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Let ψ be a holomorphic mapping of an ^-dimensional analytic space E into

Cn. If ψ is non-degenerate at every point of E, we call the pair (E, <f) a

Rίemann domain. The notion of a Riemann domain is a generalization of the

notion of a concrete Riemann surface. A Riemann domain (E, ψ) is said to

be unramified if ψ is a local homeomorphism, and to be ramified if otherwise.

In the classical theory of functions of several complex variables, most

considerations have been done only on unramified Riemann domains. If we

permit (holomorphic-) algebroidal functional elements in the analytic prolon-

gation, there appears the ramified Riemann domain. Some of the classical

results concerning unramified Rimann domains do not hold for ramified Riemann

domains, and we know very little to what extent the results in the unramified

case can be generalized to the ramified case. The purpose of the present paper

is to investigate some properties of ramified Riemann domains.

In § 1 we recall the notion of analytic spaces and introduce some termi-

nologies for the later use. In §2 a Riemann domain and its boundary are

defined, and their properties are stated. After these preparations we consider

in §3 the holomorphic prolongations of holomorphic functions on a Riemann

domain. As in the unramified case, for a holomorphic function / on a Riemann

domain we can construct canonically the Riemann domain of the maximal

holomorphic prolongation of / or the existence domain of /. Thus we arrive

at the notion of the domain of holomorphy. It is well known that in the

unramified case a domain of holomorphy is characterized by its holomorphic

convexity. However in general cases such characterization is impossible.1*

So we are led to consider a certain condition which is strictly weaker than the

holomorphic convexity, and to prove its sufficiency for a Riemann domain to

be a domain of holomorphy this forms a main result of the present paper and

is given in § 4 Theorem 4.

Received March 5, 1958.
1} Cf. H. Grauert and R. Remmert [8].
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§ 1. Preliminaries

1. In an open set U in the complex affine space Cs of dimension s, a

subset VC.U is an analytic subset of U if V is closed in U and if at each

point xE.V, V is defined as the common zeros of holomorphic functions at x.2)

Let Dχ(U) be the ring of all germs of holomorphic functions at x€=U. For

a point Λ G V, let ΌX(V) be the quotient ring QX(U)/$X(V), where QX(V) is

the ideal of ΌAU) consisting of all germs which are identically zero on V.

If, for every point Λ S V, O*( V) is an integrally closed integral domain, V is

said to be a normal analytic subset of U. For two normal analytic subsets V,

V, a continuous mapping λ: V-» V is called a holomorphic mapping, if the

assignement A* : /-*/°λί/e Dλ U )( V)) defines a ring-homomorphism of Dx<*>( V')

into Dx( V) for every # e V. Further if λ is a homeomorphism of V onto V,

Λ is called a holomorphic isomorphism between V and V.

An analytic space is a connected Hausdorff space E such that E has an

open covering {Δi} where each Δ% is homeomorphic by λi to a normal analytic

subset Vi of an open set in some CSί and, for any pair J, , Jy (ΔiCΛΔj *e <p)>

λjoλΓ1 is a holomorphic isomorphism between λi(ΔiΓ\Δj) and /,(J/

For every point % of an analytic space E, put O*(Zs) = {f°

where F, is a normal analytic subset homeomorphic to Δ t containing x. There

may exist many such J, , but, according to the definition, £)X(E) is determined

uniquely independent of the special choice of Δi. A point xEΞE is called uni-

formisable if ΌX(E) is isomorphic to the ring of all convergent power series in

n complex variables for some n. If all points of E are uniformisable, E is

nothing but a complex manifold. It is known that every point of E possesses

a fundamental system of neighborhoods such that the intersection of each

neighborhood and the set of uniformizable points in E is connected.4) We

define the dimension of an analytic space as the dimension of the (connected)

complex manifold composed of all uniformizable points in it. Also, for any

point x& E, Oχ(E) is canonically isomorphic to the ring of all the germs at x

2> For details in this section, see H. Cartan [4], [5].
3 ) This definition of the analytic space is due to H. Cartan ("espace analytique generale"

in [4], [5]). Recently H. Grauert and R. Remmert have noticed in [9] that this is
equivalent to the definition of "komplexer Raum" in [7].

4 ) Cf. H. Cartan [4] XII and XIII.
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which are continuous and are holomorphic at each uniformizable point.4)

Therefore, the holomorphic function in an analytic space may be defined as

follows: a complex valued function / on an open set Δ in E is holomorphic on

ά if / is continuous on Δ and holomorphic at all uniformizable points in J.

Then the set of all germs of holomorphic functions at χξ=.E coincides with

Ox(E). We can define the notion of a holomorphic mapping, a holomorphic

isomorphism and an analytic subset for analytic spaces. Here it should be

remarked that the whole of non-uniformizable points in an analytic space E of

dimension n forms an at most (n — 2)-dimensional analytic subset of E.o) In

particular each 1-dimensional analytic space is a complex manifold. Analytic

spaces of dimension > 1 have in general so called algebroidal singularities. For

holomorphic functions on an analytic space, the theorem of identity and the

maximum principle hold.

