UNIQUENESS OF CERTAIN SPHERICAL CODES

EIICHI BANNAI AND N. J. A. SLOANE

1. Introduction. In this paper we show that there is essentially only one way of arranging 240 (resp. 196560) nonoverlapping unit spheres in \mathbf{R}^{8} (resp. \mathbf{R}^{24}) so that they all touch another unit sphere, and only one way of arranging 56 (resp. 4600) spheres in \mathbb{R}^8 (resp. \mathbb{R}^{24}) so that they all touch two further, touching spheres. The following tight spherical *t*-designs are unique: the 5-design in Ω_7 , the 7-designs in Ω_8 and Ω_{23} , and the 11-design in Ω_{24} . It was shown in [20] that the maximum number of nonoverlapping unit spheres in \mathbb{R}^8 (resp. \mathbb{R}^{24}) that can touch another unit sphere is 240 (resp. 196560). Arrangements of spheres meeting these bounds can be obtained from the E_8 and Leech lattices, respectively. The present paper shows that these are the only arrangements meeting these bounds. In [2], [3], it was shown that there are no tight spherical tdesigns for $t \geq 8$ except for the tight 11-design in Ω_{24} . The present paper shows that this and three other tight *t*-designs are also unique. There is already a considerable body of literature concerning the uniqueness of these lattices and their associated codes and groups ([5], [6], [8], [11], [13], [17]–[19], [21], [22], [27], [28]). However the results given here are believed to be new.

Our notation is that Ω_n denotes the unit sphere in \mathbb{R}^n and (,) is the usual inner product. An (n, M, s) spherical code is a subset C of Ω_n of size M such that $(\mathbf{u}, \mathbf{v}) \leq s$ for all $\mathbf{u}, \mathbf{v} \in C$, $\mathbf{u} \neq \mathbf{v}$.

Examples of spherical codes may be obtained from sphere packings ([15], [25]) via the following theorem, whose elementary proof is omitted.

THEOREM 1. In a packing of unit spheres in \mathbb{R}^n let S_1, \ldots, S_k be a set of spheres such that S_i touches S_j for all $i \neq j$. Suppose there are further spheres T_1, \ldots, T_M each of which touches all the S_i . Then after rescaling the centers of T_1, \ldots, T_M form an (n - k + 1, M, 1/(k + 1)) spherical code.

Example 2. In the E_8 lattice packing in \mathbb{R}^8 there are 240 spheres touching each sphere, 56 that touch each pair of touching spheres, 27 that touch each triple of mutually touching spheres, and so on. From Theorem 1 the centers of these sets of spheres give rise to (8, 240, 1/2), (7, 56, 1/3), (6, 27, 1/4), (5, 16, 1/5), (4, 10, 1/6) and (3, 6, 1/7) spherical codes.

Received September 17, 1979 and in revised form January 9, 1980. The work of the first author was supported in part by NSF grant MCS-7903128 (OSURF 711977).

Example 3. Similarly the Leech lattice in **R**²⁴ ([**5**], **[14**], [**16**], [**26**]) gives rise to (24, 196560, 1/2), (23, 4600, 1/3), (22, 891, 1/4), (21, 336, 1/5), (20, 170, 1/6)... spherical codes.

If C is an (n, M, s) spherical code and $\mathbf{u} \in C$ the distance distribution of C with respect to \mathbf{u} is the set of numbers $\{A_t(u), -1 \leq t \leq 1\}$, where

$$A_t(\mathbf{u}) = |\{\mathbf{v} \in C: (\mathbf{u}, \mathbf{v}) = t\}|,$$

and the *distance distribution of* C is the set of numbers $\{A_t, -1 \leq t \leq 1\}$, where

$$A_t = \frac{1}{M} \sum_{\mathbf{u} \in C} A_t(\mathbf{u})$$

Then the A_t satisfy

$$A_{1} = 1,$$

$$A_{t} = 0 \text{ for } s < t < 1,$$

$$\sum_{-1 \le t \le s} A_{t} = M - 1,$$

and

$$\sum_{-1 \leq t \leq s} A_t P_k(t) \geq -P_k(1), \text{ for } k = 1, 2, 3, \dots,$$

where $P_k(x) = P_k^{(n-3)/2,(n-3)/2}(x)$ is a Jacobi polynomial in the notation of [1, Chapter 2]. For a proof of the last inequality see [9], [12], [16] or [20]. For a specified value of s an upper bound to M is therefore given by the following linear programming problem.

(P1) Choose $\{A_t, -1 \leq t \leq s\}$ so as to maximize

$$\sum_{-1 \leq t \leq s} A_t$$

subject to the inequalities

(1)
$$A_t \ge 0,$$

(1) $\sum_{-1 \le t \le s} A_t P_k(t) \ge -P_k(1), \text{ for } k = 1, 2, 3, \dots.$

The dual problem may be stated as follows (compare the argument in $[18, Chapter 17, \S 4]$).

(P2) Choose an integer N and a polynomial f(t) of degree N, say

$$f(t) = \sum_{k=0}^{N} f_k P_k(t),$$

so as to minimize $f(1)/f_0$ subject to the inequalities

- (2) $f_0 > 0, f_k \ge 0$ for k = 1, 2, ..., N,
- (3) $f(t) \leq 0$ for $-1 \leq t \leq s$.

