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Limiting Betti distributions of Hilbert
schemes on n points
Michael Griffin, Ken Ono, Larry Rolen, and Wei-Lun Tsai

Abstract. Hausel and Rodriguez-Villegas (2015, Astérisque 370, 113–156) recently observed that work
of Göttsche, combined with a classical result of Erdös and Lehner on integer partitions, implies that
the limiting Betti distribution for the Hilbert schemes (C2)[n] on n points, as n → +∞, is a Gumbel
distribution. In view of this example, they ask for further such Betti distributions. We answer this
question for the quasihomogeneous Hilbert schemes ((C2)[n])Tα ,β that are cut out by torus actions.
We prove that their limiting distributions are also of Gumbel type. To obtain this result, we combine
work of Buryak, Feigin, and Nakajima on these Hilbert schemes with our generalization of the result of
Erdös and Lehner, which gives the distribution of the number of parts in partitions that are multiples
of a fixed integer A ≥ 2. Furthermore, if pk(A; n) denotes the number of partitions of n with exactly
k parts that are multiples of A, then we obtain the asymptotic

pk(A, n) ∼ 24
k
2
− 1

4 (n − Ak) k
2
− 3

4

√
2 (1 − 1

A)
k
2
− 1

4 k!Ak+ 1
2 (2π)k

e2π
√

1
6
(1− 1

A
)(n−Ak) ,

a result which is of independent interest.

1 Introduction and statement of results

We consider the Hilbert schemes [13] of n points on C2 , denoted X[n] = (C2)[n], that
have been studied by Göttsche [6, 7], and Buryak, Feigin, and Nakajima [2, 3]. Each
X[n] is a nonsingular, irreducible, quasiprojective dimension 2n algebraic variety.
Moreover, they enjoy the convenient description

X[n] = {I ⊂ C[x , y] ∶ I is an ideal with dimC(C[x , y]/I) = n},(1.1)

which reduces the calculation of its Betti numbers to problems on integer partitions.
To investigate these Betti numbers, it is natural to combine them to form the gener-
ating function

P (X[n]; T) ∶=
2n−2
∑
j=0

b j(n)T j =
2n−2
∑
j=0

dim (H j (X[n],Q))T j ,(1.2)
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Figure 1: Betti distribution for X[50].

known as its Poincaré polynomial. Due to the connection with integer partitions, it
turns out that these polynomial generating functions equivalently keep track of the
number of parts among the size n partitions.

In their work on the statistical properties of certain varieties, Hausel and
Rodriguez-Villegas [11] observed that a classical result of Erdös and Lehner on
partitions [4] gives (see Section 4.3 of [11]) the limiting distribution for the Betti
numbers of X[n] as n → +∞. Using Göttsche’s generating function [6, 7] for the
P(X[n]; T), it is straightforward to compute examples that offer glimpses of this
result. For example, we find that

P (X[50]; T) = 1 + T2 + 2T4 + ⋅ ⋅ ⋅ + 5, 427T88 + 26, 11T90 + 920T92 + 208T94

+ 25T96 + T98 .

The renormalized even degree1 coefficients are plotted in Figure 1. As P (X[50]; 1) =
p(50), the number of partitions of 50, the plot consists of the points
{( 2m

98 , b2m(50)
p(50) ) ∶ 0 ≤ m ≤ 49}.

These distributions, when properly renormalized, converge to a Gumbel distribu-
tion as n → +∞.

Hausel and Rodriguez-Villegas asked for further such n-aspect Betti distributions.
We answer this question for the quasihomogeneous n point Hilbert schemes that are

1The coefficients b2 j+1(n) for odd degree terms identically vanish.
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cut out by torus actions. To define them, we use the torus (C×)2-action on C2 defined
by scalar multiplication

(t1 , t2) ⋅ (x , y) ∶= (t1x , t2 y),

which lifts to X[n] = (C2)[n]. For relatively prime α, β ∈ N, we have the one-
dimensional subtorus

Tα ,β ∶= {(tα , tβ) ∶ t ∈ C×}.

The quasihomogeneous Hilbert scheme X[n]α ,β ∶= ((C2)[n])Tα ,β is the fixed point set of
X[n].

