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1. Introduction. The problem of extending Dirac's equation of the
electron to general relativity has been attacked by many authors, by
methods which fall roughly into either of two classes according as the
formulation does or does not require the introduction of a local
Galilean system of coordinates at each point of space-time. As
examples of the former class we mention the methods of Fock (1929)
and of Cartan (1938), and as representing the latter class the method
described by Ruse (1937). Also, Whittaker (1937) discovered a
vector whose vanishing is completely equivalent to the Dirac
equations, but this method, unlike the others in the second category,
does not apply the Riemannian technique to spinors but only to
vectors and tensors derived from these. Now Cartan has denied the
possibility of fitting a spinor into Riemannian Geometry if his point
of view of spinors is adhered to, and this he argues accounts for the
" choquant " properties with which they have been endowed by the
geometricians in order to enable them to write down an expression of
the usual form for the covariant derivative of a spinor. Consequently,
doubt has been cast on the compatibility of the various methods, so
in this paper an attempt is made to clarify the mat ter by working
out explicitly the case of the general metric by some of the more
important of these methods.

Throughout, the velocity of light in vacuo is taken as unity.

2. Cartan's Method. From Cartan's point of view a spinor with 2"
components is regarded as a tensor (in the general sense of the term)
furnishing a linear representation of degree 2" of the group of rotations
in flat space of 2v or (2v + 1) dimensions, and an important feature of
the representation is its bivalency (i.e. to each, rotation there
correspond two operations on the spinor). When a spinor is simple as
all 4-component spinors are, its components can be interpreted
geometrically as parameters specifying an isotropic i/-plane in the null
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cone at the appropriate point of the 2v- or (2v -f 1 ̂ dimensional
space. To every-spinor there corresponds a unique plane or pair of
planes according as the space is of odd or even dimensionality. In
the latter case there is a unique plane for each of the semi-spinors
comprised in the spinor. A spinor is denoted by a column matrix,
and a special feature of Cartan's work is that a vector is represented
by a certain square matrix. The same symbol is used for the vector
and the matrix representing it.

Under a reflection in a prime whose normal is represented by the
unit vector A, a spinor £ and a vector X transform to g' and X' where

f = A£, X' = -AXA. (2.1)

The vector A is ambiguous in sign, and this is th.e cause of the
bivalency referred to above.

Now Cartan has shown that when a vector suffers an infinitesimal
parallel displacement, its components referred to an orthogonal
ennuple undergo a transformation corresponding to a rotation of the
vector. Thus, already knowing the behaviour of a spinor under a
rotation, he really determined its behaviour under a parallel displace-
ment, so consequently obtained an expression for its covariant
derivative.

Let the metric be given by

ds2 = g^ dx» dx", (/*, v = 0, 1, 2, 3),

the signature being (-) ), and let us choose an orthogonal
ennuple denned at each point of space-time, the contravariant
components of the unit tangent to the h-th. member at the point
under consideration being denoted by e%\. Greet letters denote
tensor suffixes and the summation convention applies, while Roman
letters denote ennuplet suffixes and any summation is explicitly
stated. Then (Eisenhart, 1926, 96)

e;, e;;a = eh 8hl, (2.2)

where e0 = 1, e.\ = e2 = e3 = — 1.
The relationship between the coordinate and ennuplet components

of a vector is given by

F* = S«» Vh el (2.3)
h

or, by (2.2),
F»=Facjf,. (2.4)
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The more general relation corresponding to (2.3) is

F«*-- = 2 e«ete j . . . .ej .eg.e7 | . . . . Vul..... (2.5)

Taking the covariant derivatives of both sides of (2.3) with respect
to x", we have

F-(r=Ze4(F*,(re2+ F ^ . J ,
A

and since this vanishes for a parallel displacement, we obtain

Se»eS,8F*= - S e» F* ej,a d;C

= - 2 eA eA. FA e j u cj, d»t,
A, k

where the dsk are the ennuplet components of the infinitesimal
displacement considered.

Multiplying throughout by e/o and summing with respect to a,
we have by (2.2)

hVl=-LekelsVhYlhkd8t, (2.6)
A, k

where the yMt = e'^ej,, ê  are Ricci's coefficients of rotation.
Hence, if (2.6) is written in the form

e / S F ^ Z c ^ S F , , (2.7)
A

then WJ; [ = S ct e, y«t <fo* (2.8)

a n d ojhl= — u)lh.