Since any feasible solution to the dual problem is an upper bound to the optimal solution of the primal problem, we have

$$(4) \qquad M \leq f(1)/f_0$$

for any polynomial f(t) satisfying (2) and (3).

2. Uniqueness of the code of size 240 in Ω_8 .

THEOREM 4 ([20]). If C is an (8, M, 1/2) code then $M \leq 240$.

Proof. Consider the polynomial

$$f(t) = \frac{320}{3} (t+1) \left(t + \frac{1}{2} \right)^2 t^2 \left(t - \frac{1}{2} \right)$$

= $P_0 + \frac{16}{7} P_1 + \frac{200}{63} P_2 + \frac{832}{231} P_3 + \frac{1216}{429} P_4 + \frac{5120}{3003} P_4$
+ $\frac{2560}{4641} P_6$

where P_k stands for $P_k^{2.5,2.5}(t)$. This satisfies (2) and (3) with s = 1/2, so from (4) we have $M \leq f(1)/f_0 = 240$.

THEOREM 5. If (a) C is an (8, 240, 1/2) code then (b) C is a tight spherical 7-design in Ω_8 (cf. [9], [10]), (c) C carries a 4-class association scheme (cf. [7], [26]), (d) the intersection numbers of this association scheme are uniquely determined, and (e) the distance distribution of C with respect to any $\mathbf{u} \in C$ is given by

(6)
$$A_{1}(\mathbf{u}) = A_{-1}(\mathbf{u}) = 1,$$

 $A_{1/2}(\mathbf{u}) = A_{-1/2}(\mathbf{u}) = 56,$
 $A_{0}(\mathbf{u}) = 126.$

Proof. Let $\{A_t\}$ be the distance distribution of *C*. Then $\{A_t\}$ is an optimal solution to the primal problem (*P*1), and the polynomial f(t) in (5) is an optimal solution to the dual problem (*P*2). The dual variables f_1, \ldots, f_6 are nonzero, so by the theorem of complementary slackness [**23**] the primal constraints (1) must hold with equality for $k = 1, \ldots, 6$.

The dual constraints (3) do not hold with equality except for t = -1, $\pm 1/2$ and 0. Therefore the primal variables must vanish everywhere except perhaps for A_{-1} , $A_{\pm 1/2}$ and A_0 . From (1) these numbers satisfy the equations

(7)
$$A_{-1}P_k(-1) + A_{-1/2}P_k(-\frac{1}{2}) + A_0P_k(0) + A_{1/2}P_k(\frac{1}{2}) = -P_k(1),$$

		1	1	1		239
	$-\frac{7}{2}$	$-rac{7}{4}$	0	$\frac{7}{4}$		$-\frac{7}{2}$
	$\frac{63}{8}$	$\frac{9}{8}$	$-\frac{9}{8}$	$\frac{9}{8}$	$\begin{bmatrix} A_{-1} \end{bmatrix}$	$-\frac{63}{8}$
(8)	$-\frac{231}{16}$	$\frac{33}{64}$	0	$-\frac{33}{64}$	$A_{-1/2}$ _	$-\frac{231}{16}$
	$\frac{3003}{128}$	$-rac{429}{256}$	$\frac{143}{128}$	$-\frac{429}{256}$	A_0	$-\frac{3003}{128}$
	$-\frac{9009}{256}$	$\frac{1287}{1024}$	0	$-\frac{1287}{1024}$	$A_{1/2}$	$-\frac{9009}{256}$
	$\begin{array}{c} \underline{51051} \\ 1024 \end{array}$	$\frac{663}{2048}$	$-\frac{1105}{1024}$	$\frac{663}{2048}$		$\left[-\frac{51051}{1024}\right]$

for k = 1, 2, ..., 6. Thus

The unique solution is

(9) $A_{-1} = 1, A_{-1/2} = A_{1/2} = 56, A_0 = 126.$

Since $A_{-1}(\mathbf{u}) \leq 1$ and $A_{-1} = 1$, we have $A_{-1}(\mathbf{u}) = 1$ for all $\mathbf{u} \in C$, and so the code is antipodal [9, p. 373]. Therefore (7) also holds for k = 7and by [9, Theorem 5.5] *C* is a spherical 7-design. By [9, Definition 5.13] the design is tight, since $|C| = 2\binom{10}{3}$. By [9, Theorem 7.5] *C* carries a 4-class association scheme. Therefore $A_t(\mathbf{u}) = A_t$ is independent of \mathbf{u} for all *t*. This proves (b), (c) and (e). The numbers (9) are the valencies of the association scheme, and by [9, Theorem 7.4] determine all the intersection numbers. This proves (d).

THEOREM 6. If condition (b) of Theorem 5 holds then so do (a), (c), (d) and (e).

Proof. By definition $|C| = 2\binom{10}{3}$. From [9, Theorem 5.12] the inner products between the members of C are ± 1 and the zeros of

 $C_3(x) = 160(x + \frac{1}{2})x(x - \frac{1}{2}).$

Thus all the A_t are zero except perhaps for $A_{\pm 1}$, $A_{\pm 1/2}$ and A_0 . From [9, Theorem 5.5] Eq. (7) holds for k = 1, 2, ..., 7. The rest of the proof is the same as for Theorem 5.

