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Abstract. The N-soliton solution of a generalised Vakhnenko equation is
found, where N is an arbitrary positive integer. The solution, which is obtained by
using a blend of transformations of the independent variables and Hirota’s method,
is expressed in terms of a Moloney & Hodnett (1989) type decomposition. Different
types of soliton are possible, namely loops, humps or cusps. Details of the different
types of interactions between solitons, including resonant soliton interactions, are
discussed in detail for the case N ¼ 2. A proof of the ‘N-soliton condition’ is given in
the Appendix.

1991 Mathematics Subject Classification. 35Q51.

1. Introduction. In [1] and [2] loop soliton solutions of the nonlinear evolution
equation

@

@x
Du þ u ¼ 0; ð1:1Þ

where

D :¼
@

@t
þ u

@

@x
; ð1:2Þ

hereafter referred to as the Vakhnenko equation (VE), were discussed. The key step
in finding these solutions was to transform the independent variables in (1.1). This
led to an equation that can be expressed in bilinear form in terms of the Hirota D
operator [3]. This equation is a very basic version of Ito’s equation [4, equation (A.1)
with (B.10)]. It was straightforward to find the exact explicit N-soliton solution to
this equation by use of Hirota’s method for a general positive integer N � 2. The
solution was expressed in terms of a decomposition first proposed by Moloney &
Hodnett [5] in the context of the Korteweg-de Vries equation. The exact N loop
soliton solution to the VE was then found in implicit form by means of a transfor-
mation back to the original independent variables.

The aim of the present paper is to consider a more general version of Ito’s
equation, again in terms of the transformed variables. This equation can be trans-
formed back to the original variables to give what we shall call the Generalised
Vakhnenko Equation (GVE). The exact N-soliton solution to the GVE can then be
found in implicit form.

In §2 we summarise the transformation of the VE into an equation in bilinear
form. In §3 we consider the more general version of Ito’s equation and find the
GVE. In §4 we discuss the 1-soliton solution of the GVE and we find that different
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types of soliton are possible, namely loops, humps and cusps. In §5 we find the
N-soliton solution. In §6 we interpret this solution in terms of the dynamics of indi-
vidual solitons and we calculate the shift of each soliton due to its interaction with
the other solitons. In §7 we illustrate our results by considering in detail the case
N ¼ 2. A proof of the ‘N-soliton condition’ is given in the Appendix.

2. Transformation of the Vakhnenko equation. Here we summarise the trans-
formation of the VE into an equation in bilinear form as described in [1].

We introduce new variables X, T defined by

x ¼ �ðX;T Þ :¼ T þ

Z X

�1

UðX 0;T ÞdX 0 þ x0; t ¼ X; ð2:1Þ

where uðx; tÞ ¼ UðX;T Þ, and x0 is a constant. We also introduce W defined by

WX ¼ U ð2:2Þ

and assume that, as jX j ! 1, the derivatives of W vanish and W tends to a
constant.

From (2.1), it follows that

@

@X
¼

@

@t
þ u

@

@x
;

@

@T
¼ ð1þ WTÞ

@

@x
: ð2:3Þ

By using (2.2) and (2.3), we can express (1.1) in terms of our new variables X and T
as

UXT þ U

Z X

�1

UTðX
0;T ÞdX 0 þ U ¼ 0 ð2:4Þ

or equivalently,

WXXT þ WXWT þ WX ¼ 0: ð2:5Þ

By taking

W ¼ 6ðln f ÞX; ð2:6Þ

(2.5) may be written in Hirota bilinear form as

ðDTD3
X þ D2

XÞð f � f Þ ¼ 0: ð2:7Þ

3. The generalised Vakhnenko equation. We can see that (2.7) is a very basic
version of Ito’s equation [4, equation (A.1) with (B.10)]. Now we shall consider a
more general form of Ito’s equation, namely

FðDX;DTÞð f � f Þ ¼ 0; ð3:1Þ
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with

FðDX;DTÞ :¼ DTD3
X þ D2

X þ �DXDT; ð3:2Þ

where � is a free parameter. We shall now transform this equation into the GVE by
reversing the process outlined in §2.

Introducing W as before, and observing that

WX ¼
3D2

X f � f

f 2
; WT ¼

3DXDT f � f

f 2
; and WXXT þ WXWT ¼

3DTD3
X f � f

f 2
; ð3:3Þ

(3.1) with (3.2) may be written as

WXXT þ WXWT þ WX þ �WT ¼ 0 ð3:4Þ

or equivalently in terms of UðX;T Þ as

UXXT þ UUT þ UX

Z X

�1

UTðX
0;T ÞdX 0 þ UX þ �UT ¼ 0: ð3:5Þ

Using (2.3) we can transform (3.5) into the GVE, namely

@

@x
D2u þ

1

2
u2 þ �u

� �
þDu ¼ 0 ð3:6Þ

or equivalently

@u

@x
þD

� �
@

@x
Du þ u þ �

� �
¼ 0: ð3:7Þ

Note that if � ¼ 0, (3.7) can be reduced to the VE given by (1.1) as expected.
For � 6¼ 0 we note that the GVE is not simply

@

@x
Du þ u þ � ¼ 0: ð3:8Þ

This may be explained as follows. Using (2.3), (3.8) becomes

WXXT þ ð1þ WTÞðWX þ �Þ ¼ 0: ð3:9Þ

As noted earlier, we assume that, as jX j ! 1, the derivatives of W vanish. However
this means that (3.8) can only be satisfied for � ¼ 0. Because of this we must take
(3.7) as the GVE to allow � 6¼ 0.