2. Let

( ) ) Ϋ (tv- wo)p~ι + . . . +

be an irreducible distinguished pseudo-polynomial in the complex variable ivt

at the center (Uo,) too), with coefficients holomorphic at (zo)eC 7 1 . Suppose

that all α, ((z)) are holomorphic on a neighborhood H of izo). Let V be the

analytic subset of HxC defined by P((z)t w) = 0. Then V determines a space

V consisting of all irreducible components V[iz)> w) of the germ of V at (U), w),

when {(z)tw) runs over V. Now we shall introduce a topology on V as follows.

A point F(\z), w) of V can be represented as an analytic subset W of NxC for

every sufficiently small neighborhood N of ( a l ε C " , and such W determines a

subset of V* A base of neighborhoods of V\{z)t w) for the topology on V is

defined by the system of all such subsets.6)

Then V is a Hausdorff space and the canonical mappings πf' V-+ V, πn:

V-*H, π — π"oπ''> V-+H are continuous and proper. Denote by d((z)) the

discriminant of P{(z)t w) and by D the analytic subset of H defined by δ((z))

= 0. For abbreviation we call D the discriminant set of P. The mapping π

induces a local homeomorphism of V — π~1(D) onto H—D. Hence V — π~ί(D)

is an ^-dimensional connected complex manifold.

5) Cf. H. Cartan [5] XI §2.
6> For this topology, see H. Cartan [4] XII.
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It can be proved that V is an analytic space and that a continuous function

h on an open set A in V is holomorphic if and only if h is holomorphic on the

complex manifold π~1(D).7) Consequently, the structure of V as an analytic

space is determined by its topological structure and the canonical mapping π:

V-*H. We call the pair (F, π) the Riemann domain of an algebroidal function

P((z), w) = 0 on H. The function / defined by /( V\{Z)> w)) = w for each point

V\[z)t V) £ 7 is holomorphic on V and satisfies the equality P(π(x), fix)) = 0 at

any point xE: V. We call / the holomorphic function associated with an

algebroidal function P((z), iv) - 0.

§ 2. Riemann domains and boundary points

1. Let E and E be two analytic spaces. A holomorphic mapping λ of E

into E is said to be nondegenerate at a point a^E if λ'Hλ(a)) is a discrete

set in E.

DEFINITION 1. Let E be an n dimensional analytic space. If there exists

a holomorphic mapping ψ of E into C'\ which is non degenerate at every point

in E, we call the pair (E,φ) an n-dimensional Riemann domain^ (E,<f) is

said to be unramified if ψ is a local homeomorphism, and to be ramified if

otherwise.

Two Riemann domains (E,φ), (E,<fr) are isomorphic if there exists a

holomorphic isomorphism λ of E onto E such that f = <TΌ;.

The Riemann domain (V\ π) of an algebroidal function P((z), iv) = 0 in

§1,2 is a Riemann domain in our present sense.

Let (E,ψ) be an ^-dimensional Riemann domain. The whole of non-

uniformizable points forms an analytic subset K of E of dimension f= n - 2. In

the complex manifold E-K, the set of all points at which the Jacobian of ψ

vanishes, is a purely (?ι - 1)-dimensional analytic subset A' of E-K. By the

prolongation theorem of analytic subset,9) A' is prolongable to a purely (n-1)-

7> Cf. H. Cartan [5] VII, VIII and also [4] XIII, XIV.
δ> An analytic space E is considered as a Riemann domain if and only if, for every

point flε£, there exists a holomorphic mapping (depending on a) of E into some Ck,
which is non-degenerate at a. Especially Stein manifolds or abstract Riemann surfaces
are considered always as Riemann domains. Cf. H. Grauert [7],

9> Cf. H. Cartan [δ] XII Th. 1.
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dimensional analytic subset A of E. Denote by ψo the restriction of ψ to EQ =

E- iKUA). Then (£Ό, ?o) is an unramiίied Riemann domain. The set JEΌ

lies everywhere dense in E and, for any connected neighborhood Δ of every

point in E, ΔΓ\Eo is connected. We call (J5Ό, ψo) the unramified Riemann domain

associated with (E.ψ).

2. Now we shall prove the following

THEOREM 1. Let (is, φ) be a Riemann domain. Then 1) the space E

satisfies the second countability axiom, and 2) lor any point a^E, there exist a

neighborhood A of a and an irreducible distinguished pseudo-polynomial Pi (z),zv)

at the center iib), 0) {b— ψ(a)) ivith coefficients holomorphic at ( W ε C " such

that the Riemann domain ( J , f Δ ) (<fs tneans the restriction of ψ to Δ) and the

Riemann domain (Vfπ) of the algebroidal function P(iz),w) = 0 ( § 1 , 2 ) are

isomorphic.10'

Proof. 1) Let (Eo, ^Γo) be the unramified Riemann domain associated with

(is, ψ). Since E* is connected, we can show, by the same argument as in the

proof of the classical Poincare-Volterra's theorem, that (f^iVoix)) is a countable

subset of Eo for any point #e£Ό. The set S of all the points of E whose

image by cτ0 have the rational coordinates, is countable and dense in £i, and

hence, in E. Denote by H((z), p) the hypersphere with the radius p around

(z)E:Cn and, for a point i G £ denote by Λ(x, p) the connected component of

φ'HlKψίx), p)) containing x. Then we consider the following countable system

S of open sets in E: 3 = {A(x, P)IXELS, p: positive rational numbers}.