In Example 2 we saw that the minimal vectors in the E_8 lattice form an (8, 240, 1/2) code. Thus conditions (a)–(e) of Theorem 5 apply to this code. Conversely we have:

THEOREM 7. If C is a tight spherical 7-design in Ω_8 there is an orthogonal transformation mapping C onto the minimal vectors of the E_8 lattice.

Proof. From Theorem 6 the possible inner products in C are 0, $\pm 1/2$, ± 1 . Let $C = {\mathbf{u}_1, \ldots, \mathbf{u}_{240}}$ and let L be the lattice in \mathbf{R}^8 consisting of the vectors

$$\sum_{i=1}^{240} a_i \cdot \sqrt{2} \mathbf{u}_i, \quad a_i \in \mathbf{Z}$$

Then L is an even integral lattice (cf. [19]). All such lattices have been classified (see [13], [19]), and are direct sums of the lattices $A_n (n \ge 1)$, $D_n (n \ge 4)$ and $E_n (n = 6, 7, 8)$. The only lattice of this type with at least 240 minimal vectors is E_8 , so L is isometric to E_8 and C is isometric to the minimal vectors in E_8 .

By combining Theorems 5 and 7 we obtain:

THEOREM 8. There is a unique way (up to isometry) of arranging 240 nonoverlapping unit spheres in \mathbb{R}^8 so that they all touch another unit sphere.

3. Uniqueness of the code of size 56 in Ω_7 .

THEOREM 9. If C is a (7, M, 1/3) code then $M \leq 56$.

Proof. The proof here is parallel to the proof of Theorem 4, using the polynomial

 $f(t) = (t+1)(t+1/3)^2(t-1/3).$

THEOREM 10. If (a) C is a (7, 56, 1/3) code then (b) C is a tight spherical 5-design in Ω_7 , (c) C carries a 3-class association scheme, (d) the intersection numbers of this association scheme are uniquely determined, and (e) the distance distribution of C with respect to any $\mathbf{u} \in C$ is given by

$$A_1(\mathbf{u}) = A_{-1}(\mathbf{u}) = 1,$$

(10) $A_{1/3}(\mathbf{u}) = A_{-1/3}(\mathbf{u}) = 27.$

Conversely (b) implies (a), (c), (d) and (e).

Proof. The proof is parallel to the proofs of Theorems 5 and 6.

For example the (7, 56, 1/3) code given in Example 2 has properties (a)-(e). Conversely we have:

THEOREM 11. If C is a tight spherical 5-design in Ω_7 there is an orthogonal transformation mapping C onto the (7, 56, 1/3) code obtained from the E_8 lattice.

Proof. Let C consist of the points $\mathbf{u}_1, \ldots, \mathbf{u}_{56}$ lying on a unit sphere \mathbf{R}^7 centered at \mathbf{P} . Choose a point \mathbf{O} (in \mathbf{R}^8) so that $\not \perp \mathbf{u}_i \mathbf{OP} = \pi/3$ for all i, and thus

 $\cos \not \leq \mathbf{u}_i \mathbf{O} \mathbf{u}_i = (1 + 3 \cos \not \leq \mathbf{u}_i \mathbf{P} \mathbf{u}_i)/4$

for all *i*, *j*. Let **v** be a unit vector along **OP** (see Fig. 1). From Theorem 10 $\cos \angle \mathbf{u}_i \mathbf{P} \mathbf{u}_j$ takes the values ± 1 and $\pm 1/3$, so $\cos \measuredangle \mathbf{u}_i \mathbf{O} \mathbf{u}_j$ takes the values $0, \pm 1/2$ and 1. It follows that the vectors $\sqrt{3/2} \mathbf{O} \mathbf{u}_i$ $(1 \le i \le 56)$ span an even integral lattice, containing at least 2(56 + 1) = 114 minimal vectors (corresponding to $\pm C, \pm \mathbf{v}$). This lattice must therefore be either E_8 or $E_7 \oplus A_1$, and the latter is incompatible with (10).

By combining Theorems 10 and 11 we obtain:

THEOREM 12. There is a unique way (up to isometry) of arranging 56 nonoverlapping unit spheres in \mathbb{R}^8 so that they all touch two further, touching, unit spheres.

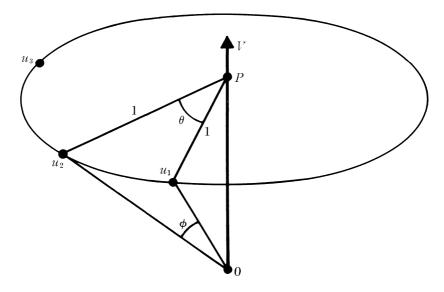


FIGURE 1. The construction used in the proof of Theorem 11: $\measuredangle \mathbf{u}_i \mathbf{OP} = \pi/3$ for all i, $|\mathbf{OP}| = 1/\sqrt{3}$, $|\mathbf{Ou}_i| = |\mathbf{Ou}_2| = 2/\sqrt{3}$, and $\cos \phi = (1 + 3\cos \theta)/4$

4. Uniqueness of the code of size 196560 in Ω_{24} .

THEOREM 13 ([20]). If C is a (24, M, 1/2) code then $M \leq 196560$.