The solution procedure for the GVE is as follows. We solve (3.1) with (3.2) for
f by use of Hirota’s method [3] and hence find WðX;T Þ and UðX;T Þ by using
(2.6) and (2.2) respectively. The solution to the GVE is then given in parametric
form by

uðx; tÞ ¼ Uðt;T Þ; x ¼ �ðt;T Þ; ð3:10Þ
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where

�ðX;T Þ ¼ T þ WðX;T Þ þ x0: ð3:11Þ

4. The one-soliton solution of the generalisedVakhnenko equation. The solution to
(3.1) corresponding to one soliton is given by

f ¼ 1þ e2�; where � ¼ kX � !T þ �; ð4:1Þ

and k, ! and � are constants. The dispersion relation is Fð2k;�2!Þ ¼ 0 from which
we find that ! ¼ k=ð4k2 þ �Þ and then

� ¼ k X � cTð Þ þ � with c ¼ 1=ð4k2 þ �Þ: ð4:2Þ

Note that c can be positive or negative depending on the value of �.
Substitution of (4.1) into (2.6) gives

WðX;T Þ ¼ 6kð1þ tanh �Þ ð4:3Þ

so that

UðX;T Þ ¼ 6k2sech2�: ð4:4Þ

The one-soliton solution to the GVE is given by (3.10) with (4.3) and (4.4). From
(3.11) with v ¼ 1=c we have

x � vt ¼ �vðX � cT Þ þ 6kð1þ tanh½kðX � cT Þ þ ��Þ þ x0: ð4:5Þ

Clearly, from (4.4) and (4.5), UðX;T Þ and x � vt are related by the parameter
X � cT so that uðx; tÞ is a soliton that travels with speed jvj in the positive x-direc-
tion if � > �4k2 and in the negative x-direction if � < �4k2.

From (2.3), (4.3) and (4.4) we can show that

ux ¼ �
UX

v � U
: ð4:6Þ

As X � cT goes from �1 to þ1, UX changes sign once and remains finite. Fur-
thermore

� if �=k2 < �4 or �=k2 > 2, v � U is never zero. Therefore we deduce that u is
hump shaped;

� if �4 < �=k2 < 2, v � U ¼ 0 twice and so ux changes sign 3 times and goes
infinite twice. Therefore we deduce that u is loop shaped. Note that � ¼ 0 lies in this
region and corresponds to the loop soliton solutions of the VE;

� if �=k2 ¼ 2, juxj ! 1 as � ! 0. Therefore we deduce that u is cusp shaped.

Finally, if we require symmetry in X,T-space i.e. UðX;T Þ ¼ Uð�X;�T Þ we take
� ¼ 0 in (4.2) and then, for symmetry in x,t-space, we take x0 ¼ �6k in (3.11).
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Now let us look in more detail at the shape of the loop soliton. Let w be the
maximum width of the loop and H be the height at which this occurs. Note that this
will be when v � U ¼ 0: Furthermore, let h be the height at which the crossover
point occurs. This is all summarised in Figure 1.

It is convenient to introduce q defined by q :¼ �=k2. Hence loops occur for
�4 < q < 2. We shall begin by considering h=uMAX for �4 < q < 2. Since
u ¼ 6k2sech2�, uMAX ¼ 6k2. For simplicity, and without loss of generality, let us
consider the symmetric case, i.e. � ¼ 0 and x0 ¼ �6k, and consider what happens at
t ¼ 0. Hence the crossover point will occur at x ¼ 0. From (4.2), (4.4) and (4.5) the
solution uðx; 0Þ can be expressed in parametric form, with parameter �, as

uð�Þ ¼ 6k2sech2� ð4:7Þ

xð�Þ ¼ �
4k2 þ �

k

� �
�þ 6k tanh �: ð4:8Þ

Suppose x ¼ 0 when � ¼ �1 so that

tanh �1 ¼
2

3
þ

q

6

� �
�1: ð4:9Þ

Hence, from (4.7), when � ¼ �1,

h

6k2
¼ 1�

2

3
þ

q

6

� �2

�21: ð4:10Þ

We solve (4.9) numerically and then plot (4.10) for �4 < q < 2. This is shown in
Figure 2.

We shall now consider H=uMAX and w=k. Once again for simplicity we shall
consider the symmetric case. As already mentioned, to obtain w and H we have to
consider v � U ¼ 0 so that

Figure 1. w, H, and h.
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cosh � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6k2

4k2 þ �

s
: ð4:11Þ

When � satisfies (4.11), u ¼ H ¼ 4k2 þ �. Therefore

H

6k2
¼

2

3
þ

q

6
: ð4:12Þ

Clearly as q ! �4;H=6k2 ! 0 and as q ! 2;H=6k2 ! 1. A plot of H=6k2 is shown
alongside h=6k2 in Figure 2.

Finally, using (4.8) and (4.11), it can be shown that

w

k
¼ �2ð4þ qÞ ln

ffiffiffiffiffiffiffiffiffiffiffi
6

4þ q

s
þ

ffiffiffiffiffiffiffiffiffiffiffi
2� q

4þ q

s !
þ 12

ffiffiffiffiffiffiffiffiffiffiffi
2� q

6

r
: ð4:13Þ

A plot of w=k as given by (4.13) is shown in Figure 3.
We can see from Figures 2 and 3 that for q near �4, h and H are near zero but

the maximum width is at its largest. As q increases both h and H increase and the
maximum width decreases until, at q ¼ 2, h ¼ H ¼ 6k2 and w ¼ 0 as we would
expect since the soliton is no longer a loop but is instead a cusp. All of the above
properties are observed in Figure 4 as we look at the solution for q ¼ �5;�3,
0; 1; 2; 4.

Figure 2. h=6k2 and H=6k2 for �4 < q < 2.
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5. The N-soliton solution of the generalised Vakhnenko equation. The solution to
(3.1) with (3.2) corresponding to N solitons is given by

f ¼
X
�¼0;1

exp



2

�XN
i¼1

�i�i þ
XðNÞ

i<j

�i�j ln bij

��
; where �i ¼ kiX � !iT þ �i; ð5:1Þ

b2ij ¼ �
F ½2ðki � kjÞ;�2ð!i � !jÞ�

F ½2ðki þ kjÞ;�2ð!i þ !jÞ�
; ð5:2Þ

and ki, !i and �i are constants. In (5.1)
P

�¼0;1 means the summation over all pos-
sible combinations of �1 ¼ 0 or 1, �2 ¼ 0 or 1; . . . ; �N ¼ 0 or 1, and

PðNÞ

i<j means the
summation over all possible combinations of N elements under the condition i < j.