To define Betti distributions, we make use of the Poincaré polynomials

P (X[n]α ,β ; T) ∶=
2⌊ n

α+β ⌋

∑
j=0

b j(α, β; n)T j =
2⌊ n

α+β ⌋

∑
j=0

dim(H j (X[n]α ,β ,Q))T j .(1.3)

As P (X[n]α ,β ; 1) = p(n), we have that the discrete measure dμ[n]α ,β for X[n]α ,β is

Φn(α, β; x) ∶= 1
p(n) ⋅ ∫

x

−∞
dμ[n]α ,β =

1
p(n) ⋅ ∑j≤x

b j(α, β; n).(1.4)

The following theorem gives the limiting Betti distributions (as functions in x) we
seek.

Theorem 1.1 If α and β are relatively prime positive integers, then

lim
n→+∞

Φn(α, β; 2
√

nx + δn(α, β)) = exp(−
√

6
π(α + β) ⋅ exp(−π(α + β)√

6
x)),

where δn(α, β) ∶=
√

6
π(α+β)

√
n log(n).

Two Remarks (1) The limiting cumulative distribution in Theorem 1.1 is of Gumbel
type [8, 9]. Such distributions are often used to study the maximum (resp. minimum)
of a number of samples of a random variable. Letting A ∶= α + β, we have mean√

6
Aπ (log(

√
6

Aπ ) + γ) , where γ is the Euler–Mascheroni constant, and variance 1/A2 .
(2) Gillman, Gonzalez, Schoenbauer, and two of the authors studied a different

kind of distribution for Hilbert schemes of surfaces in [5]. In that work, equidis-
tribution results were obtained for the Hodge numbers organized by congruence
conditions.

Example For example, let α = 1 and β = 2. For n = 20, we have

P (X[20]
1,2 ; T) = 202 + 212T2 + 126T4 + 56T6 + 22T8 + 7T 10 + 2T 12 .

This small degree polynomial is not very suggestive. However, for n = 1, 000,
the renormalized even degree2 coefficients displayed in Figure 2 are quite

2The odd degree coefficients’ terms identically vanish.
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Figure 2: Betti distribution for X[1,000]
1,2 .

illuminating. As P (X[1,000]
1,2 ; 1) = p(1, 000), the plot consists of the 334 points

{( 2m
666 , b2m(1,000)

p(1,000) ) ∶ 0 ≤ m ≤ 333}.
Theorem 1.1 gives the cumulative distribution corresponding to such plots as

n → +∞. In this case, the theorem asserts that

lim
n→+∞

Φn (1, 2; 2
√

nx +
√

6n
3π

⋅ log(n)) = exp(−
√

6
3π

⋅ exp(−3πx√
6
)).

Theorem 1.1 follows from a result which is of independent interest that generalizes
a theorem of Erdös and Lehner on the distribution of the number of parts in partitions
of fixed size. Using the celebrated Hardy–Ramanujan asymptotic formula

p(n) ∼ 1
4n
√

3
⋅ exp(C

√
n),

where C ∶= π
√

2/3, Erdös and Lehner determined the distribution of the number of
parts in partitions of size n. More precisely, if kn = kn(x) ∶= C−1√n log(n) +

√
nx ,

they proved (see Theorem 1.1 of [4]) that

lim
n→+∞

p≤kn(n)
p(n) = exp(− 2

C
e−

1
2 Cx),(1.5)
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where p≤k(n) denotes3 the number of partitions of n with at most k parts. In
particular, the normal order for the number of parts of a partition of size n is
C−1√n log(n).

To prove Theorem 1.1, the generalization of the observation of Hausel and
Rodriguez-Villegas, we require the distribution of the number of parts in partitions
that are multiples of a fixed integer A ≥ 2. The next theorem describes these
distributions.

Theorem 1.2 If A ≥ 2 and p≤k(A; n) denotes the number of partitions of n with at
most k parts that are multiples of A, then for kA,n = kA,n(x) ∶= 1

AC
√

n log(n) + x
√

n,
we have

lim
n→+∞

p≤kA,n(A; n)
p(n) = exp(− 2

AC
exp(− 1

2
xAC)).

Remark The distribution functions in Theorem 1.2 are of Gumbel type with mean
2

AC (log ( 2
AC ) + γ) and variance 1/A2 .