Proof. This parallels that of Theorem 4, using the polynomial

$$f(t) = (t+1)(t+\frac{1}{2})^2(t+\frac{1}{4})^2t^2(t-\frac{1}{4})^2(t-\frac{1}{2})$$

THEOREM 14. If (a) C is a (24, 196560, 1/2) code then (b) C is a tight spherical 11-design in Ω_{24} , (c) C carries a 6-class association scheme, (d) the intersection numbers of this association scheme are uniquely determined, and (e) the distance distribution of C with respect to any $\mathbf{u} \in C$ is given by

(11)
$$A_{1}(\mathbf{u}) = A_{-1}(\mathbf{u}) = 1,$$

$$A_{1/2}(\mathbf{u}) = A_{-1/2}(\mathbf{u}) = 4600,$$

$$A_{1/4}(\mathbf{u}) = A_{-1/4}(\mathbf{u}) = 47104$$

$$A_{0}(\mathbf{u}) = 93150.$$

Conversely (b) implies (a), (c), (d) and (e).

Proof. The proof here is parallel to those of Theorems 5 and 6.

In Example 3 we saw that the minimal vectors in the Leech lattice when suitably scaled form a (24, 196560, 1/2) code. We shall require an explicit description of this code, and take Λ to consist of the vectors

$$(0 + 2c + 4x)/\sqrt{8}$$

and

$$(\mathbf{1}+2\mathbf{c}+4\mathbf{y})/\sqrt{8},$$

where $\mathbf{O} = 00 \dots 0, 1 = 11 \dots 1$, \mathbf{c} is any codeword in the binary Golay code g_{24} (cf. [18]) $\mathbf{x}, \mathbf{y} \in \mathbf{Z}^{24}$, and $\sum x_i$ is even, $\sum y_i$ odd. The minimal vectors in Λ consist of

759.27 with components $((\pm 2)^{8}0^{16})/\sqrt{8}$, 2². $\binom{24}{2}$ with components $((\pm 4)^{2}0^{22})/\sqrt{8}$,

(12) 24.2¹² with components $((\pm 1)^{23}(\mp 3)^1)/\sqrt{8}$

and have norm (x, x) = 4.

This set of 196560 vectors will be denoted by Λ_4 . Then $\frac{1}{2}\Lambda_4$ is a (24, 196560, 1/2) code to which conditions (a)-(e) of Theorem 14 apply. Conversely we have:

THEOREM 15. If C is a tight spherical 11-design in Ω_{24} there is an orthogonal transformation mapping C onto $\frac{1}{2}\Lambda_4$.

Proof. From Theorem 14 the distance distribution of C with respect to any $\mathbf{u} \in C$ is given by (11), and in particular the inner products in C are $0, \pm \frac{1}{4}, \pm \frac{1}{2}, \pm 1$. Let $C = {\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_{196560}}$, and let L be the lattice in \mathbf{R}^{24} consisting of the vectors

$$\sum_{i=1}^{196560} a_i \bullet 2\mathbf{u}_i, \quad a_i \in \mathbf{Z}.$$

Then

(13)
$$(2\mathbf{u}_i, 2\mathbf{u}_j) \in \{0, \pm 1, \pm 2, \pm 4\}$$

and L is an even integral lattice. We shall establish Theorem 15 by showing that there is an orthogonal transformation mapping L onto 2Λ and C onto $\frac{1}{2}\Lambda_4$.

LEMMA 16. The minimal norm (\mathbf{v}, \mathbf{v}) for $\mathbf{v} \in L$, $\mathbf{v} \neq \mathbf{0}$, is 4.

Proof. The minimal norm is even, so suppose it is 2, with $(\mathbf{v}, \mathbf{v}) = 2$, $\mathbf{v} \in L$. For $\mathbf{u} \in 2C$ we have

$$|(\mathbf{u}, \mathbf{v})| = |\mathbf{u}| \cdot |\mathbf{v}| \cdot |\cos \not\preceq (\mathbf{u}, \mathbf{v})| \leq 2\sqrt{2},$$

so $(\mathbf{u}, \mathbf{v}) \in \{0, \pm 1, \pm 2\}$ since *L* is integral. Suppose $(\mathbf{u}, \mathbf{v}) = 0$ for α choices of \mathbf{u} , $(\mathbf{u}, \mathbf{v}) = 1$ for β choices, and $(\mathbf{u}, \mathbf{v}) = 2$ for γ choices, with $\alpha + 2\beta + 2\gamma = 196560$. Without loss of generality we may assume $\mathbf{v} = (\sqrt{2}, 0, 0, \dots, 0)$.