(5.1) is a solution to (3.1) provided the ‘N-soliton condition’ holds [3]. In the
Appendix we discuss this condition with F given by (3.2).

With F given by (3.2) the dispersion relations Fð2ki;�2!iÞ ¼ 0 (i ¼ 1; . . . ;N)
give !i ¼ ki=ð4k

2
i þ �Þ and then

�i ¼ kiðX � ciT Þ þ �i with ci ¼ 1=ð4k2
i þ �Þ: ð5:3Þ

Also, without loss of generality, we may take k1 < . . . < kN and then

bij ¼
kj � ki

kj þ ki

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2

i þ 4k2
j � 4kikj þ 3�

4k2
i þ 4k2

j þ 4kikj þ 3�

s
; where i < j: ð5:4Þ

In principle, substitution of (5.1) into (2.6) gives WðX;T Þ. However, following
Moloney & Hodnett [5], it is more convenient to express f in the form

f ¼ hi þ ĥhie
2�i ð5:5Þ

for a given i with 1 � i � N, where

Figure 3. w=k for �4 < q < 2.
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hi ¼
X
�¼0;1

exp



2

�XN
r¼1
ðr 6¼iÞ

�r�r þ
XðNÞ

r<s
ðr 6¼i;s6¼iÞ

�r�s ln brs

��
; ð5:6Þ

ĥhi ¼
X
�¼0;1

exp



2

�XN
r¼1
ðr 6¼iÞ

�r�r þ
XðNÞ

r<s
ðr 6¼i;s6¼iÞ

�r�s ln brs þ
Xi�1

r¼1

�r ln bri þ
XN

r¼iþ1

�r ln bir

��
; ð5:7Þ

and then we may write WðX;T Þ in the form

Figure 4. uðx; tÞ for q ¼ �5;�3; 0; 1; 2; 4.
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W ¼
XN
i¼1

Wi; where Wi ¼ 6kið1þ tanh giÞ and giðX;T Þ ¼ �i þ
1
2 ln



ĥhi

hi

�
: ð5:8Þ

It follows that U may be written

U ¼
XN
i¼1

Ui; where Ui ¼ 6ki
@gi

@X
sech2gi: ð5:9Þ

The N-soliton solution to the GVE is given by (3.10) and (3.11) with (5.8) and (5.9).

6. Discussion of the N-soliton solution. We now interpret the N-soliton solution
found in §5 in terms of individual solitons.

First it is instructive to consider what happens in X,T-space. Introduce
c0 ¼ ci � cj. We must consider when c0 > 0 and c0 < 0. Now

X � cjT ¼ X � ciT þ c0T: ð6:1Þ

Hence for �i fixed (i.e. X � ciT fixed),

�j ! �1 as T ! �1 for c0 > 0;
�j ! �1 as T ! �1 for c0 < 0:


ð6:2Þ

Suppose that vl < 0 but vlþ1 > 0. Then since v1 < v2 < � � � < vN,

vi < 0 for 1 � i � l ð6:3Þ

vi > 0 for l þ 1 � i � N ð6:4Þ

i.e.

v1 < v2 < � � � < vl < 0 < vlþ1 < � � � < vN

so

cl < cl�1 < � � � < c2 < c1 < 0 < cN < cN�1 < � � � < clþ1: ð6:5Þ

Note that if l ¼ 0 then (6.5) yields 0 < cN < � � � < c1 and if we take l ¼ N then (6.5)
yields cN < cN�1 < � � � < c2 < c1 < 0.

To decide whether c0 is positive or negative in (6.1) we must consider the cases
ci > 0 and ci < 0 separately. If ci > 0 then we have

c0 > 0 , i þ 1 � j � N or 1 � j � l

c0 < 0 , l þ 1 � j � i � 1:


ð6:6Þ

and if ci < 0 we have

c0 > 0 , i þ 1 � j � l

c0 < 0 , 1 � j � i � 1 or l þ 1 � j � N:


ð6:7Þ
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Hence from (6.2), (6.6) and (6.7) we obtain for ci > 0,

�j ! �1 as T ! �1 for i þ 1 � j � N or 1 � j � l;
�j ! �1 as T ! �1 for l þ 1 � j � i � 1;


ð6:8Þ

and for ci < 0,

�j ! �1 as T ! �1 for i þ 1 � j � l
�j ! �1 as T ! �1 for 1 � j � i � 1 or l þ 1 � j � N:


ð6:9Þ

We now investigate the asymptotic form of each Ui. First we consider the case where
ci > 0. From (5.6), (5.9) and (6.8) we deduce that with X � ciT fixed and T ! �1

Ui �

6k2
1sech

2�1 if i ¼ 1;

6k2
i sech

2 �i þ
Xi�1

r¼lþ1

ln bri

 !
if 2 � i � N � 1;

6k2
Nsech

2 �N þ
XN�1

r¼lþ1

ln brN

 !
if i ¼ N;

8>>>>>>>><
>>>>>>>>:

ð6:10Þ

and as T ! þ1,

Ui �

6k2
1sech

2 �1 þ
XN
r¼2

ln b1r

 !
if i ¼ 1;

6k2
i sech

2 �i þ
Xl

r¼1

ln bri þ
XN

r¼iþ1

ln bir

 !
if 2 � i � N � 1;

6k2
Nsech

2 �N þ
Xl

r¼1

ln brN

 !
if i ¼ N:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð6:11Þ

Hence it is apparent that, in the limits T ! �1, each Ui may be identified as an
individual soliton moving with speed ci in the positive X-direction (since ci > 0).

