which is not weak-separable but has a generic π-base;

- (5) there exists a locally connected countable chain condition space which is not weak-separable;
- (6) there exists a countable chain condition space X which is not weak-separable such that

 $\{x \in X : X \text{ is locally connected at } x\}$

is dense in X;

(7) there exists a countable chain condition space which is not weak-separable but has a π -base consisting of connected open sets.

Proof. The equivalence of (1) and (2) is due to Kunen [2], and the equivalence of (1) and (3) is due to Miller [4]. The implication of (1) \rightarrow (4) follows from Theorem 1, but the implication of (2) \rightarrow (4) follows only from the remark of Theorem 1. The implication of (4) \rightarrow (3) follows from Theorem 2. The implication of (5) \rightarrow (6) \rightarrow (7) \rightarrow (4) is clear. (2) \rightarrow (5) also follows from Theorem 1 and its remark.

REMARK. Since the existence of a Souslin line is independent of the Zermelo-Frankel set theory with the Axiom of Choice, the existence of a locally connected countable chain condition space, which is not weakseparable, is also independent of the Zermelo-Frankel set theory with the Axiom of Choice by the corollary. But there exists a locally connected countable chain condition space which is not separable; see the next example.

EXAMPLE. Let κ be a cardinal such that $\kappa > 2^{\aleph_0}$. Then I^{κ} is a countable chain condition by Engelking [1, 2.3.17], where I denotes the unit interval of the real line. Moreover I^{κ} is not separable; see Pondiczery [5] and Marczewski [3]. Furthermore, since I is connected and locally connected, I^{κ} is locally connected. But I^{κ} is weak-separable.

References

[1] Ryszard Engelking, *General topology* (Monografie Mathematyczne, 60.
PWN - Polish Scientific Publishers, Warsaw, 1977).

- [2] Kenneth Kunen, Set theory. An introduction to independence proofs (Studies in Logic and the Foundations of Mathematics, 102.
 North-Holland, Amsterdam, New York, Oxford, 1980).
- [3] Edward Marczewski, "Séparabilité et multiplication cartésienne des espaces topologiques", Fund. Math. 34 (1947), 127-143.
- [4] Edwin W. Miller, "A note on Souslin's problem", Amer. J. Math. 65 (1943), 673-678.
- [5] E.S. Pondiczery, "Power problems in abstract spaces", Duke Math. J. 11 (1944), 835-837.
- [6] R.M. Solovay and S. Tennenbaum, "Iterated Cohen extensions and Souslin's problem", Ann. of Math. (2) 94 (1971), 201-245.
- [7] Franklin D. Tall, "Stalking the Souslin tree a topological guide", Canad. Math. Bull. 19 (1976), 337-341.

Department of Mathematics, Kobe University, Nada, Kobe 657, Japan.