Since C is an 11-design,

(14)
$$\frac{1}{196560} \sum_{i=1}^{196560} f(\mathbf{u}_i) = \frac{1}{\omega_{24}} \int_{\Omega_{24}} f(\xi) d\omega(\xi)$$

holds for any homogeneous polynomial $f(\xi_1, \xi_2, \ldots, \xi_{24})$ of total degree ≤ 11 , where ω_{24} is the surface area of Ω_{24} [9, p. 372]. Let us choose $f = f_k = \xi_1^k$, for k = 2 and 4, so that

$$f_k(\mathbf{u}_i) = 2^{-k/2}((\mathbf{u}_i, \mathbf{v}))^k.$$

The right hand side of (14) can be evaluated from

$$\frac{1}{\omega_{24}} \int_{\Omega_{24}} f_k(\xi) d\omega(\xi) = \frac{1}{196560} \sum_{u \in 1/2\Lambda_4} f_k(\mathbf{u})$$
$$= \frac{8190}{196560} \quad \text{if } k = 2, \quad \text{or} \quad \frac{945}{196560} \quad \text{if } k = 4,$$

using (12). The equations (14) now read

$$2\beta \cdot \frac{1^2}{8} + 2\gamma \cdot \frac{2^2}{8} = 8190,$$

$$2\beta \cdot \frac{1^4}{64} + 2\gamma \cdot \frac{2^4}{64} = 945,$$

which imply $\beta = 33600$, $\gamma = -210$, an impossibility.

LEMMA 17. The set L_4 of vectors of norm 4 in L coincides with 2C.

Proof. By construction L_4 contains 2*C*. Conversely take $\mathbf{u}, \mathbf{v} \in L_4$. Then $(\mathbf{u}, \mathbf{v}) \neq 3$, or else

$$(u - v, u - v) = (u, u) - 2(u, v) + (v, v) = 2,$$

contradicting Lemma 16. Similarly $(\mathbf{u}, \mathbf{v}) \neq -3$. Therefore $(\mathbf{u}, \mathbf{v}) \in \{0, \pm 1, \pm 2, \pm 4\}$ and $\not\preceq (\mathbf{u}, \mathbf{v}) \geq \pi/3$ for $\mathbf{u} \neq \mathbf{v}$. From Theorem 13

$$|L_4| \leq 196560 = |2C|.$$

Therefore $L_4 = 2C$.

For $n \ge 3$ let D_n be the lattice in \mathbf{R}^n spanned by the vectors

(15)
$$\mathbf{g}_1 = \sqrt{2}(\mathbf{e}_1 + \mathbf{e}_2), \, \mathbf{g}_2 = \sqrt{2}(\mathbf{e}_1 - \mathbf{e}_2), \\ \mathbf{g}_3 = \sqrt{2}(\mathbf{e}_2 - \mathbf{e}_3), \dots, \, \mathbf{g}_n = \sqrt{2}(\mathbf{e}_{n-1} - \mathbf{e}_n)$$

with respect to an orthonormal basis $\{\mathbf{e}_1, \ldots, \mathbf{e}_n\}$ for \mathbf{R}^n ([4], [19]). There are 2n(n-1) minimal vectors $((\pm \sqrt{2})^2 0^{n-2})$ in D_n . These lattices are nested: $D_3 \subseteq D_4 \subseteq \ldots$.

LEMMA 18. (i) For any pair of vectors \mathbf{u}, \mathbf{v} in Λ_4 with $\not\preceq (\mathbf{u}, \mathbf{v}) = \pi/2$ there are 44 vectors \mathbf{w} in Λ_4 with $\not\preceq (\mathbf{u}, \mathbf{w}) = \not\preceq (\mathbf{v}, \mathbf{w}) = \pi/3$. (ii) The same statement holds with Λ_4 replaced by $L_4 = 2C$. (iii) There are 2n - 4minimal vectors \mathbf{w} in D_n such that $\not\preceq (g_1, w) = \not\preceq (g_2, w) = \pi/3$.

Proof. (i) and (iii) are straightforward, and (ii) follows from (i) since Λ_4 and 2*C* are association schemes with the same parameters (Theorem 14).

LEMMA 19. L contains a sublattice isometric to D_3 .

Proof. For the generators \mathbf{g}_1 , \mathbf{g}_2 , \mathbf{g}_3 of D_3 we can take any triple $\mathbf{u}, \mathbf{v}, \mathbf{w} \in L_4$ with $\not \geq (u, v) = \pi/2$, $\not \geq (\mathbf{u}, \mathbf{w}) = \not \geq (\mathbf{v}, \mathbf{w}) = \pi/3$. Such a triple exists by Lemma 18(ii).

LEMMA 20. L contains a sublattice isometric to D_n , for $n = 3, 4, \ldots, 24$.

Proof. We proceed by induction on *n*. Suppose the assertion holds for $n \geq 3$. By choosing a suitable orthonormal basis $\mathbf{e}_1, \ldots, \mathbf{e}_n L_4$ contains vectors $\mathbf{g}_1, \ldots, \mathbf{g}_n$ given by (15) which span D_n . By Lemma 18 (ii) there are 44 vectors \mathbf{w} in L_4 with $\not{\perp}(\mathbf{g}_1, w) = \not{\perp}(\mathbf{g}_2, \mathbf{w}) = \pi/3$. By Lemma 18 (iii) at least one of these is not a minimal vector of D_n . Then this vector \mathbf{w} is not in $\mathbf{R}D_n$. (For suppose $\mathbf{w} = w_1\mathbf{e}_1 + \ldots + w_n\mathbf{e}_n$. Since $\not{\perp}(\mathbf{g}_1, \mathbf{w}) = \not{\perp}(\mathbf{g}_2, \mathbf{w}) = \pi/3$, $w_1 = \sqrt{2}$ and $w_2 = 0$. For $3 \leq i \leq n$,