Example Here, we illustrate Theorem 1.2 with A = 2 and n = 600. In this case, we
have

k2,600(x) ∶=
√

600 log(600)
2C

+
√

600x .(1.6)

For real numbers x , we let

δk2,600(x) ∶= #{λ ⊢ 600 with ≤ k2,n(x) many even parts}
p(n) .

The theorem indicates that these proportions are approximated by the Gumbel values

G2,600(x) ∶= exp(− 1
C
⋅ e−Cx).

The table below illustrates the strength of these approximations for various values of x.

x ⌊k2,600(x)⌋ δk2,600(x) G2,600(x)
−0.1 28 0.597 . . . 0.604 . . .
0.0 30 0.663 . . . 0.677 . . .
0.1 32 0.721 . . . 0.739 . . .
0.2 35 0.791 . . . 0.792 . . .
0.3 37 0.830 . . . 0.835 . . .
⋮ ⋮ ⋮ ⋮

1.5 67 0.994 . . . 0.992 . . .
2.0 79 0.998 . . . 0.998 . . .

We note that Theorem 1.2 does not offer the asymptotics for pk(A; n), the number
of partitions of n with exactly k parts that are multiples of A. For completeness, we

3We note that p≤k(n) is denoted pk(n) in [4].
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Table 1: Asymptotics for p1(3; n)
n p1(3; n) p∗1 (3; n) p1(3; n)/p∗1 (3; n)

200 93, 125, 823, 847 ≈ 82, 738, 081, 118 ≈ 1.126
400 ≈ 1.718 × 1016 ≈ 1.579 × 1016 ≈ 1.088
600 ≈ 1.928 × 1020 ≈ 1.799 × 1020 ≈ 1.071
800 ≈ 5.058 × 1023 ≈ 4.764 × 1023 ≈ 1.062

1, 000 ≈ 5.232 × 1026 ≈ 4.959 × 1026 ≈ 1.055

offer such asymptotics, a result which is of independent interest. To make this precise,
we recall the q-Pochhammer symbol

(a; q)k ∶=
k−1
∏
n=0

(1 − aqn).

Theorem 1.3 If A ≥ 2 is an integer, then the following are true.
(1) We have that pk(A; n) is the coefficient of T k qn in the infinite product

(qA; qA)∞
(q; q)∞(TqA; qA)∞

.

(2) For every nonnegative integer n, we have pk(A; n) = p≤k(A; n − Ak). Moreover,
we have

(qA; qA)∞
(q; q)∞(qA; qA)k

= ∑
n≥0

p≤k(A; n)qn .

(3) For fixed k, as n → +∞, we have the asymptotic formulas

p≤k(A; n) ∼ 24 k
2 −

1
4 n k

2 −
3
4

√
2 (1 − 1

A)
k
2 −

1
4 k!Ak+ 1

2 (2π)k
e2π
√

1
6 (1− 1

A )n ,

pk(A; n) ∼ 24 k
2 −

1
4 (n − Ak) k

2 −
3
4

√
2 (1 − 1

A)
k
2 −

1
4 k!Ak+ 1

2 (2π)k
e2π
√

1
6 (1− 1

A )(n−Ak).(1.7)

Example Here, we illustrate the convergence of the asymptotic for p1(3; n).
Theorem 1.3(3) gives

p1(3; n) ∼ 1
6π(n − 3) 1

4
e

2π
√

n−3
3 .

For convenience, we let p∗1 (3; n) denote the right-hand side of this asymptotic. Table 1
illustrates the convergence of the asymptotic.

This paper is organized as follows. In Section 2, we prove Theorem 1.2, the
generalization of the classical limiting distribution (1.5) of Erdös and Lehner. In
Section 3, we recall the work of Buryak, Feigin, and Nakajima [2, 3], which gives
the infinite product generating functions for the Poincaré polynomials P (X[n]α ,β ; T).
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These generating functions relate the Betti numbers to the partition functions p≤k(⋅).
We use these facts, combined with Theorem 1.2, to obtain Theorem 1.1. Finally,
in Section 4, we obtain Theorem 1.3, the asymptotic formulas for the p≤k(A; n)
and pk(A; n) partition functions. These asymptotics follow from an application of
Ingham’s Tauberian theorem.

2 Generalization of a theorem of Erdös and Lehner

Here, we prove Theorem 1.2. To prove the theorem, we combine some elementary
observations about integer partitions with a delicate asymptotic analysis.