Now let x be a point of an open set Ω in E. Since E is locally compact

and ψ is non-degenerate at Λ GJP, there exists a relatively compact open neighbor-

hood ΔCΩ of x such that <f(x)Φ<f(Δ - Δ). The distance p between the point

(fix) and the closed set f (jf - Δ) is finite and positive. Taking a point # 'e

Λ(xy p/3) ΠS and a rational number p1: p/3 < p' <p/2, we can see that # e ,1 IΛΓ1, ρf)

Ci? and J( .<p ')er . Hence any open set in E is expressed as a union of

open sets in 3. This implies that 3 is a countable base of open sets in E.

2) First we shall remark that there exists an arbitrarily small neighborhood

Δ of a, such that the restriction <f± of <f to Δ is a proper mapping of Δ onto

10) From this it follows that our definition of a Riemann domain is equivalent to that
of "Riemannsches Gebiet" in H. Grauert [7].
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some neighborhood H of (b) = ψ{a) in CH. In fact, since <f is non-degenerate

at a, we can take a relatively compact open neighborhood Δ' of a so that the

image of J ' - Δ' does not contain (b). The set <f(jf - J') is closed subset of

Cn and, hence, there exists a neighborhood H oί (b) containing no point of

<f (ΔΊ - Δ1). Then, as is easily seen, Δ = ψ~1(H)ΠΔf satisfies the desired property.

Moreover, we may suppose that Δ is connected and does not contain any point

of φΉtfia)) except a.

The set A! = Δ - EG is an analytic subset of Δ and the image A = φΛA1)

by the proper mapping φA is an (n- 1)-dimensional analytic subset of H. The

mapping <p± induces locally a holomorphic isomorphism of Δ - (flH A) onto H- A.

As fΔ is proper, the number of points of the set <flι((z)) for any point

(z)eH-A is finite and constant, say p. By the definition of an analytic

space, a sufficiently small neighborhood Δ of a can be considered as a normal

analytic subset of an open set in some Cs{s^n). Accordingly we can construct

a holomorphic function f on Δ vanishing at a and such that, for any pair of

point x, y in Δ - ψlι(A) (x^y, ψΛx) =ψ±(y))> the germs of / at x and y are

different (considered as the germs at φ*(x) = ψΛy) e £ Γ - A).11} For a point

(«)e-ff-i4, the function / determines p functions fj(j = 1, 2, . . . ,p) on the

connected components of <flι{N) where JV is a sufficiently small neighborhood

of (z) in H- A. Their elementary symmetric functions are holomorphic on

N, and they are prolongable to one-valued holomorphic functions aA(z)) (i

= 1, 2, . . . .p) on i 7 - A. As A is an (w — 1)-dimensional analytic subset of H

and ai((z)) are locally bounded, #,-((2)) are also holomorphic on A. H e n c e /

is a zero of the distinguished pseudo-polynomial at the center ((&), 0) with

coefficients holomorphic on H:

For every connected neighborhood Δ' of a in E, Δ9 — φ~ι(A) is connected, so

P((z),w) must be irreducible at ((6),0).

Let (V, π) be the Riemann domain of P((z), w) = 0 and use the same

notations as in § 1, 2. The mapping φA x / : Δ -> H x C ( ( ^ Δ X / ) (ΛΓ) =

^ Δ ( Λ ) , /(ΛΓ)), XELΔ) is a proper and holomorphic mapping of Δ onto F. Thus

we have the following commutative diagram:

111 More precisely, see Lemma in §3,2.
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The discriminant set D(GH) of P((z),w) clearly contains A and, <fZι(D)

and π~ι{D) are in - 1)-dimensional analytic subsets of Δ and V respectively.

Since the restrictions of ψ^xf to Δ - <f~i(D) and of π' to V - π^iD) are

holomorphic isomorphisms into V, we obtain the holomorphic isomorphism 0O

of Δ-ψlι(D) onto V -iz~ι(D). Since ^ x / (resp. rrO is proper and, for each

connected neighborhood J(resp. J') of any point xE:ψlι{D) (resp. x'&π~1(D))

in J(resp. V), Λ-<fZι(D) (resp. J' - 7Γι(D)) is also connected, we can extend

0o to a homeomorphism θ of J onto F such that ^ — z°θ. From a well known

theorem of removable singularities, it follows that 6 is a holomorphic isomor-

phism. That is, the continuous mapping 0(resp. θ'1) on Jlresp. V) is holomor-

phic not only on Δ-ψl\D) (resp. V — π^iD)) but also at every uniformisable

point of Δ (resp. V). q.e.d.

3. In the following considerations the notion of a boundary point of a

Riemann domain plays an impotant role.

DEFINITION 2. A boundary pointl2) of a Riemann domain (E, φ) is a

filterm r = {Λ} in E tvhich consists of open connected subsets of E and satisfies

the folloiving conditions,

1) The image filter (<f(Λ), J G r } of r converges to a point (z)tΞC".

2) For every open neighborhood N of the point iz)&; Cn, the filter r containts

a connected component of <f~ι(N) and consists of only such sets.

3) The filter r has no accumulating point in E.U)

The set of all boundary points of (E, φ) is called the (accessible) boundary

of (E, <p) and denoted by dE. Let us put E=EUdE. The mapping ψ is

extended to a mapping <f : E -* C" by setting &(r) - (z) (r&dE, (z): the

12 > This definition is due to H. Grauert and R. Remmert [8] and is equivalent to that
of "Randpunkt" in H. Behnke and P. Thullen [2] Chapt. I, £3.