 $\sqrt{2}(\mathbf{e}_1 \pm \mathbf{e}_i) \in L_4 \cap D_n \subseteq 2C,$

and therefore

 $(\mathbf{w}, \sqrt{2}(\mathbf{e}_1 \pm \mathbf{e}_i)) \in \{0, \pm 1, \pm 2\}$

from (13). This implies $w_3 = w_4 = \ldots = w_n = 0$, and contradicts $(\mathbf{w}, \mathbf{w}) = 4$.) Choose \mathbf{e}_{n+1} so that $\{\mathbf{e}_1, \ldots, \mathbf{e}_{n+1}\}$ is an orthonormal basis for $\mathbf{R} \langle D_n, \mathbf{w} \rangle$, and suppose

 $\mathbf{w} = w_1 \mathbf{e}_1 + \ldots + w_n \mathbf{e}_n + w_{n+1} \mathbf{e}_{n+1}.$

The above argument shows that $w_1 = \sqrt{2}$, $w_2 = \ldots = w_n = 0$, and $w_{n+1} = \pm \sqrt{2}$. Therefore $\langle D_n, \mathbf{w} \rangle = D_{n+1} \subseteq L$.

LEMMA 21. L is isometric to Λ .

Proof. From Lemma 20 we may choose an orthonormal basis $\mathbf{e}_1, \ldots, \mathbf{e}_{24}$ so that 2*C* contains the vectors $(\pm \sqrt{2})^2 0^{22}$. Let $\mathbf{u} = (u_1, \ldots, u_{24})/\sqrt{8}$ be any vector in 2*C*. From (13) the inner products of \mathbf{u} with the vectors $(\pm \sqrt{2})^2 0^{22}$ are $0, \pm 1, \pm 2, \pm 4$. By considering the inner products with $(\sqrt{2}, \pm \sqrt{2}, 0, \ldots, 0)$ we obtain

$$u_1^2 + u_2^2 + \ldots + u_{24}^2 = 32,$$

$$\frac{1}{2}(u_1 \pm u_2) \in \{0, \pm 1, \pm 2, \pm 4\},$$

$$u_1, u_2, \ldots \in \{0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5\}.$$

Suppose $u_1 = \pm 5$. Then another u_i , say u_2 , is zero. The inner product of **u** with $(\sqrt{2}, \sqrt{2}, 0, \ldots, 0)$ is 5/2, a contradiction. Proceeding in this way it is not difficult to show that the only possibilities for the components of **u** are

$$((\pm 2)^{8}0^{16})/\sqrt{8}, ((\pm 4)^{2}0^{22})/\sqrt{8}, \text{ and } ((\pm 1)^{23}(\pm 3)^{1})/\sqrt{8}.$$

In particular u_1, \ldots, u_{24} are integers with the same parity.

It remains to show that these vectors are the same as those in Λ_4 (see (12)). To see this we define a binary linear code \mathscr{C} of length 24 by taking as codewords all binary vectors **c** such that there is a vector $\mathbf{u} \in L$ with

$$u = (0 + 2c + 4x)/\sqrt{8}$$

for some $\mathbf{x} \in \mathbf{Z}^{24}$. Then as in [5, p. 139] it follows that $wt(\mathbf{c}) \geq 8$ for $\mathbf{c} \neq \mathbf{0}$, and that there are at most 759 codewords of weight 8. Therefore $|\mathscr{C}| \leq 2^{12}$ (see for example [18, Fig. 1, p. 674]). The argument on page 140 of [5] now shows that the only way that $2\mathscr{C}$ can contain 196560 vectors \mathbf{u} is for these vectors to coincide with the minimal vectors (12) in Λ_4 .

This completes the proof of Theorem 15. By combining Theorems 14 and 15 we obtain:

THEOREM 22. There is a unique way (up to isometry) of arranging 196560 nonoverlapping unit spheres in \mathbb{R}^{24} so that they all touch another unit sphere.

5. Uniqueness of the code of size 4600 in Ω_{23} .

THEOREM 23. If C is a (23, M, 1/3) code then $M \leq 4600$.

Proof. Use $f(t) = (t + 1)(t + 1/3)^2 t^2 (t - 1/3)$.

THEOREM 24. If (a) C is a (23,4600, 1/3) code then (b) C is a tight spherical 7-design in Ω_{23} , (c) C carries a 4-class association scheme, (d) the intersection numbers of this association scheme are uniquely determined,

and (e) the distance distribution of C with respect to any $\mathbf{u} \in C$ is given by

$$A_{1}(\mathbf{u}) = A_{-1}(\mathbf{u}) = 1,$$

$$A_{1/3}(\mathbf{u}) = A_{-1/3}(\mathbf{u}) = 891,$$

$$A_{0}(\mathbf{u}) = 2816.$$

Conversely (b) implies (a), (c), (d) and (e).

For example the (23, 4600, 1/3) code given in Example 3 has properties (a)-(e). Conversely we have:

THEOREM 25. If C is a tight spherical 7-design in Ω_{23} there is an orthogonal transformation mapping C onto the (23, 4600, 1/3) code obtained from the Leech lattice.