2.1 Elementary considerations

First, we begin with an elementary convolution involving the partition functions
p≤k(A; ⋅), p≤k(⋅), and preg(A; n), the number of A-regular partitions of size n. Recall
that a partition is A-regular if all of its parts are not multiples of A.

Proposition 2.1 If A ≥ 2 is a positive integer, then for every positive integer n, we have

p≤k(A; n) =
⌊ n

A ⌋

∑
j=0

p≤k( j) ⋅ preg(A; n − Aj).

Proof Every partition of n with at most k parts that are multiples of A can be
represented as the direct product of an A-regular partition and a partition into at
most k parts that are all multiples of A. If the sum of these multiples of A is Aj, then
the A-regular partition has size n − Aj. Moreover, by dividing by A, the multiples of
A are represented by a partition of j into at most k parts. This proves the claimed
convolution. ∎

We also require an elegant inclusion–exclusion formula due to Erdös and Lehner
[4] for p≤k(n).

Proposition 2.2 If k and j are positive integers, then

p≤k( j) =
∞
∑
m=0

(−1)m Sk(m; j),

where4

Sk(m; j) ∶= ∑
1≤r1<r2<⋅⋅⋅<rm

Tm≤r1+r2+⋅⋅⋅+rm≤ j−mk

p( j −
m
∑
i=1
(k + r i))(2.1)

and Tm ∶= m(m + 1)/2.

Proof By definition, p≤k( j) is the number of partitions of j with at most k parts.
By considering conjugates of partitions, one can equivalently define p≤k( j) as the

4The Sk(m; j)/p( j) are denoted Sm in [4].

https://doi.org/10.4153/S0008439522000261 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439522000261


250 M. Griffin, K. Ono, L. Rolen, and W.-L. Tsai

number of partitions of j with no parts ≥ k + 1. Since the number of partitions of
size j that contain a part of size k + r, where r ≥ 1, equals p( j − (k + r)), we find that
Sk(1, j) is generally an overcount for the number of partitions of j with at least one
part ≥ k + 1. Due to this overcounting, we find that

p( j) − Sk(1; j) ≤ p≤k( j) ≤ p( j) − Sk(1; j) + Sk(2; j),

which is obtained by taking into account those partitions which have at least two parts
of distinct size ≥ k + 1. The claim follows in this way by inclusion–exclusion. ∎

2.2 Proof of Theorem 1.2

To prove Theorem 1.2, we require Propositions 2.1 and 2.2, and the asymptotics for
preg(A; n). Thanks to the identity

∞
∏
n=1
(1 + qn + q2n + ⋅ ⋅ ⋅ + q(A−1)n) =

∞
∏
n=1

(1 − qAn)
(1 − qn) =

∞
∑
n=0

preg(A; n)qn ,

we find that preg(A; n) equals the number of partitions of n where no part occurs
more than A− 1 times. Hagis [10] obtained asymptotics for the number of partitions
where no part is repeated more than t times, and letting t = A− 1 in Corollary 4.2 of
[10] gives the following theorem.

Theorem 2.3 If A ≥ 2, then we have

preg(A; n) = CA(24n − 1 + A)− 3
4 exp

⎛
⎝

C
√

A− 1
A

(n + A− 1
24

)
⎞
⎠
(1 + O(n−

1
2 )),

where C ∶= π
√

2/3 and CA ∶=
√

12A− 3
4 (A− 1) 1

4 , and the implied constant is indepen-
dent of A.

Proof of Theorem 1.2 Thanks to Propositions 2.1 and 2.2, we have that

p≤k(A; n)
p(n) =

⌊ n
A ⌋

∑
j=0

(∑∞m=0(−1)m Sk(m; j)) preg(A; n − Aj)
p(n) .(2.2)

The proof follows directly from this expression by a sequence of observations involv-
ing the asymptotics for p(⋅) and preg(A; ⋅), combined with the earlier work of Erdös
and Lehner on the sums Sk(m; j). Thanks to the special choice of kn = kn(x), this
expression yields the Taylor expansion of the claimed cumulative Gumbel distribution
in x , as n → +∞. In other words, these asymptotics conspire so that the dependence
on n vanishes in the limit.