Similar calculations for ci < 0 give as T ! �1,

Ui �

6k2
1sech

2 �1 þ
XN

r¼lþ1

ln b1r

 !
if i ¼ 1;

6k2
i sech

2 �i þ
Xi�1

r¼1

ln bri þ
XN

r¼lþ1

ln bir

 !
if 2 � i � N � 1;

6k2
Nsech

2 �N þ
XN�1

r¼1

ln brN

 !
if i ¼ N;

8>>>>>>>>>>><
>>>>>>>>>>>:

ð6:12Þ

and as T ! þ1,
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Ui �

6k2
1sech

2 �1 þ
Xl

r¼2

ln b1r

 !
if i ¼ 1;

6k2
i sech

2 �i þ
Xl

r¼iþ1

ln bir

 !
if 2 � i � N � 1;

6k2
Nsech

2 �Nð Þ if i ¼ N:

8>>>>>>>><
>>>>>>>>:

ð6:13Þ

Hence this time it is apparent that, in the limits T ! �1, each Ui may be identified
as an individual soliton moving with speed jcij in the negative X-direction (since
ci < 0). Recall that in (6.10), (6.11), (6.12) and (6.13) l is found from cl < 0 and
clþ1 > 0.

The shifts, �i, of the solitons in the positive X-direction due to the interactions
between the N solitons can be found from

�i ¼

h
X � ciT

iT!þ1

T!�1
: ð6:14Þ

Hence, for ci > 0 (and so l < i), we have

�i �

�
1

k1

XN
r¼2

ln b1r if i ¼ 1;

�
1

ki

Xl

r¼1

ln bri �
Xi�1

r¼lþ1

ln bri þ
XN

r¼iþ1

ln bir

 !
if 2 � i � N � 1;

�
1

kN

Xl

r¼1

ln brN �
XN�1

r¼lþ1

ln brN

 !
if i ¼ N;

8>>>>>>>>>>><
>>>>>>>>>>>:

ð6:15Þ

and, for ci < 0 (so that l þ 1 > i) we have

�i �

�
1

k1

Xl

r¼2

ln b1r �
XN

r¼lþ1

ln b1r

 !
if i ¼ 1;

1

ki

Xi�1

r¼1

ln bri �
Xl

r¼iþ1

ln bir þ
XN

r¼lþ1

ln bir

 !
if 2 � i � N � 1;

1

kN

XN�1

r¼1

ln brN if i ¼ N:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð6:16Þ

Now let us consider what happens in x,t-space. From (3.11) with vi ¼ 1=ci we
have

x � vit ¼ �viðX � ciT Þ þ WðX;T Þ þ x0: ð6:17Þ

Note that in (6.10) and (6.11), taking the limits T ! �1 with X � ciT fixed is
equivalent to taking the limits X ! �1 with X � ciT fixed and from (6.12) and
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(6.13), taking the limits T ! �1 with X � ciT fixed is equivalent to taking the
limits X ! �1 with X � ciT fixed. Also note that X ¼ t from (2.1). Accordingly
from (6.10)–(6.13) and (6.17), with a given i, we see that in the limits t ! �1 with
X � ciT fixed, UiðX;T Þ and x � vit are related by the parameter X � ciT. It follows
that in the limits t ! �1, ui may be identified as an individual soliton moving with
speed jvij in the positive x-direction if � > �4k2

i and in the negative x-direction if
� < �4k2

i , where uiðx; tÞ ¼ UiðX;T Þ.
The shifts, i, of the solitons ui in the positive x-direction due to the interaction

between the N solitons are defined by

i ¼

h
x � vit

it!þ1

t!�1
; ð6:18Þ

so that

i ¼ signðviÞ

h
x � vit

iT!þ1

T!�1
: ð6:19Þ

In order to calculate the shifts i, we have to consider the cases vi > 0 and vi < 0
separately. First let us consider the case where vi > 0. From (6.10), as T ! �1,
Ui ! Uimax ¼ 6k2

i where

X � ciT ¼

�
�1

k1
if i ¼ 1;

�
�i

ki
�

1

ki

Xi�1

r¼lþ1

ln bri if 2 � i � N � 1;

�
�N

kN
�

1

kN

XN�1

r¼lþ1

ln brN if i ¼ N:

8>>>>>>>>>><
>>>>>>>>>>:

ð6:20Þ

Hence from (5.8) and (6.17) we obtain,

h
x � vit

i
T!�1

¼

4k2
1 þ �

� ��1

k1
þ 6k1 þ x0 if i ¼ 1;

4k2
i þ �

� � �i

ki
þ

1

ki

Xi�1

r¼lþ1

ln bri

 !

þ6ki þ 12
Xi�1

r¼lþ1

kr þ x0 if 2 � i � N � 1;

4k2
N þ �

� � �N

kN
þ

1

kN

XN�1

r¼lþ1

ln brN

 !

þ6kN þ 12
XN�1

r¼lþ1

kr þ x0 if i ¼ N:

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

ð6:21Þ

From (6.11) as T ! þ1, Ui ! Uimax ¼ 6k2
i where
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X � ciT ¼

�
�1

k1
�

1

k1

XN
r¼2

ln b1r if i ¼ 1;

�
�i

ki
�

1

ki

Xl

r¼1

ln bri �
1

ki

XN
r¼iþ1

ln bir if 2 � i � N � 1;

�
�N

kN
�

1

kN

Xl

r¼1

ln brN if i ¼ N:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð6:22Þ

From (5.8) and (6.17) we obtain

h
x � vit

i
T!þ1

¼

4k2
1 þ �

� � �1

k1
þ

1

k1

XN
r¼2

ln b1r

 !

þ6k1 þ 12
XN
r¼2

kr þ x0 if i ¼ 1;

4k2
i þ �

� � �i

ki
þ

1

ki

Xl

r¼1

ln bri þ
1

ki

XN
r¼iþ1

ln bir

 !

þ6ki þ 12
Xl

r¼1

kr þ 12
XN

r¼iþ1

kr þ x0 if 2 � i � N � 1;

4k2
N þ �

� � �N

kN
þ

1

kN

Xl

r¼1

ln brN

 !