Proof. As in the proof of Theorem 11 we embed $C = {\mathbf{u}_1, \ldots, \mathbf{u}_{4600}}$ in \mathbf{R}^{24} , choosing **0** so that $\not\preceq \mathbf{u}_i \mathbf{OP} = \pi/3$ for all *i* (cf. Fig. 1). Then

 $\cos \not \leq \mathbf{u}_i \mathbf{O} \mathbf{u}_j \in \{-\frac{1}{2}, 0, \frac{1}{4}, \frac{1}{2}, 1\}.$

Let *L* be the even integral lattice in \mathbb{R}^{24} spanned by the vectors $\sqrt{3} \mathbf{Ou}_i$. For convenience we set $\mathbf{U}_i = \sqrt{3} \mathbf{Ou}_i$.

LEMMA 26. The minimum norm (\mathbf{v}, \mathbf{v}) for $\mathbf{v} \in L$, $\mathbf{v} \neq \mathbf{0}$, is 4.

Proof. Suppose $\mathbf{v} \in L$ with $(\mathbf{v}, \mathbf{v}) = 2$, and write $\mathbf{v} = \mathbf{v}' + \mathbf{v}''$ with $\mathbf{v}' || \mathbf{OP}, \mathbf{v}'' \perp \mathbf{OP}, |\mathbf{v}'| = y, |\mathbf{v}''| = \sqrt{2 - y^2}$, and $\mathbf{U}_i = \mathbf{U}_i' + \mathbf{U}_i''$ with $\mathbf{U}_i' || \mathbf{OP}, \mathbf{U}_i' \perp \mathbf{OP}, |\mathbf{U}_i'| = 1, |\mathbf{U}''| = \sqrt{3}$. Then

$$(\mathbf{U}_{i},\mathbf{v}) = (\mathbf{U}_{i}',\mathbf{v}') + (\mathbf{U}_{i}'',\mathbf{v}'') \in \{0,\,\pm 1,\,\pm 2\},\$$

$$\cos
otin (\mathbf{U}_{i}^{\,\prime\prime},\mathbf{v}^{\prime\prime})\inrac{\{0,\,\pm1,\,\pm2\}-y}{\sqrt{3}\sqrt{2-y^{2}}}$$

Since C is a tight 7-design, the set {cos $\not\preceq$ ($\mathbf{U}_i'', \mathbf{v}''$): $1 \leq i \leq 4600$ } is symmetric about 0. Therefore $y \in \{0, \pm \frac{1}{2}, \pm 1\}$. First suppose y = 0. Then

$$\cos \not\preceq (\mathbf{U}_i'', \mathbf{v}'') \in \left\{-\frac{2}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, 0, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right\}$$

Let these values occur γ , β , α , β , γ times respectively. Then by evaluating the 0th, 2nd and 4th moments of *C* with respect to \mathbf{v}'' , as in the proof of Lemma 16, we obtain the equations

$$\alpha + 2\beta + 2\gamma = 4600 \beta/3 + 4\gamma/3 = 200 \beta/8 + 8\gamma/9 = 24,$$

which imply $\gamma = -14$, an impossibility. Similarly for the other values of y.

LEMMA 27. L contains a sublattice isometric to D_n , for n = 3, 4, ..., 24. Proof. This is similar to the proof of Lemma 20, starting from the fact that if we take $\mathbf{u}_1, \mathbf{u}_2 \in C$ with $\not \perp \mathbf{u}_1 \mathbf{O} \mathbf{u}_2 = \pi/2$, there are 42 vectors $\mathbf{u}_i \in C$ with

 $\not \Delta \mathbf{u}_1 \mathbf{O} \mathbf{u}_i = \not \Delta \mathbf{u}_2 \mathbf{O} \mathbf{u}_i = \pi/3.$

Furthermore the vector $\mathbf{v} = 2\mathbf{OP} \in L$ also satisfies

 $\not \Delta \mathbf{u}_1 \mathbf{O} \mathbf{v} = \not \Delta \mathbf{u}_2 \mathbf{O} \mathbf{v} = \pi/3.$

LEMMA 28. L is isometric to Λ , and C is isometric to the (23, 4600, 1/3) code obtained from the Leech lattice.

Proof. Let L_4 denote the set of minimal vectors in L. From Lemma 27 we may assume that L_4 contains all the vectors $((\pm 4^2 0^{22}))/\sqrt{8}$, and that $\mathbf{v} = 2\mathbf{OP}$ is $(440...0)/\sqrt{8}$. As in Lemma 21 it follows that the vectors in L_4 have the form $((\pm 2)^{80^{16}})/\sqrt{8}$, $((\pm 4^{2}0^{22})/\sqrt{8}$, and $((\pm 1)^{23}(\pm 3)^1)/\sqrt{8}$. Furthermore the vectors U_i begin $(22...)/\sqrt{8}$, $(40...)/\sqrt{8}, (04...)/\sqrt{8}, (31...)/\sqrt{8}, \text{ or } (13...)/\sqrt{8}.$ The code \mathscr{C} is defined as in Lemma 21: it is a linear code of minimum distance 8 containing at most 2^{12} codewords. The zero codeword corresponds to the vectors \mathbf{U}_i beginning $(40...)/\sqrt{8}$ or $(04...)/\sqrt{8}$, and there are at most $2 \cdot 2 \cdot 22$ of them. The codewords of weight 8 beginning $11 \dots$ correspond to the vectors \mathbf{U}_i beginning $(22...)/\sqrt{8}$. The number of such codewords is at most 77 ([18, Fig. 3, p. 688]), and there are at most $2^5 \cdot 77$ corresponding U_i. The remaining U_i come from codewords beginning 10... or 01..., and there are at most $2 \cdot 2^{10}$ of them ([18, Fig. 1, p. 674]). Since $2 \cdot 2 \cdot 22 + 2^5 \cdot 77 + 2 \cdot 2^{10} = 4600$, all the inequalities in the argument must be exact. In particular the codewords of weight 8 beginning 11... must form the unique Steiner system S (3, 6, 22)(cf. [28]), and hence L must be the Leech lattice.