For convenience, we let S∗k (m; j) ∶= Sk(m; j)/p( j). In terms of S∗k (m, j), (2.2)
becomes

p≤k(A; n)
p(n) =

⌊ n
A ⌋

∑
j=0

(∑∞m=0(−1)m S∗k (m; j)) p( j)preg(A; n − Aj)
p(n) .(2.3)
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To make use of this formula, we begin by employing the method of Erdös and Lehner
mutatis mutandis, which we briefly recapitulate here. For k → +∞, with j and m fixed,
Erdös and Lehner proved (see (2.5) of [4]) that

S∗k (m; j) = 1
m!

⎛
⎝

2
C
√

j exp
⎛
⎝
− C

2
√

j
k
⎞
⎠
⎞
⎠

m

+ o j,m(1).(2.4)

For every positive integer m, this effectively gives

S∗k (m; j) = 1
m!

⋅ S∗k (1; j)m + o j,m(1) ∼ 1
m!

⋅ S∗k (1; j)m ,

which Erdös and Lehner show produces, as functions in x, the asymptotic
∞
∑
m=0

(−1)m S∗kn
(m; j) = exp(−S∗kn

(1; j)) (1 + on(1)).(2.5)

We recall the choice of k = kA,n = kA,n(x) = 1
AC
√

n log(n) + x
√

n. This is the expo-
nential which arises in the exponential of the claimed cumulative distribution.

To make use of (2.5), it is convenient to recenter the sum on j in (2.3) by setting
j = n

A2 + y. As (2.5) only involves S∗kn
(1; j), it suffices to note that when m = 1, (2.4)

becomes

S∗kA,n
(1; j) = 2

AC
√

n + A2 y ⋅ exp
⎛
⎝
− log(n)

2
√

1 + yA2/n
− xAC

2
√

1 + yA2/n
⎞
⎠
+ on(1).

(2.6)

As the proof relies on (2.3), we must also estimate the quotients

p( j)preg(A; n − Aj)
p(n) .

Thanks to the Hardy–Ramanujan asymptotic for p(n) and Theorem 2.3, we have
p( j)preg(A; n − Aj)

p(n)

= CA

(24n − 24Aj − 1 + A) 3
4

n
j

exp
⎛
⎝

C
⎛
⎝
√

j −
√

n +
√

A− 1
A
(n − Aj + A− 1

24
)
⎞
⎠
⎞
⎠
⋅ (1 + O j(n−

1
2 ))

= CA

(24n − 24n/A− 24Ay − 1 + A) 3
4

A2n
n + A2 y

× exp
⎛
⎝

C
⎛
⎝
√

n/A2 + y −
√

n +
√

A− 1
A
(n − n/A− Ay + A− 1

24
)
⎞
⎠
⎞
⎠
⋅ (1 + Oy(n−

1
2 )).

(2.7)

The last manipulation uses the change of variable for j.
We will make use of (2.5)–(2.7) to complete the proof. To this end, we let j =

⌊n/A2⌋ + y essentially as above, but now modified5 so that the y are integers. We then

5We can ignore the difference between ⌊n/A2⌋ with n/A2 as it makes no difference for our limit
calculations.
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rewrite (2.3) as

p≤kA,n(A; n)
p(n) = Σ1 + Σ2 + Σ3 ,

where Σ1 is the sum over−n/A2 ≤ y < −n3/4 log(n), Σ2 is the sum over−n3/4 log(n) ≤
y ≤ n3/4 log(n), and Σ3 is the sum over n3/4 log(n) ≤ y ≤ n(1/A− 1/A2). We shall
show that the main contribution will come from Σ2 , and that Σ1 and Σ3 vanish as
n → +∞.

To establish the vanishing of Σ1 + Σ3 , we consider the case that ∣y∣ > n3/4 log(n).
For such y, we have

√
n/A2 + y −

√
n +

√
A− 1

A
(n − n/A− Ay + A− 1

24
) = Oy(

√
n),

where the implied constant is negative. Moreover, (2.6) implies that S∗kA,n

(1; n/A2 + y) = O(
√

n), where the implied constant is positive. Thus, for y in these
ranges, both p( j)

p(n) preg(A; n − Aj) and∑∞m=0(−1)m S∗kA,n
(m; j) decay subexponentially,

and so

lim
n→∞

Σ1 + Σ3 = 0.