þ6kN þ 12
Xl

r¼1

kr þ x0 if i ¼ N:

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð6:23Þ

Therefore, from (6.19) we can calculate the shifts in the positive x-direction for
vi > 0. For i ¼ 1 we obtain

1 ¼
1

k1
4k2

1 þ �
� �XN

r¼2

ln b1r þ 12
XN
r¼2

kr; ð6:24Þ

for 2 � i � N � 1 we obtain

i¼
1

ki
4k2

i þ �
� � Xl

r¼1

ln bri �
Xi�1

r¼lþ1

ln bri þ
XN

r¼iþ1

ln bir

 !
þ 12

Xl

r¼1

kr �
Xi�1

r¼lþ1

kr þ
XN

r¼iþ1

kr

 !
;

ð6:25Þ

and for i ¼ N we obtain

N ¼
1

kN
4k2

N þ �
� � Xl

r¼1

ln brN �
XN�1

r¼lþ1

ln brN

 !
þ 12

Xl

r¼1

kr �
XN�1

r¼lþ1

kr

 !
: ð6:26Þ

In (6.24)–(6.26) 0 � l � i � 1.
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Note that if we put � ¼ 0 and l ¼ 0 in (6.24)–(6.26) we get the results obtained
for the ordinary Vakhnenko equation [2, equations (4.8), (4.9) and (4.10)].

By performing similar calculations we can calulate the shifts in the positive
x-direction for vi < 0. For i ¼ 1 we obtain

1 ¼
1

k1
4k2

1 þ �
� � XN

r¼lþ1

ln b1r �
Xl

r¼2

ln b1r

 !
þ 12

XN
r¼lþ1

kr �
Xl

r¼2

kr

 !
; ð6:27Þ

for 2 � i � N � 1 we obtain

i ¼
1

ki
4k2

i þ �
� � Xi�1

r¼1

ln bri �
Xl

r¼iþ1

ln bir þ
XN

r¼lþ1

ln bir

 !
þ 12

Xi�1

r¼1

kr �
Xl

r¼iþ1

kr þ
XN

r¼lþ1

kr

 !
;

ð6:28Þ

and for i ¼ N we obtain

N ¼
1

kN
4k2

N þ �
� �XN�1

r¼1

ln brN þ 12
XN�1

r¼1

kr: ð6:29Þ

In (6.27)–(6.29) i � l � N.
Finally we note that, for the interactions to be centred at X ¼ 0 and T ¼ 0 in

X,T-space, we require

�1 ¼ �
1

2

XN
r¼2

ln b1r; ð6:30Þ

�i ¼ �
1

2

�Xi�1

r¼1

ln bri þ
XN

r¼iþ1

ln bir

�
2 � i � N � 1; ð6:31Þ

�N ¼ �
1

2

XN�1

r¼1

ln brN; ð6:32Þ

and then, for the interactions to be centred at x ¼ 0 and t ¼ 0 in x,t-space, we
require

x0 ¼ �6
XN
r¼1

kr: ð6:33Þ

7. Example: N=2. We shall now consider in detail the case N ¼ 2.
For N ¼ 2, (5.1) gives

f ¼ 1þ e2�1 þ e2�2 þ b2e2ð�1þ�2Þ; ð7:1Þ
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where

�i ¼ kiðX � ciT Þ þ �i; with ci ¼ 1=ð4k2
i þ �Þ; ði ¼ 1; 2Þ ð7:2Þ

and

b2 :¼ b212 ¼ �
F ½2ðk2 � k1Þ;�2ð!2 � !1Þ�

F ½2ðk2 þ k1Þ;�2ð!2 þ !1Þ�
: ð7:3Þ

Without loss of generality we choose k1 < k2 and obtain

b :¼ b12 ¼
k2 � k1

k2 þ k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2

1 þ 4k2
2 � 4k1k2 þ 3�

4k2
1 þ 4k2

2 þ 4k1k2 þ 3�

s
: ð7:4Þ

Next, from (5.8)

W ¼ W1 þ W2; where Wi ¼ 6kið1þ tanh giÞ ð7:5Þ

and

g1ðX;T Þ ¼ �1 þ
1

2
ln

1þ b2e2�2

1þ e2�2


 �
; g2ðX;T Þ ¼ �2 þ

1

2
ln

1þ b2e2�1

1þ e2�1


 �
: ð7:6Þ

Hence

U ¼ U1 þ U2; where Ui ¼ 6ki
@gi

@X
sech2gi: ð7:7Þ

The shifts 1 and 2 of u1 and u2, respectively, in the positive x-direction due to
the interaction between the two solitons can be calculated from (6.24), (6.26), (6.27)
and (6.29) with N ¼ 2. However for the case N ¼ 2 we can express the shifts in the
more convenient form

1 ¼ signðv2Þ
1

k1
4k2

1 þ �
� �

ln b þ 12k2


 �
ð7:8Þ

and

2 ¼ signðv1Þ �
1

k2
4k2

2 þ �
� �

ln b � 12k1


 �
: ð7:9Þ

7.1. Types of solitons. For convenience, we shall introduce the ratios

s ¼
�

k2
2

and r ¼
k1

k2
: ð7:10Þ

Note that since 0 < k1 < k2, 0 < r < 1. We cannot have s ¼ �4r2 or s ¼ �4, as this
would result in c1 or c2 being infinite respectively. Also we must have b2 > 0.

From §4 we expect u1 to be a loop if �4r2 < s < 2r2, a cusp if s ¼ 2r2 and a
hump shape otherwise. Similarly u2 will be a loop if �4 < s < 2, a cusp if s ¼ 2 and
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a hump shape otherwise. Also v1 < 0 if s < �4r2 and v1 > 0 if s > �4r2, and v2 < 0
if s < �4 and v2 > 0 if s > �4.