Now (Cartan t. 2, 87), the covariant differential of a 4-component

spinor I ^12 I is given by

V I )
D& = dfi + J (*«if - «j.°) fi - i (t-i.1 + u-5? + »o»i.3 - «f») i, (2.9)

and three similar expressions.
Writing this in the form

putting dfx = S t ^ eA. ej d«t>

and using (2.8), we obtain for example

^ »Y23i)&- (2.10)
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The Dirac wave functions in the form adopted by Weyl (1931)
are obtained from the correspondence

Consequently in generalizing the wave equation, cip^dx1 must be
replaced by

^ r c i i + \ (— yosi + »yi2i) <Pi — \ (yon — iyo2i + ym — iy^zx) 4'2, (2.H)

with similar expressions for the other derivatives.
These results are easily verified to be in agreement with Fock's

expression

Jf (2.12)

01

and if> denotes the column matrix j " ] . Weyl's >p's are obtained
^3

/-/-I

from the correspondence I ^2

V <p4 J Fock

Fock derived (2.12) by choosing Df\> in such a way as to ensure
that the 4-vector of charge and current derived from <p transforms
correctly under a parallel displacement. Further, Fock proved that
his result is independent of the orthogonal ennuple chosen, and so placed
his method in a position not inferior to any of those based on
Riemannian Geometry.
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3. Whittaker's Method. This was originally given in the 2-
component spinor formalism of van der Waerden, but it is recast here
into the 4-component formalism of Cartan, because this treatment
requires fewer vectors and also gives more insight into the origin of
one of the vectors used. Further, the derivation of a vector
involving the derivatives of the components of a spinor is included.
This vector (or at least its analogue in 2-component spinor theory)
appears to be less well-known than the other vectors associated with
a spinor; indeed, I have not yet seen a derivation of it.

Confining ourselves meantime to special relativity, we begin by
deriving this vector by a slight extension of a method adopted by
Cartan for extracting a 6-vector, a vector, a pseudo-vector, a scalar
and a pseudo-scalar from the 16 products £r£,' of the components of
two 4-component spinors.

In 4-dimensional space of fundamental form xlxx' + x2x2' (the
metric of special relativity is obtained by putting ix1 = xx + ix2,
ix1' = Xi — ix2, ix2 = x3 + x0, ix2' = x3 — x0), a vector X whose con-
travariant components are x1, x1', x2, x2' is represented by the matrix

(3.1)

For example, the matrices corresponding to the coordinate axes are

>H2=[ ] , ; '

and H2, = • " . (3.2)

. 1

Now let C = (H1- Hv) (H2 - H2,) = ( ~~ 1 '

. 1
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then it can be easily verified that for any vector X

X'C=CX, (3.3)

•where X' is the transpose of the matrix X.
Since a rotation can be regarded as the product of an even

number of reflections, it follows from (2.1) that g'CXYg where X, Y
are any two vectors and £' is the transpose of £, is invariant under
rotations. Now 8/dx1, d/8xv, 8/8x2, 8/8x2' can be regarded as the
<jovariant components of a vector and therefore dfdz1', 8/dz1, 8/8z2',
d/8x2 as the contravariant components, so that g'CX 8/Sx g is an
invariant, where 8/8x denotes the matrix

8/8x1' 8/8x2'
8/8x2 —8/Sx1

8/dx1 8/8x2'
8/8x2 -8/8xv

This invariant is bilinear in the %°- and £regs/Sxa; hence, since x', x1',
x2, x2' are contravariant components of a vector, there results the
covariant vector

8/8xg. (p = 1, 1', 2, 2'). (3.4)

Thus, for example,}

Changing now to (contravariant) relativistic coordinates x0, xu x2, xs,
we have1

Tx= ~i{Tx + Tlt),

so that

ez2 + 8X3 + 8x

Hi

1 There is a slight ambiguity in the symbol 'J\, but it does not persist.
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Now
r01 = (& + 8-8-e0), r02 = i(& + if + 3 + |§).
r03 = - 2 do fw -- li &), r23 = - i (|f2 - if + 1 ! - !§),
r3i = (& - If - li +1§), r12 = 2» (|0|12 + | x &),

are the components of a 6-vector. This follows immediately from
the 6-vector derived from two spinors by making these identical
(Cartan 1938, t. 2, 66). Hence (3.5) becomes