We now consider Σ2, where ∣y∣ ≤ n3/4 log(n). In this range, (2.6) becomes

S∗kA,n
(1; j) = 2

AC
√

n + A2 y ⋅ exp
⎛
⎝
− log(n)

2
√

1 + yA2/n
− xAC

2
√

1 + yA2/n
⎞
⎠
+ on(1)

(2.8)

= 2
AC

exp(− 1
2

xAC) + on(1).(2.9)

Using (2.5), we obtain
∞
∑
m=0

(−1)m S∗kA,n
(m; j) = exp(− 2

AC
exp(− 1

2
xAC))(1 + on(1)).(2.10)

We now estimate (2.7) for these ∣y∣ ≤ n3/4 log(n). Since we have

√
n/A2 + y −

√
n +

√
A− 1

A
(n − n/A− Ay + A− 1

24
)

= − A4

8(A− 1) y2n−3/2 + OA(y3n−5/2),

the hypothesis on y allows us to turn (2.7) into

p( j)preg(A; n − Aj)
p(n) = A2CA

(24n A−1
A )3/4 × exp(−C A4

8(A− 1)
y2

n3/2 ) ⋅ (1 + OA(n−
1
4+ε)).

Combined with (2.10), and using CA =
√

12A− 3
4 (A− 1) 1

4 , we obtain
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lim
n→∞

Σ2 = lim
n→∞

∑
∣y∣<n3/4 log(n)

A2

961/4
√

A− 1
⋅ 1

n3/4

⋅ exp(− CA4

8(A− 1)
y2

n3/2 −
2

AC
exp(− 1

2
xAC)) ⋅ (1 + oA(1)).(2.11)

Approximating the right-hand side as a Riemann sum, we obtain

lim
n→+∞

Σ2 = lim
n→+∞

A2

961/4
√

A− 1 ∫
log(n)

− log(n)
exp(− CA4

8(A− 1) t2 − 2
AC

exp(− 1
2

xAC)) dt,

(2.12)

where n only appears in the limits of integration. To obtain this, we have used the
substitutions t = yn−3/4 and dt = n−3/4d y, and employ the fact that the widths of the
subintervals defining the Riemann sums tend to 0. Expanding as an integral over R,
this expression simplifies to

exp(− 2
AC

exp(− 1
2

xAC)).

Therefore, as a function in x , we have

lim
n→+∞

p≤kA,n(A; n)
p(n) = exp(− 2

AC
exp(− 1

2
xAC)).

This completes the proof of the theorem. ∎

3 Application to the Hilbert schemes X[n]α,β

Here, we recall the relevant generating functions for the Poincaré polynomials of the
Hilbert schemes that pertain to Theorem 1.1. For the various Hilbert schemes on n
points, Göttsche, Buryak, Feigin, and Nakajima [2, 3, 6, 7] proved infinite product
generating functions for these Poincaré polynomials. For Theorem 1.1, we require the
following theorem.

Theorem 3.1 (Buryak and Feigin) If α, β ∈ N are relatively prime, then we have that

Gα ,β(T ; q) ∶=
∞
∑
n=0

P (X[n]α ,β ; T) qn = (qα+β ; qα+β)∞
(q; q)∞(T2qα+β ; qα+β)∞

.

Remark The Poincaré polynomials in these cases only have even degree terms
(i.e., odd index Betti numbers are zero). Moreover, letting T = 1 in these generating
functions give Euler’s generating function for p(n). Therefore, we directly see that

p(n) = P (X[n]α ,β ; 1).

Of course, the proof of Theorem 3.1 begins with partitions of size n.
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Corollary 3.2 Assuming the notation and hypotheses above, if dμ[n]α ,β is the discrete
measure for X[n]α ,β , then

Φn(α, β; x) = 1
p(n) ⋅ ∫

x

−∞
dμ[n]α ,β =

p≤ x
2
(α + β; n)
p(n) .

Proof By Theorem 3.1, the Poincaré polynomial P (X[n]α ,β ; T) is the coefficient of qn

of
(qα+β ; qα+β)∞

(q; q)∞(T2qα+β ; qα+β)∞
.

Part (1) of Theorem 1.3 applied to A = α + β gives that the coefficient of T2k in this
expression is pk(α + β; n) (the odd powers of T do not appear in this product as it is
a function of T2). Therefore, (1.3) becomes

P (X[n]α ,β ; T) =
⌊ n

α+β ⌋

∑
j=0

p j(α + β; n)T2 j =
2⌊ n

α+β ⌋

∑
j=0

dim (H j (X[n]α ,β ,Q))T j .