Different types of soliton solution are possible; these are summarised below.
1. If s < �4 both u1 and u2 are hump shaped with v1 < 0 and v2 < 0.
2. If �4 < s < �4r2 then u1 is hump shaped with v1 < 0 and u2 is a loop with

v2 > 0. An example of this is shown in Figure 5 where we have r ¼ 0:45 and s ¼ �1.
Here v1 ¼ �0:19 and v2 ¼ 3 and it can be observed that 1 > 0 and 2 < 0. In fact,
from (7.8) and (7.9) we obtain 1 ¼ 13:65 and 2 ¼ �6:34.

3. If �4r2 < s < 2r2 then both u1 and u2 are loops with v1 > 0 and v2 > 0. An
example of this is shown in Figure 6 where we have r ¼ 0:5 and s ¼ �0:75. Here
v1 ¼ 0:25 and v2 ¼ 3:25 and it can be observed that 1 > 0 and 2 > 0. In fact, from
(7.8) and (7.9) we obtain 1 ¼ 10:99 and 2 ¼ 0:57.

4. If s ¼ 2r2 then u1 is a cusp with v1 > 0 and u2 is a loop with v2 > 0.
5. If 2r2 < s < 2 then u1 is hump shaped with v1 > 0 and u2 is a loop with

v2 > 0. An example of this is shown in Figure 7 where we have r ¼ 0:6 and s ¼ 1.
Here v1 ¼ 2:44 and v2 ¼ 5 and it can be observed that 1 > 0 and 2 > 0. In fact,
from (7.8) and (7.9) we obtain 1 ¼ 5:17 and 2 ¼ 1:19.

6. If s ¼ 2, u1 is a hump with v1 > 0 and u2 is a cusp with v2 > 0.
7. If s > 2 both u1 and u2 are hump shaped with v1 > 0 and v2 > 0.

7.2. Resonant soliton interactions. Here we shall closely follow the work of
Mussette, Lambert and Decuyper [6], in the context of the second modified reg-
ularised long wave equation, by investigating the resonant solutions on the bound-
ary curves of the segment of s,r-space in which b2 < 0.

If we label Dð0;� 4
3Þ;Að12 ;�1Þ;Bð1;� 4

3Þ and Pð1;�4Þ then the upper curve,
where b2 ¼ 0, is given byDAB and the lower curve, where 1=b2 ¼ 0, is given byDP, as

Figure 5. The interaction process for r ¼ 0:45 and s ¼ �1.
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shown in Figure 8. From (7.4), on curve DAB s ¼ � 4
3 r2 � r þ 1
� �

and on curve DP
s ¼ � 4

3 r2 þ r þ 1
� �

.
We shall begin by considering what happens in X,T-space. On DAB b2 ¼ 0 and

so, from (7.3),

F ½2ðk2 � k1Þ;�2ð!2 � !1Þ� ¼ 0 ð7:11Þ

Figure 7. The interaction process for r ¼ 0:6 and s ¼ 1.

Figure 6. The interaction process for r ¼ 0:5 and s ¼ �0:75.
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and on DP 1=b2 ¼ 0 and so, once again from (7.3),

F ½2ðk2 þ k1Þ;�2ð!2 þ !1Þ� ¼ 0: ð7:12Þ

We introduce

k�
R :¼ k2 � k1 ð7:13Þ

and

!�
R :¼ !2 � !1: ð7:14Þ

so that (7.11) and (7.12) become

F ½2k�
R;�2!�

R � ¼ 0 ð7:15Þ

and so

!�
R ¼

k�
R

4ðk�
RÞ

2
þ �

: ð7:16Þ

We also define

��R :¼ k�
RX � !�

RT þ ��
R; ð7:17Þ

where ��
R :¼ �2 � �1 and so

��R ¼ �2 � �1: ð7:18Þ

Furthermore

c�R :¼
!�

R

k�
R

¼
1

4ðk�
RÞ

2
þ �

ð7:19Þ

but c�R 6¼ c2 � c1.

Figure 8. The segment of s,r-space where b2 < 0.
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We can now look at the solutions on the two curvesDAB and DP separately.
First, let us investigate the solution onDAB. OnDAB b2 ¼ 0 and so, from (7.1),

the solution to (3.1) is

f ¼ 1þ e2�1 þ e2�2 : ð7:20Þ

Hence, from (2.6) and (7.20),

W ¼
12 k1e

2�1 þ k2e
2�2

� �
1þ e2�1 þ e2�2

: ð7:21Þ

It is also useful to express W in terms of k1; k�
R; �1 and ��R as

W ¼
12 k1e

2�1 ð1þ e2�
�
R Þ þ k�

Rðe
2��R e2�1 Þ

� �
1þ e2�1 ð1þ e2�

�
R Þ

; ð7:22Þ

or in terms of k2; k�
R; �2 and ��R as

W ¼
12 k2e

2�2ð1þ e�2��R Þ � k�
Rðe

2�2e�2��R Þ
� �

1þ e2�2ð1þ e�2��
R Þ

: ð7:23Þ

We want to find a solution for U as T ! �1. To do this we consider the
behaviour of W as T ! �1 with each of �1, �2 and ��R fixed in turn (i.e. fix X � c1T,
X � c2T and X � c�RT respectively). In order to do this we must order the speeds c1,
c2 and c�R and it turns out that we have to breakDAB into DA andAB and consider
these two cases separately.

On DA; 0 < r < 1
2 and k1 < k�

R < k2. Consequently, we can show that

c1 < 0 < c2 < c�R < jc1j: ð7:24Þ

We can now describe the behaviour of �j with �i fixed as T ! �1. This is sum-
marised in Table 1. From the results in Table 1 together with (7.21), (7.22) and
(7.23) we can describe the behaviour of W as T ! �1 with �i fixed. This is sum-
marised in Table 2. Hence we can deduce that as T ! �1,

W �
12k2e

2�2

1þ e2�2
ð7:25Þ

Table 1: The behaviour of �j with �i fixed as T ! ±1 on DA

T ! �1 T ! þ1

�1 fixed �2 ! þ1 �2 ! �1
��R ! þ1 ��R ! �1

�2 fixed �1 ! �1 �1 ! þ1
��R ! þ1 ��R ! �1

��R fixed �1 ! �1 �1 ! þ1
�2 ! �1 �2 ! þ1
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and, as U ¼ WX, we obtain, as T ! �1,

U � 6k2
2sech

2�2: ð7:26Þ

Next, as T ! þ1,

W �
12k1e

2�1

1þ e2�1
þ
12k�

Re2�
�
R

1þ e2�
�
R

ð7:27Þ

and so

U � 6k2
1sech

2�1 þ 6ðk�
RÞ

2sech2��R : ð7:28Þ

This solution describes the decay of one soliton travelling with speed c2 in the posi-
tive x-direction into two solitons, one moving with speed c�R in the positive x-direc-
tion and the other moving with speed jc1j in the negative x-direction.