Similarly the remaining components can be worked out, and it follows
immediately from the form of these that

wr*"**^ **&r ̂ . (8>7)

0, 1, 2, 3) is a covariant vector.
The following vector is also required:

I12I2 / ' l '
If now the vector T^ — im/fi, A^, where m and h have their usual

physical meanings, is denoted by Q ,̂ and if the spinor components are
replaced by the appropriate wave functions (Weyl's), then it follows
from (3.5), (3.8), that the components of Q^ are linear combinations
of the left-hand sides of the four Dirac equations for the case of
zero electromagnetic field. Consequently, since the appropriate
determinant is different from zero, the vanishing of QM is equivalent
to these equations, and this is substantially the first part of
Whittaker's result. The main difference is that Whittaker employed
the conjugate complexes of the spinor components in addition.. In
the treatment given above the divergence term in (3.6) appears
automatically, whereas in the 2-component formalism it has to be
purposely introduced.

Further, the tensor relationships

4Aa A" = IV r«", (3.9)

and 2AaPa= - Yy,A^ (3.10)

are easily verified. Thus, in general relativity, commencing with F^,.,
Aa and then Pa can be determined by (3.9) and (3.10). FP1/ must be
chosen in such a way that the components with respect to an orthogonal
ennuple coincide with the special relativity values. A°- must either
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be chosen in the same way or obtained from (3.9). Pa, however, can
only be obtained from (3.10). In view of the form of T^ ( = P^ +
divergence term), the components of Q^ in curved space-time can
then be written down. Comparison with the 2-component spinor
formalism at this stage shows that the above treatment is much more
economical in the use of vectors.

However, in generalizing the wave equation, i t is unnecessary to
work out the components Q.^ explicitly, because by solving (3.10) for
Pa, the expressions by which the derivatives of the spinor components
must be replaced can be readily determined; indeed the coefficient
of each spinor component in Pa gives one such covariant derivative.

By (2.5), (3.10) when expressed in terms of the ennuplet com-
ponents of the tensors leads to

2A, P a = — £ r t , ekly e,w ek ee e, (A, ejt)>a
k, s, I

(8A
= — 2 ek es e, ekiy e,1<r Tks \ — ' q + A, q,

Multiplying both sides by ea
t and summing with respect to a, then by

(2.2) and (2.4)

&Ak2^i P . = - S e t r i ( — - £ ek et ek]y e/j- At Tu.
k VJD°- k, I

Hence

2 A, P. ej; = - 2 ek e.% Ykt ~ — S ek e, A, Tkt ym,
k ®*"a. I- I

i.e. 2AtP,= - E e t e , Y k t — "̂ — S eke,A,TuyM.
k Ost k,l

Comparison with (3.10)1 shows that if the second term on the right is
omitted, the special relativity value of Pt will result. Consequently,
to obtain the proper expression for Pt in general relativity, the
quantity

&k €% 1 k[ J 4 / "Ylkt
— i — A

k, I A,

must be added to the special relativity value.
Using the relation

V A V A r A
* mn a p A pn xxm — x pm -^m

these additional terms can be easily worked out, and by considering
1 In flat space-time ennuplet components become covariant (coordinate) components

[cf. (2.4)].
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for example the coefficient of £2 *
n *̂i a n d replacing £'s by ̂ 's, it turns

out that cipjcxx in the wave equation must be replaced by

— ~2> ("Voil — ^To^l ~T~ Vl31 — ^V23]/ r2* (*** )

This and the remaining 15 similar expressions agree with those
obtained by the previous methods.

4. We pass on now to consider the methods which attempt to use
Riemannian Geometry, and follow Ruse's treatment in working out
the result. There are, however, a few minor differences in notation.