13) Here we call "a base of filter" in usual sense "a filter" simply.
U) This means that any directed set determined by r does not converge in E.
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limiting point of the filter {(f-(A)t J £ r } ) . Of course, the boundary BE of

(E, ψ) depends upon φ. Even if (E, ψ) is univalent (i.e. E is an open set in

Cn and <f is the canonical injection of E into Cn\ £, in general, does not

coincide with the closure Έ of E in Cn.

We shall introduce a topology on E which induces on E the same topology

as the original one of E, by defining neighborhoods of every boundary point

r&dE. Let A be an open set in r and let Λ be the union of A and all the

boundary points whose filters contain at least one set contained in A. We

define the system of such sets ϊ(ΛGr) as the base of neighborhoods of r.

Then £ is a locally connected Hausdorff space and <f is continuous for this

topology. Moreover, we have

THEOREM 2. For a Riemann domain (E, φ), the space E =EUdE satisfies

the second count ability axiom.

Proof. Since E satisfies the second countability axiom by Theorem 1, the

number of connected components of <f~1(H((z), p)) is countable for every

hypersphere H({z), p) with radius p around (z)E:Cn. The set $~ι{H({z), p))

has also countable connected components. In fact, the relation ψ"1{H{{z)y p))

Γ\E—ψ~1(H{{z), p)) holds and the intersection of a connected component of

(f'^Hiίz), p)) and E is connected.

Now, consider the countable system S of open sets in E consisting of all

connected components of ψ~1(H((z)J p)) when (z) and p run over the set of

all points with rational coordinates and the set of all positive rational numbers

respectively. Then S is a base of open sets in ΪL, that is, any open set Ω in

E can be expressed as a union of sets in 3. To prove this it suffices to show

that, for every boundary point rGi2, there exists a set A containing r in S such

that JCΩ. As Ω is open, there exists a neighborhood of r contained in Ω.

By the definition of the topology on E, this neighborhood is of type X, where

iGr i.e., J is a connected component of the inverse image by ψ of an open

neighborhood N of f(r)GC". We can take a hypersphere H((z)> p) with the

radius p around a rational point (z)eC / z such that <f(r)&H((z), p) CN. Let

Δ be the connected component of <f~HH((z)> p)) containing r. Then it is easy

to verify that r e J C / ί C i ? and J G S . q.e.d.

From this theorem the subspace dE of E satisfies the second countability*
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axiom for the induced topology. Hence dE is a separable topological space.

Thus we have.

COROLLARY. - There exists a countable dense set in BE.

§ 3. Holomorphic prolongations and domains of holomorphy.

1. Let E, E be analytic spaces and let O(E), D(E') be the rings of all

holomorphic functions on E, E' respectively.

For a given holomorphic mapping λ : E ~> E', we define a mapping /Γ :

O(E')-*O(£) by setting t(f) = f^(f&Q(E')). If λ is an open mapping,

?* is one to one by the theorem of identity.

DEFINITION 3. Let λ : E -* E be a given holomorphic mapping. If a

function / G O (is) belongs to the image of £){Ef) by A* (i.e. there exists a function

fξΞΌ(E') such that f-f'°D. f will be called holomorphically prolongable to E1

tvith respect to λ(f ivill be called a holomorphic prolongation of f to E' ivith

respect to λ).

Let (is, ψ) and (Ef, <f') be two Riemann domains spred over Cn. If there

exists a holomorphic mapping / : E-+E1 such that c = e'°;, we say for con-

venience sake that (is, <f) is contained in (£', ψf). Then, as Λ : E^E1 is non-

degenerate at every point of E, λ is an open mapping. l j ) Hence the holomorphic

prolongation of a holomorphic function on E to E1 is uniquely determined if it

exists.

2. Let (E, <f) be a Riemann domain and l e t / be a holomorphic function

on it given once for all. In the following we shall consider holomorphic prolon-

gations of / to those Riemann domains which contain (E, ψ). In the first

place we prove the following theorem which is a generalization of classical one

for an unramified Riemann domain.16)

THEOREM 3. Let a Riemann domain (E, <f) and a holomorphic function f

on it be given. Then there exists a maximal one in the family of all Riemann

domains containing (E, <f) to which f is holomorphically prolongable. More

15> Cf. R. Remmert [11] Satz 28.
161 Cf. H. Cartan [4] VII. As for this generalization, R. Iwahashi has considered in

[10] more generally for a domain spred on an analytic space using a space of algebroidal
jets,
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precisely toe can canonically construct a Riemann domain (E,<f) with the follow-

ing properties', 1) there exists a holomorphic mapping ψ: E-*E and a holomor-

phic function/ on E such that <f = φ°ψ and f-Z°ψy 2) for every Riemann

domain (E'> <ff) ivith a holomorphic mapping λ : E-*E and a holomorphic

function f on E1, satisfying relations ψ = <floλ, f=f'°λf there exists a holomorphic

mapping ψ1: E -> E so that <f' = <f ° φ\ f =/°φ\ and ψ = ψ'°L

Proof. To construct (E, <f)f we begin with a consideration on the space

X consisting of all germs of analytic subsets of algebroidal functions. For a

point (WeC n and a constant ct we consider an irreducible distinguished pseudo-

polynomial at the center ((&), c) with coefficients holomorphic at (b):

Let V be the analytic subset of HxC defined by P((z), w) =0, H being a

neighborbhood of (£)eC'\ and let V{φh c) be the germ of F a t ((b),c).