At this point we note that (3.1) with (3.2) is invariant under the transformation

X ! �X; T ! �T: ð7:29Þ

As a consequence of this there are two solutions to (3.1) with (3.2) and hence two
solutions of the GVE. Off the resonance curves both solutions are the same. How-
ever on the resonance curves the two solutions are different. On DA, the second
solution is, as T ! �1,

U � 6k2
1sech

2�1 þ 6ðk�
RÞ

2sech2��R ð7:30Þ

and as T ! þ1

U � 6k2
2sech

2�2: ð7:31Þ

This solution describes the fusion of two solitons, one moving with speed jc1j in the
negative x-direction and the other moving with speed c�R in the positive x-direction,
into one soliton moving with speed c2 in the positive x-direction. Clearly, the
two solutions obtained on DA are the reverse of each other.

We now investigate the solution on AB. On AB 1
2 < r < 1 and k�

R < k1 < k2 so
we can show that

c�R < 0 < c2 < c1 < jc�R j: ð7:32Þ

Table 2: The behaviour of W with �i fixed as T ! ±1 on DA

T ! �1 T ! þ1

�1 fixed W ! 12k2 W ! 12k1e
2�1

1þ e2�1

�2 fixed W ! 12k2e
2�2

1þ e2�2
W ! 12k1

��R fixed W ! 0 W ! 12 k1 þ
k�

Re2�
�
R

1þ e2�
�
R

� �

84 A. J. MORRISON AND E. J. PARKES

https://doi.org/10.1017/S0017089501000076 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089501000076


Using (7.32) we can perform similar calculations to those on DA to obtain the two
solutions on AB. One solution is

T ! �1 : U � 6k2
1sech

2�1 þ 6ðk�
RÞ

2sech2��R;

T ! þ1 : U � 6k2
2sech

2�2;

9=
; ð7:33Þ

and the other, obtained by the transformation (7.29), is

T ! �1 : U � 6k2
2sech

2�2;

T ! þ1 : U � 6k2
1sech

2�1 þ 6ðk�
RÞ

2sech2��R :

9=
; ð7:34Þ

We now investigate the solution on DP. On DP 0 < r < 1 and k1 < k2 < kþ
R .

Consequently,

c1 < 0 < cþR < c2 < jc1j: ð7:35Þ

If we introduce the transformations �1 ¼ �0
1 and �2 ¼ �0

2 � ln b then

�1 ¼ k1ðX � c1T Þ þ �0
1 ¼: �01 ð7:36Þ

and

�2 ¼ k1ðX � c2T Þ þ �0
2 � ln b ¼: �02 � ln b: ð7:37Þ

Therefore from (7.1),

f ¼ 1þ e2�
0
1 þ e2ð�

0
2
�ln bÞ þ b2e2ð�

0
1
þ�0

2
�ln bÞ

¼ 1þ e2�
0
1 þ e2�

þ0
R ; ð7:38Þ

where 1=b2 ¼ 0, �þ0
R ¼ kþ

RðX � cþRT Þ þ �þ0
R and �þ0

R ¼ �0
2 þ �0

1. If we compare (7.38)
and (7.35) with (7.20) and (7.24) we can obtain the solution on DP by the same
analysis without repeating all the details. As a result, we conclude that a solution on
DP is given by

T ! �1 : U � 6ðkþ
RÞ

2sech2�þ0
R ;

T ! þ1 : U � 6k2
1sech

2�01 þ 6k2
2sech

2�02:

9=
; ð7:39Þ

Similarly, if we repeat the above with �1 ¼ �0
1 � ln b and �2 ¼ �0

2 and compare to
(7.20) and (7.32) we obtain the second solution on DP, namely

T ! �1 : U � 6k2
1sech

2�01 þ 6k2
2sech

2�02;

T ! þ1 : U � 6ðkþ
RÞ

2sech2�þ0
R :

9=
; ð7:40Þ

Note that if we used the transformation X ! �X; T ! �T in (7.39) we would
obtain the second solution (7.40).
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We can now discuss the solutions obtained on the resonance curves in x,t-space.
This is best represented pictorially. On DA, the two solutions in the x,t-space are
represented pictorially by Figure 9. On AB, the two solutions in x,t-space are shown
in Figure 10 and on DP the two solutions are shown in Figure 11. As can be seen
from Figure 9, Figure 10 and Figure 11 the two solutions on each of the three curves
all have the same form. One solution consists of a large fast loop moving in the
positive x-direction and a small slow hump moving in the negative x-direction fusing
together to form a medium sized loop travelling with intermediate speed in the
positive x-direction. The other solution is the reverse of this, namely a medium sized
loop travelling with intermediate speed in the positive x-direction splitting into a

Figure 11. uðx; tÞ on DP.

Figure 9. uðx; tÞ on DA.

Figure 10. uðx; tÞ on AB.
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small slow hump travelling in the negative x-direction and a large fast loop travel-
ling in the positive x-direction.

An example of solution 1 on DA is shown in Figure 12. In this example r ¼ 0:4,
s ’ �1:0133, v1 ¼ �0:37, v2 ¼ 2:99 and v�R ¼ 0:43. An example of solution 1 on AB
is shown in Figure 13. In this example r ¼ 0:55, s ’ �1:0033, v1 ¼ 0:21, v2 ¼ 3 and
v�R ¼ �0:19. These two examples illustrate the two different types of interactions
observed on the resonance curves.