In this treatment, the components ip1, ip2 of a 2-component
spinor are regarded as parameters specifying a generator of the
quadric in which the null cone of the 4-dimensional tangent space
Tt at the appropriate point of space-time F4 intersects the 3-flat
S3 at infinity. Apart from a normalizing factor, which may be taken
as unity, homogeneous coordinates of a point in S3 can be regarded
as contravariant components of a vector at a point in F4. The
conjugate components ip1*, ip2* specify a generator of the other system,
and the point of intersection of such a pair of generators represents a
null vector whose components can be expressed in terms of the spinor
components. Indeed, if the spinor be referred to a real orthogonal
ennuple, and if X1 denotes the null vector, then

* ' = ! 7 W ^ * . ( 4 , 5 = 1 , 2 ) , (4.1)

where g°Am = -— ( ) , g\m = -75 ( , ft ) ,
V ^ \ 0 1 / V - \ l 0 / (4.2)
1 / 0 - » \ „ 1 / 1 0

9AB*= 77* \ i 0 " ~ — '

the summation convention now being applied to all dummy indices.
Thus, for example

XI = ~ (01^* + 0*^*).

Conversely, (4.1) gives

\ (4.3)

where
(4.4)

- 1
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Spinors are subjected to spin transformations

if,'A = T%ifjB, 1 ^ 1 = 1, (A, B = 1, 2),

and the group of these complex unimodular transformations is
isomorphic with the group of real Lorentz transformations of
determinant + 1. Such a transformation can be regarded either as
a transformation of one generator into another of the same system or
as a change of parametrization of the quadric, and as emphasized by
Ruse the choice of the latter alternative makes the space transforma-
tions and spin transformations independent of each other. This
indeed is the crucial point of the theory, for on it hangs the possibility
of writing down an expression of the usual form for the covariant
derivative of a spinor. This is taken as

where Ffla = ^F* ^ - g ^ + r^ fe J , (4.5)

r^a being an ordinary Christoffel symbol derived from the g^.
To ensure that the ennuplet components of a vector in curved

space-time shall coincide with its covariant components in flat space-
time we now choose ga

AB^ and g*u* as follows:

i>AB* — etf

where the g's with small Latin indices are given by (4.2) and (4.4),
and the ejj etc., have the same meanings as before.

Now Dirac's equations, in the case of zero electromagnetic field,
may be written

9AB* 05* + iKXA = 0 , ( 4 = 1 , 2),

9%A* X% ~ i«<Pl = 0, (A = 1, 2),

where the ip's and x'a c a n be identified as certain of Weyl's wave
functions, and K — •m/(?i\/2).

Considering the first set of equations, (4.5) and (4.6) lead to

47 ?f'* 9'JJF*)* -Tin *** + iKXA = 0.

Hence, in generalizing the wave equation 8iph*/dxl must be replaced by

c,x°-
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1 * ^<A
ih2*

whence from the correspondence I „ I -* I T.~ I we

X / X ^4 / Weyl

obtain expressions for the covariant derivatives, which turn out to be
identical with those established by the other methods.

The 2-component spinors used above, each of which corresponds
to a generator of the fundamental quadric and therefore to a plane of
the null cone are really semi-spinors (c/. §2), and the treatment
given can only be applied to a 4-component spinor by applying it
separately to the two semi-spinors. Furthermore, if v > 3, a semi-
spinor whose components (2"-1 in number) are all independent, as
they would be if they represented wave functions, cannot be simple
(Cartan, t. 2, 39); hence, in this case it would be impossible to
regard the spin transformations as changes of parametrization.
Some other method of securing the independence of space and spin
transformations would be required. It seems then that the method
just described is possible only because the Dirac wave functions form
a spinor with only 4 components.

.Nevertheless, a geometrical treatment, in which the 4 wave
functions are regarded as forming a single spinor. has been developed
by projective relativity methods in a series of papers culminating in
that of Veblen, Taub and von Neumann (1934). Here the result is
essentially different, and agrees with those derived above only in
certain circumstances, and when a certain constant is given the value
— 1. Pauli suggested that the extra term otherwise present may be
associated in some way with the neutron; in any case, its mere
presence indicates a radical difference between this method and the
others.

In conclusion, mention must be made of the important paper by
Schrodinger (1932) which, though different in interpretation, is
formally identical with that of Fock. Schrodinger, following Tetrode,
began by generalizing the Dirac matrices ah so that

«< aj + «i «.• = 29,j-

The paper has the merit of dispelling the idea that the Dirac
equations could only be generalized in space-time admitting
teleparallelism, and also of paving the way to the methods of Infeld
and van der Waerden, Schouten, and Veblen, which form the basis of
the paper bjT Ruse.
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Finally, I wish to thank Prof. E. T. Whittaker for introducing
nie to the subject of spinors.
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