Now we shall define the topological space X formed by all such germs

V((6), o at ((£), c) where (b) and c run over Cn and C respectively. The

topology on X is as follows. Suppose that a point V«&>, o&X is defined as

above and (V, π) is the Riemann domain of the algebroidal function P((z), w)

= 0 on H. Then, for each neighborhood N of (b) contained in H, π'^N) may

be considered as a subset of X. The system of such subset defines the base of

neighborhoods of V«6,, c ) for the topology on X So F may be considered as

an open subset of X and the injection of V into X is a homeomorphism. As is

easily seen, X is a Hausdorff space.

Let Φ: X^>Cn be a continuous mapping defined by Φ(V{{b), C)) = (M. By

the mapping Φ we can introduce on the Hausdorff space X a structure of an

analytic space. In fact, for each point V^.cMx, there exists the Riemann

domain (F, π) so that V coincides with an open neighborhood of F<(&)f c>
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including the topological structure, and π coincides with Φ on V. Since the

analytic structure of V is determined uniquely by the topological structure of

V and the mapping π (§1,2), we see by transfering the analytic structure of V

to X that X becomes an analytic space. As Φ is non-degenerate at every

point of X, the pair (X, Φ) is a (non-connected) Riemann domain.

Next we define a holomorphic function F on X by associating the value c

with F((6), c) G X. Then, on the neighborhood Vi{b), o, F coincides with the

holomorphic function associated with the algebroidal function P((z),tv) = 0

(§1,2).

Furthermore, we shall define a holomorphic mapping Ψ of E into X such

that relations ψ = Φ°Ψ and f=F°Ψ hold. For this purpose, it is to be noticed

that on a suitable neighborhood of each point a^E, the given function /

satisfies a polynomial equation P((z), ?v)=0 (i.e. P(<f (x), fix)) = 0 for every

point x in this neighborhood), where P((z)t tv) is an irreductible distinguished

pseudo-polynomial of the center (<ρ(a), /(a)) with coefficients holomorphic at

(b) = (f(a). In fact, taking a suitable connected neighborhood A of a, we see

by Theorem 1 that (J, <p±) is isomorphic to the Riemann domain of an

algebroidal function on a neighborhood H of (b). Hence, for a suitable (n - 1)-

dimensional analytic subset A of H> the number of sheets of Δ — ψ~1(A) over

H-A is finite and constant. As in the proof of Theorem 1, 2), we see that

/satisfies Q((z), iv) = 0 on J, where Q((z), w) is a distinguished pseudo-

polynomial at the center ((b),f(a)) with coefficients holomorphic on H. Then

Q((z), iv) must be some power of an irreducible pseudo-polynomial J?((z, tv)

with coefficients holomorphic at (b), since for any connected sufficiently small

neighborhood Δ' of a, Δ1 -ψ~1(A) is also connected. Let VΉbh /(«)> be the germ

at ((&), /(«)) of the analytic subset defined by P((z), w) =0. By definition,

the mapping ψ: E-+X, associates a&E with the above germ V^th /(«))• It is

easy to verify that Ψ is the required mapping.

Let E be the connected component of X containing the (connected) image

of E by Ψ, let ψ be the holomorphic mapping of E into E determined by Ψy and

let <f, / be the restrictions to E of Φ, F respectively. Then the Riemann

domain (E, <f) and mapping ψ, f satisfy the property 1) in the theorem. As

for 2), we define similarly the holomorphic mapping Ψ\ E'-^X, considering

(£', vr') insted of (2Γ, <f). From the assumption on (£', c'), it follows that
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Ψ{E)CΨ'(E')CECX. Thus we obtain the mapping ψf: E-*E which possesses

the property 2). q.e.d.

3. The Riemann domain (/?,?) constructed as above is called the Riemann

domain of the maximal holomorphic prolongation of f or the existence domain

of f and / i s called the maximal holomorphic prolongation of f.

Suppose that two Riemann domains (E, <f) and (E, <ff) are isomorphic by

λ: Ef-*E. Then the existence domain of a holomorphic function / on E is

isomorphic to the existence domain of the holomorphic function f =f°λ on E.

Hence we can define the notion of a Riemann domain of holomorphy as follows:

DEFINITION 4. Let (E, <f) be a Riemann domain. If there exists a holomor-

phic function f on E such that the existence domain off is canonically isomorphic

to (Ey φ), ive say (Ey ψ) to be a {Riemann) domain of holomorphy}^

§ 4. A sufficient condition for a Riemann domain to be a

domain of holomorphy.

1. Let E be an analytic space and 5 be a family of holomorphic functions

on E. For a compact set K in E, we put

k% = {x&El \f(x) I £ sup 1/00 I for all / e g ) .

Then K% is a closed subset of E. When § consists of all holomorphic functions

on Ey we denote K.% by R simply, and call it the envelope of holomorphy of K.