8. Conclusion. We have found the N-soliton solution to the GVE by using a
blend of transformations and Hirota’s method.

We are currently investigating the N-soliton solution of the following nonlinear
evolution equation

@

@x
D2u þ

1

2
pu2 þ �u

� �
þ qDu ¼ 0; ð8:1Þ

where p; q and � are free parameters. This equation, when transformed into X,T-
space, can be expressed as the following version of the well known shallow water
wave equation

Figure 12. The interaction process on DA for r ¼ 0:4.
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UXXT þ pUUT � qUX

Z 1

X

UTdX 0 þ �UT þ qUX ¼ 0: ð8:2Þ

Hirota and Satsuma [7] have shown that this equation is integrable when p ¼ q or
p ¼ 2q. The case p ¼ q ¼ 1 gives the GVE, however the case p ¼ 2q is new and it is
this case which is currently under investigation.

Appendix. The N-soliton condition. For there to be an N-soliton solution (NSS)
to (3.1) with Nð� 1Þ arbitrary, FðDX;DTÞ must satisfy the ‘N-soliton condition’
(NSC) [3], namely

GðnÞðp1; . . . ; pnÞ ¼ 0; n ¼ 1; 2; . . . ;N; ðA:1Þ

where

Gð1Þðp1Þ :¼ 0 ðA:2Þ

and, for n � 2,

GðnÞðp1; . . . ; pnÞ :¼ C
X
�¼�1

�
F

�Xn

i¼1

�ipi;
Xn

i¼1

�i�i

�YðnÞ
i>j

Fð�ipi � �jpj; �i�i � �j�jÞ�i�j


:

ðA:3Þ

Figure 13. The interaction process on AB for r ¼ 0:55.
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In (A.3) the �i are given in terms of the pi by the dispersion relations Fðpi;�iÞ ¼ 0
(i ¼ 1; . . . ;N),

P
�¼�1 means the summation over all possible combinations of

�1 ¼ �1, �2 ¼ �1; . . . ; �n ¼ �1, and C is a function of the pi that is independent of
the summation indices �1; . . . ; �n.

From (A.2) it follows that (A.1) is satisfied for n ¼ 1. If Fðp;�Þ ¼ Fð�p;��Þ,
which is true of (3.2), then (A.1) is satisfied for n ¼ 2. Hence there is a 2SS. How-
ever, whether or not (A.1) is satisfied for n � 3 depends on the particular form of
Fðp;�Þ.

With F given by (3.2), the dispersion relations give �i ¼ �pi=ððp
2
i þ �Þ and (A.3)

may be written

GðnÞðp1; . . . ; pnÞ :¼
X
�¼�1

� Xn

i¼1

�ipi

 ! Xn

i¼1

�ipi �
Xn

i¼1

�ipi

p2i þ �

 !
�þ

Xn

i¼1

�ipi

 !2
0
@

1
A

2
4

3
5

�
YðnÞ
i>j

ð�ipi � �jpjÞ
2
ðp2i þ p2j � �i�jpipj þ 3�Þ


: ðA:4Þ

In order to prove that the NSC is satisfied, we closely followed the work by Musette
et al in [6]. In [6], the expression for GðnÞ is equivalent to (A.4) with � ¼ �1. When
� < 0, (3.2) may be rescaled to correspond to the case � ¼ �1. However for � > 0,
(3.2) cannot be rescaled to correspond to the case � ¼ �1. Consequently we need to
prove the NSC for general �.

We need the following properties of GðnÞ (as given by (A.4)) for n � 3:

(i) GðnÞðp1; . . . ; pnÞjp1¼0 ¼ 2
Qn

i¼2 p2i ðp
2
i þ 3�ÞGðn�1Þðp2; . . . ; pnÞ,

(ii) GðnÞðp1; . . . ; pnÞjp1¼�p2 ¼24p21ðp
2
1 þ �Þ

Qn
i¼3ðp

2
i � p21Þ

2
½ðp21þp2i þ 3�Þ2�p21p

2
i �

Gðn�2Þðp3; . . . ; pnÞ,

(iii) GðnÞðp1; . . . ; pnÞjp2
1
þp2

2
�p1p2þ3�¼0 ¼ ðp1 � p2Þ

2
ðp21 þ p22 � p1p2 þ 3�Þ

�
Qn

i¼3f½p
2
i þ ðp1 � p2Þ

2
þ 3��2 � p2i ðp1 � p2Þ

2
gGðn�1Þðp1 � p2; p3; . . . ; pnÞ.

Furthermore, because of the � summation in (A.4), GðnÞ is an even, symmetric
function of the pi.

Now consider the polynomial PðnÞ defined by

PðnÞðp1; . . . ; pnÞ :¼
Yn
i¼1

ðp2i þ �ÞGðnÞðp1; . . . ; pnÞ: ðA:5Þ

As already noted, the condition (A.1) is satisfied for n ¼ 1 and n ¼ 2. We now
assume that the condition is satisfied for all n � m � 1, where m � 3; then the
properties of GðnÞ imply that the polynomial PðmÞ may be factorised as follows:

PðmÞðp1; . . . ; pmÞ ¼
Ym
i¼1

p2i

" # YðmÞ

i>j

ðp2i � p2j Þ
2
ðp2i þ p2j þ pipj þ 3�Þðp2i þ p2j � pipj þ 3�Þ

" #

� ~PPðmÞðp1; . . . ; pmÞ ðA:6Þ

where ~PPðmÞ is some polynomial.
From (A.6) the degree of PðmÞ is at least 4m2 � 2m. On the other hand, from

(A.4) and (A.5), the degree of PðmÞ is at most 2m2 þ 2. As 4m2 � 2m > 2m2 þ 2 for
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m � 3, it follows that PðmÞ � 0 and hence GðmÞ � 0. It now follows by induction that
the NSC is satisfied.
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