This completes the proof of Theorem 25. By combining Theorem 24 and 25 we obtain:

THEOREM 29. There is a unique way (up to isometry) of arranging 4600 unit spheres in \mathbb{R}^{24} so that they all touch two further, touching, unit spheres.

Acknowledgements. We should like to acknowledge helpful conversations with C. L. Mallows, A. M. Odlyzko and J. G. Thompson.

References

- M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, National Bureau of Standards Applied Math. Series 55 (Washington, DC, U.S. Dept. of Commerce, 1972).
- E. Bannai and R. M. Damerell, *Tight spherical designs*, I, J. Math. Soc. Japan 31 (1979), 199-207.
- 3. Tight spherical designs, II, J. London Math. Soc. 21 (1980), 13-30.
- N. Bourbaki, Groupes et algebras de Lie, Chapitres IV, V, VI, Actualités Scientif. et Indust. 1337 (Hermann, Paris, 1968).
- 5. J. H. Conway, A characterization of Leech's lattice, Inventiones Math. 7 (1969), 137-142.

- R. T. Curtis, A new combinatorial approach to M₂₄, Math. Proc. Camb. Phil. Soc. 79 (1976), 25-41.
- 7. P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Research Reports Supplements 10 (1973).
- 8. P. Delsarte and J.-M. Goethals, Unrestricted codes with the Golay parameters are unique, Discrete Math. 12 (1975), 211-224.
- P. Delsarte, J.-M. Goethals and J. J. Seidel, Spherical codes and designs, Geometriae Dedicata 6 (1977), 363-388.
- J. M. Goethals and J. J. Seidel, Spherical designs, in Relations between combinatorics and other parts of mathematics, Proc. Symp. Pure Math. 34 (Amer. Math. Soc., Providence, Rhode Island, 1979), 255-272.
- W. Jónsson, On the Mathieu groups M₂₂, M₂₃, M₂₄ and the uniqueness of the associated Steiner systems, Math. Zeit. 125 (1972), 193-214.
- 12. G. A. Kabatiansky and V. I. Levenshtein, Bounds for packings on a sphere and in space, Problems of Information Transmission 14, No. 1 (1978), 1-17.
- M. Kneser, Klassenzahlen definiter quadratischer Formen, Archiv der Math. 8 (1957), 241–250.
- 14. J. Leech, Notes on sphere packings, Can. J. Math. 19 (1967), 251-267.
- J. Leech and N. J. A. Sloane, Sphere packing and error-correcting codes, Can. J. Math. 23 (1971), 718–745.
- S. P. Lloyd, Hamming association schemes and codes on spheres, SIAM J. of Math. Analysis 11 (1980), 488-505.
- 17. H. Lüneburg, Transitive Erweiterungen endlicher Permutationsgruppen, Lecture Notes in Math. 84 (Springer-Verlag, New York, 1969).
- F. J. MacWilliams and N. J. A. Sloane, *The theory of error-correcting codes* (North-Holland, Amsterdam, and Elsevier/North-Holland, New York, 1977).
- H.-V. Niemeier, Definite quadratische Formen der Dimension 24 und Diskriminante 1, J. Number Theory 5 (1973), 142–178.
- 20. A. M. Odlyzko and N. J. A. Sloane, New bounds on the number of unit spheres that can touch a unit sphere in n dimensions, J. Combinatorial Theory 26A (1979), 210-214.
- 21. V. Pless, On the uniqueness of the Golay codes, J. Combinatorial Theory 5 (1968), 215-228.
- V. Pless and N. J. A. Sloane, On the classification and enumeration of self-dual codes, J. Combinatorial Theory 18A (1975), 313-335.
- 23. M. Simonnard, Linear programming (Prentice-Hall, Englewood Cliffs, NJ, 1966).
- 24. N. J. A. Sloane, An introduction to association schemes and coding theory in Theory and application of special functions (Academic Press, New York, 1975), 225–260.
- Binary codes, lattices and sphere-packings in Combinatorial surveys Proc. 6th British Combinatorics Conf. (Academic Press, London and New York, 1977), 117-164.
- 26. —— Self-dual codes and lattices, in Relations between combinatorics and other parts of mathematics, Proc. Symp. Pure Math. 34 (Amer. Math. Soc., Providence, Rhode Island, 1979), 273–308.
- 27. R. G. Stanton, The Mathieu groups, Can. J. Math. 3 (1951), 164-174.
- 28. E. Witt, Uber Steinersche Systeme, Abh. Math. Sem. Hamburg 12 (1938), 265-275

Ohio State University, Columbus, Ohio; Bell Laboratories, Murray Hill, New Jersey