Thus, the sum of coefficients up to x, divided by p(n), is

1
p(n) ⋅ ∑j≤x

b j(α, β; n) = 1
p(n) ⋅ ∑j≤x/2

p j(α + β; n) =
p≤ x

2
(α + β; n)
p(n) .

This completes the proof. ∎

Proof of Theorem 1.1 To prove Theorem 1.1, we remind the reader that Theorem 1.2
gives the cumulative asymptotic distribution function for p≤k(A; n) when A ≥ 2.
Corollary 3.2, with A = α + β, identifies this partition distribution with the Betti
distribution for the n point Hilbert schemes cut out by the α, β torus action. The
theorem follows by combining these two results. ∎

4 Asymptotic formulae for the pk(A; n) partition functions

Here, we prove Theorem 1.3. To this end, we make use of Ingham’s Tauberian theorem
[12]. We note that this theorem is misstated in a number of places in the literature.
Condition (3) in the statement below is often omitted. The reader is referred to the
discussion in [1]. Here, we use a special case6 of Theorem 1.1 of [1].

Theorem 4.1 (Ingham) Let f (q) = ∑n≥0 a(n)qn be a holomorphic function in the
unit disk ∣q∣ < 1 satisfying the following conditions:

(1) The sequence {a(n)}n≥0 is positive and weakly monotonically increasing.
(2) There exist c ∈ C, d ∈ R, and N > 0, such that as t → 0+, we have

f (e−t) ∼ λ ⋅ td ⋅ e
N
t .

6In the notation of [1], we let d = β, N = γ, and we let α = 0 in the case of weak monotonicity of
Theorem 1.1.
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(3) For any Δ > 0, in the cone ∣y∣ ≤ Δx with x > 0 and z = x + iy, we have, as z → 0,

f (e−z) ≪ ∣z∣d ⋅ e
N
∣z∣ .

Then, as n → +∞, we have

a(n) ∼ λ ⋅ N d
2 +

1
4

2
√

π ⋅ n d
2 +

3
4

e2
√

Nn .

Proof of Theorem 1.3 We prove the claims one by one.
(1) We begin by recalling the q-Pochhammer symbol

(a; q)k ∶=
k−1
∏
n=0

(1 − aqn).

Clearly, we have

(qA; qA)∞
(q; q)∞

=
A−1
∏
j=1

1
(q j ; qA)∞

,

which in turn gives

(qA; qA)∞
(q; q)∞(TqA; qA)∞

= ∏
n/≡0 (mod A)

1
1 − qn × ∏

n≡0 (mod A)

1
1 − Tqn .

Expanding each term as a geometric series, we find that the coefficient of T k collects
those partitions which have k parts which are 0 (mod A).

(2) We make use of the q-binomial theorem, which asserts that

∑
n≥0

(a; q)n

(q; q)n
zn = (az; q)∞

(z; q)∞
.

Hence, if we let [T k] denote the coefficient of T k , this theorem allows us to conclude
that

(qA; qA)∞
(q; q)∞

[T k] ( 1
(TqA; qA)∞

) = (qA; qA)∞
(q; q)∞

[T k] (∑
n≥0

(TqA)n

(qA; qA)n
)

= qAk(qA; qA)∞
(q; q)∞(qA; qA)k

.

Arguing as in the proof of (1), we find the claimed generating function identity

(qA; qA)∞
(q; q)∞(qA; qA)k

= ∑
n≥0

p≤k(A; n)qn .(4.1)

These two q-series identities, combined with (1), imply that pk(A; n) =
p≤k(A; n − Ak).

(3) To establish the desired asymptotics, we apply Theorem 4.1 to (4.1), which is
facilitated by the modularity of Dedekind’s eta-function

η(τ) ∶= q
1

24 (q; q)∞.
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This function is well known to satisfy

η (− 1
τ
) =

√ τ
i

η(τ).

As a consequence of this transformation and the q-expansion η(τ) = q 1
24 + O(q 25

24 )
near τ = i∞ (see, for example, page 53 of [14]), for q = e−t , t → 0+, we find that

log( 1
(q; q)∞

) = π2

6t
− 1

2
log(2π

t
) + O(t).(4.2)

Thus, letting t ↦ At and taking a difference yields

log((qA; qA)∞
(q; q)∞

) = π2

6t
(1 − 1

A
) − log(A)

2
+ O(t).(4.3)

This calculation gives the behavior in the radial limit as t → 0+ of the infinite
Pochhammer symbols in (4.1).