DEFINITION 5. We say that a Riemann domain (E, φ) satisfies the condition

(Γ) if 1) for every pair of points x} yE:E(x^y ψ(x) = ψ(y) = (z)) there exists a

holomorphic function f on E such that two germs of f at x and y are different

[considered as the germs of algebroidal functions at (z))> and 2) for every

compact set K in E and every boundary point r of (E> ψ), the envelope of

holomorphy K contains no set in the filter defining r.

An analytic space E is said to be holomorphically conuex if, for any com-

pact set K in E, K is again compact. A Riemann domain is holomorphically

convex if the analytic space E is holomorphically convex.

17) In the unramified case it is known that if one, of two Riemann domains {E, φ),
(E\ Φ') with holomorphic isomorphic E, E\ is a domain of holomorphy, so is the other.
But this does not hold in general. Cf. H. Grauert and R. Remmert [8].
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The condition (Γ) is strictly weaker than the holomorphic convexity, in

fact, it is known that if a Riemann domain {E, ψ) is holomorphically convex,

then, for any pair of distinct points x,y&E, there exists a holomorphic function

f on E such that /(x)±rf{y).m Thus, in particular, a holomorphically convex

Riemann domain (E, ψ) satisfies the condition 1) in Definition 5, while it satisfies

clearly the condition 2). Furthermore we can verify that the example in [8]

of a Riemann domain of holomorphy which is not holomorphically convex,

satisfies the condition (Γ). It will be seen later on that in the unramified

case the condition (Γ) is equivalent to the holomorphic convexity.

2. Now we shall prove the following

THEOREM 4. The condition (Γ) (in particular, the holomorphic convexity)

is a sufficient condition for a Riemann domain to be a domain of holomorphy.

Proof. Let (E, ψ) be a Riemann domain. By Corollary of Theorem 2,

there exists a countable dense set S = {ru r2, . . . } in the boundary BE of (E, yO.

Each boundary point r, e S (more precisely the filter defining n) contains an

uniquely determined connected component A)n) of the inverse image by c of a

hypersphere with the radius 1/7 (j: positive integer) around <f(n) (£ : E =

E\JBE-+Cf\ see §2,3). Thus we obtain the sequence of open sets in n:

{Λ{jri)}j=lf 3, . . . . Now, consider the following sequence:

Ari) Ar2) Arx) Λr3) Ar2^ Aro Ar^) f ( r 3 ) Ar2' Arx) f ι ; S ) Art)
A i , A i , A 2 , A i , A 2 , ^ 3 > A\ , A 2 , *•> , A A , J i , A 2 , . . .

and denote by Λk the ^-th term of this sequence.

On the other hand, as E satisfies the second countability axiom (Theorem

1, 1), there exists an increasing sequence {ϋft'}*--i, 2, . . . of compact sets in E

such that E- W/u. Assume that the Riemann domain (£, <f) satisfies the

condition (Γ). Then for each k there exists a point Xk in Λk such that Xk&Kk

Hence the inequality sup \fk\ <\fk(xk)\ holds for some holomorphic function

fk on E. We may suppose fk(xk) = 1. Denoting, if necessary, a suitable power

of fk again by fk, we have

sup \fk\ <2~k for each k.

Then the infinite product Π(l-fk)k converges uniformly on every Kk and
k

18) Cf. H. Grauert [7]
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therefore, it defines a holomorphic function / on E.

The point Xk&Ak is a zero-point of / of order ^k. Consequently, / has

a zero-point of arbitrarily high order in each Λjr/ϊ(fyeS). Let r be an arbitrary

boundary point. Since S is dense in BE, any neighborhood Λ(AE:r) of r in έ

contains a boundary point n&S. From the definition of the topology on έ it

follows that AE:r contains an open set Λ{fι) in n. Therefore we can conclude

that the holomorphic function / has a zero-point of arbitrarily high order in

every open set A in the filter defining each boundary point r of (E, ψ).

Now we use the following lemma which will be proved afterwards.

LEMMA. Suppose that a family # of holomorphic functions on a Riemann

domain (E, φ) satisfies the condition that, for any pair of point x, yE Eixψ y,

φ(x) = φ(y)), there exists a function f in 5 such that the germs of f at x and

y are different. Then there exists a series £ = Σ & hgk (λk- complex numbers,

gkEiftk) convergent uniformly on every compact set in E such that g has different

germs at x and y for any pair x, y such that x ±?y9 fix) = <p(y).

Let us denote by % the family consisting of all the holomorphic functions

on E which are divisible by the above /. Then g satisfies clearly the as-

sumption in Lemma. Hence there exists a holomorphic function g =

gk&iy) on E such that:

(1) the germs of g at x and y are different for any pair of points xy y

(2) the function g has a zero-point of arbitrarily high order in every open

set in the filter defining each boundary point.

Let (E, f) be the existence domain of g and let ψ be the canonical mapping

of E into E. To complete the proof it suffices to show that ψ is an isomorphism

between (is, φ) aud (E, ψ). From the construction of </>(§3,2) and the proper-

ty (1), ψ is clearly an analytic isomorphism into E. The mapping ψ: E-+E

satisfying the relation ψ = <f°ψ, can be extended to the mapping ψ: E{JdE-+

E\JdE in natural way. Then it can be verified that ψ OE)CdE. In fact,

assume that, for a boundary point r&dE, ψ(r) were in E, then g woulddefine

a germ of algebroidal function at ψ(r) = f ( ^ ( r ) i ε C M . Hence, H being a suf-

ficiently small neighborhood of ψ(r) and Λ bein'g the connected component of

ψ~ι(H) belonging to the filter r, the orders of zero-points of g in A would be
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bounded. This contradicts the property (2). The relation ψ(BE)CdE implies

that ψ is an isomorphism of E onto E> for, if there exists a point x in E — ψiE),

a path joining x to a point in ψ(E) would define a boundary point r of (E} <f)

in the sense of Definition 2 such that φ(r)φBE. Thus the theorem has been

proved.

Proof of Lemma. Let (£Ό, ψo) be the unramified Riemann domain associ-

ated with (E, ψ). Then EQ can be covered by a sequence of open sets Δi

(*'= 1, 2, . . . ) which are homeomorphic to some hyperspheres in Cn by ψ0. We

may assume that the system {Δi)i=U2t . . . is a fundamental system of open

sets in £Ό, since Eύ satisfied second countability axiom. It is easily seen from

the assumption on # that, for any couple (Δi,Δj) (ΔiΓλΔj = φ, ψo(Δi)Π<fa(Δj) kψ),

we can choose a couple of points Xij £E 4, xjΊ e= Δj and a function gυ EΞ $

such that ψo(Xij) =ψo(χji) and gij(xij) =gij(xjύ. Arrange the functions #>• in a

simple sequence : glf g2t . . . . On the other hand, E is a union of an increasing

sequence of compact sets Kk(k — 1, 2, . . . ) in E. If the constants λk are chosen

so that sup \λk gk\ ^2~k for each k> the series Σλkgk converges absolutely and

uniformly on every compact set in E. Moreover we can take λk to satisfy the

supplementary condition that ^λk(gkixij) — gk(xji)) ¥ 0 for any couple

(2, j) (Δi Π Δj = 0, ψo( Δi) Π f 0( ̂ 7) ^ 0). In fact, let us consider the linear inequalities

with respect to f*: Σ ^ ( ^ ( ^ y ) - gk(xji)) - 0. Since at least one of their

coefficients is not equal to zero, the countable system of inequalities holds for

ςk=z λk (& = 1, 2, . . . ) with arbitrarily small absolute values. Thus the holo-

morphic function g—'Σλkgk on E has distinct values at x ,j and Xji. For any

pair of points x, y^E^xky ψv(x) = VΛo(v)), there exists a couple (J, , J;) such

that x E 4 3 ? e 4 ΔiΓ\Δj = ψ, ψo(Δi) Π<fo( Δj) -ψ ψ. Then the germs gXi gy of g at

ΛΓ and v are differet since otherwise g would define the same germs at #;/£ J,

and XjiE:Δj by analytic prolongations of #* and g>-. As £Ό is dense in E, the

series g=*Σλk gk satisfies the requirement of our lemma.

Remark. By a theorem of K. Oka19) an unramified Riemann domain of

holomorphy is holomorphically convex, hence satisfies (Γ). Therefore in the

unramified case the holomorphic convexity and the condition (Γ) are equivalent,

and they are both sufficient and necessary conditions for a Riemann domain to

19) Cf. K. Oka [6].
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be a domain of holomorphy.

3. As an application of Theorem 4, we shall remark on the convergence

problem of domains of holomorphy. An ordered pair of Riemann domain

(E, ψ)y (E'y ψf) is said to be a Runge pair if 1) E is an open subset of E and φ'

coincides with ψ on E, 2) any holomorphic function on E is approximated

uniformly on every compact set in E by holomorphic functions on E1.

It is known that for a sequence of holomorphically convex unramified

Riemann domains such that each ordered pair of adjacent terms is a Runge

pair, the limiting (unramified) Riemann domain is holomorphically convex.20)

As a generalization of this result we prove the following.

THEOREM 5. For a sequence {(E^ ^v))v=i,2, . . . of Riemann domains

satisfying (Γ) such that each ordered pair (£>,, y\), (JBv+i, ψ*+ι) is a Runge

pair, the limiting Riemann domain (E9 ψ) satisfies (/'), and hence, is a domain

of holomorphy.

Proof. First, we shall show that, for each vQ the pair (EH, φ*0), (E, φ) is

a Runge pair. Let /Vo be a holomorphic function on 2?vβ

 and let K*o be a com-

pact set in E^o. Take a compact set Kv in Ev for each P^ZΌ such that K*

CZΓV+I(I/^I/O) and 2s= Uv̂ voA'v. As the pair (Z?v, ψ^)t (£v+i, ψ»+i) is a Runge

pair there exists a holomorphic function / v on Ev and |/ v—Λ+il^ε v on Kv for

an arbitrary positive number ev for each P^PI. Consequently the sequence

{/vkg vo converges uniformly every compact set of E to a holomorphic function

f on E and 1/ —Λo! =Σvδvoev holds on ϋΓv0, where Σvsvoβv can be taken arbitrarily

small. This means that /Vo is approximated uniformly on ifVo by holomorphic

functions on E. Hence the pair (E^y <ρH), (E, ψ) is a Runge pair.