To satisfy condition (3) of Theorem 4.1, we also need to estimate the quotient on
the left-hand side of (4.3) for the regions ∣y∣ ≤ Δx. This is given directly in Section 3.1
of [1]. Namely, they show that in these regions, one has

1
(e−z ; e−z)∞

=
√ z

2π
⋅ e

π2
6z (1 + OΔ (∣e−

4π2
z ∣))

and

e−
1
z ≤ e−

1
(1+Δ2)∣z∣ .

Thus, we have
1

(e−z ; e−z)∞
=
√ z

2π
⋅ e

π2
6z (1 + OΔ (e−

4π2
(1+Δ2)∣z∣ )).(4.4)

Changing variables to let z ↦ Az, we then find

(e−Az ; e−Az)∞
(e−z ; e−z)∞

=
√

A ⋅ e−
π2
6z (1− 1

A ) ⋅
(1 + OΔ (e−

4π2
A(1+Δ2)∣z∣ ))

(1 + OΔ (e−
4π2

(1+Δ2)∣z∣ ))

=
√

A ⋅ e−
π2
6z (1− 1

A ) (1 + OΔ (e−
4π2

A(1+Δ2)∣z∣ )).(4.5)

Now, we turn to estimating the remaining factor in (4.1), namely, 1/(qA; qA)k . On
the line t → 0+, an important result of Zhang (see Theorem 2 of [15]) gives that for
0 < t → 0 and w ∈ C,

(e−w t ; e−t)∞ ∼
√

2π
�(w) e−

π2
6t −(w−

1
2 ) log(t).

Letting w = k + 1 and combining with (4.2), we conclude that

1
(q; q)k

= (qk+1; q)∞
(q; q)∞

∼
√

2π
k!

e−
π2
6ε −(k+1/2) log(t)+ π2

6t −
1
2 log(2π/t) = t−k

k!
.
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Letting t ↦ At, we have

1
(qA; qA)k

∼ 1
k!Ak t−k .(4.6)

Turning to estimate 1/(qA; qA)k in the regions ∣y∣ ≤ Δx, we use the same argument
in the proof of Theorem 2 of [15]. One merely modifies the proof by replacing x with
∣z∣ in Zhang’s setting to obtain

(e−A(k+1)z ; e−Az)∞ ≪
√

2π
k!

e−
π2
6∣z∣−(k+1− 1

2 ) log ∣z∣ ,

as z → 0. Moreover, by combining with (4.4), we have

1
(e−Az ; e−Az)k

= (e−A(k+1)z ; e−Az)∞
(e−z ; e−z)∞

≪ ∣z∣−k

k!
.(4.7)

Then, multiplying (4.5) and (4.7), we find that

(e−Az ; e−Az)∞
(e−z ; e−z)∞(e−Az ; e−Az)k

≪
√

A
k!

∣z∣−k e
π2
6∣z∣ (1− 1

A ) ,(4.8)

which shows that condition (3) of Theorem 4.1 is satisfied.
Multiplying (4.3) with (4.6), where q ∶= e−t , we obtain

(qA; qA)∞
(q; q)∞(qA; qA)k

∼ 1
k!Ak+ 1

2
t−k e

π2
6t (1− 1

A ).

Moreover, the coefficients (qA ;qA)∞
(q;q)∞(qA ;qA)k

are clearly positive as they count parti-
tions. They are weakly increasing as there is an easy injection from the set of partitions
of n with at most k parts which are multiples of A into the set of partitions of n + 1
which have at most k parts which are multiples of A; simply add 1 to the partition,
which does not affect the number of multiples of A among the parts.

We are thus in the situation of Theorem 4.1, where we interpret (4.8) with

λ = 1
k!Ak+ 1

2
, d = −k, N = π2

6
(1 − 1

A
).

Plugging these into Theorem 4.1 gives the desired asymptotic for p≤k(A; n). The
asymptotics for pk(A; n) follows from the identity pk(A; n) = p≤k(A; n − Ak)
obtained in (2). ∎
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