Next let K be a compact set in E. Denoting by K and K the enveloppes

of holomorphy of K in the space E and a space EH containing K respectively,

we have K = KΓ\EH. To prove this it suffices to verify that KDKΠEHt

because K is obviously contained in KΓ\EH. Suppose that a point #eisv0 does

not belong to K, then there exists a holomorphic function /Vβ on E^Q so that

\A0(x) I > sup |/vo|. Since the pair (EH, ψH), (E, ψ) is a Runge pair as shown

above, /Vo be approximated uniformly on the compact set {x}UK in JBVO by

20) Cf. H. Behnke and K. Stein [3].
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holomorphic functions on E. * Hence we can find a holomorphic function / on

E such that \/(x)\> sup | / | . This means that the point x does not belong
K

to k.
Now let r be a boundary point of (E, φ). Let /I be a set in r and let K

be a compact set in E. As (£", φ) is the limiting Riemann domain of {(2?v, <̂ v)}>

there exists a Riemann domain (ZsVo, fVo) and a boundary point r' of it such

that K is contained in J£Vo and A contains some A1 in rf. Since the envelope

of holomorphy K of i£ in £v0 coincides with 2sVo Π iΓ as mentioned above, we

have A-KDU-ionEtDA'- K. Since (EVΛ, ψ»a) satisfies (Γ) by the as-

sumption, the set A' - K is non-empty, and so is A - i£. This implies that

(E, ψ) satisfies (Γ). q.e.d.

4. The condition (Γ) is necessary and sufficient for an unramified Riemann

domain to be a domain of holomorphy (Remark in §4, 2). In general ramified

cases, we know in Theorem 4 that the condition (Γ) is again sufficient for a

Riemann domain to be a domain of holomorphy. However it is not yet clarified

whether this condition (Γ) is also necessary. On the necessity of (Γ) we shall

make a remark in the following.

Let (E, ψ) be a Riemann domain and let (£Ό, ̂ o) be the unramified Riemann

domain associated with (2?, ψ). Denoting by O(£Ό) the set of all holomorphic

functions on £Ό, we call a subset $ of D(£o) a holomorphic class on the unramified

Riemann domain (£Ό, ?o) if $ is an algebra over the complex number field and

is stable by the differentiations with respect to the local coordinates defined by

<po. We always consider on O(£o) the uniform convergence topology (on every

compact set in £Ό). Then we have

THEOREM 6. Let (E, ψ) be a Riemann domain of holomorphy, i.e., the

existence domain of a holomorphic function f on E. Suppose that there exists

a holomorphic class $ on (ZΓo, ψo) containing the restriction /o off to EQ such

that every function in ® is holomorphically prolongable to E and ί? is closed in

Q(EQ). Then (E, ψ) satisfies the condition (Γ). Furthermore (E, ψ) is un-

ramified.

Proof. First of all, we prove that if every function in $ is bounded on a

subset Σ of EQ, then there exists a compact set KQ in EQ such that the set

~{x&iEd\h{x)\ ^ sup \h\ for all fte$} contains Σ. Considering the induced
KQ
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topology on ί?Cθ(J5Λ $ is a metrisable and complete topological space, because

$ is closed in O(E0). Therefore @ is a Baire space. Associate sup \h\ with

Then we obtain a lower semi-continuous function r on SL Hence, by

the Theorem of Baire, r is bounded uniformly on some non-empty open set

UCS. We may choose the set U as a neighborhood of the zero function in $,

by translation, if necessary. That is, there exists a compact set KQ in Eo such

that, for any function h in IP, sup | h \ ?= 1 implies sup \h\ ^ M, where M i s a

fixed positive number. As this holds for any power of h, M can not be larger

than 1. Thus we see that sup \h\ *= 1 implies sup \h\ ^ 1 for all fte$. From

this it follows easily that Ko® containes Σ.

To prove the theorem, assume that (E, ψ) does not satisfy (Γ), i.e. that

the envellope of holomorphy K of a compact set Kin E contains a set Λ in the

filter defining a boundary point r of (2?, y). Then every holomorphic function

on E would be bounded on AΠEQψ <ρ, as it is so on K Since every function

in $ is holomorphically prolongable to Z?, it would be bounded on AC\E*.

Hence, from the above consideration, there exists a compact set KQ in Eo such

that Ko$DΛΓ\Eo. By the theorem of Cartan-Thullen,21) any function in $,

especially /0, is holomorphically prolongable over r to an unramified Riemann

domain. Therefore, the existence domain of/would properly contain (E, φ).

This is a contradiction.

Moreover, we can show that Eo coincides with E. Assume that there

exists a point x in E - JBΌ. If J is a compact neighborhood of x in E, every

function in ® would be bounded on JΓ\E0=f ψ. By the same reason as above

/o would be prolongable over x to an unramified Riemann domain. Consequently

ψ would be a local homeomorphism around ΛΓ, which contradicts xΦEQ.

COROLLARY. Let (E, ψ) be an n-dimensional Riemann domain of holomorphy.

If every holomorphic function on Eo is holomorphically prolongable to E, (E, φ)

is unramified.

In partiqular, if the analytic subset E - £Ό of E is of dimension ^ n - 2,22)

the assumption of our Corollary is evidently satisfied.

21> The fundamental theorem in H. Cartan and P. Thullen [1].
22) It is known that in this case {E, Ψ) is unramified without any restriction. Cf. H.

Grauert and Remmert [8].
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