
JFP 13 (3): 573–600, May 2003. c© 2003 Cambridge University Press

DOI: 10.1017/S0956796802004586 Printed in the United Kingdom

573

Program specialization for execution
monitoring

PETER THIEMANN

Institut für Informatik, Universitát Freiburg,

Georges-Köhler-Allee 079, D-79110 Freiburg i.Br., Germany

(e-mail: thiemann@informatik.uni-freiburg.de)

Abstract

Execution monitoring is a proven tool for securing program execution and to enforce safety

properties on applets and mobile code, in particular. Inlining monitoring tools perform their

task by inserting certain run-time checks into the monitored application before executing it.

For efficiency reasons, they attempt to insert as few checks as possible using techniques ranging

from simple ad hoc optimizations to theorem proving. Partial evaluation is a powerful tool

for specifying and implementing program transformations. The present work demonstrates

that standard partial evaluation techniques are sufficient to transform an interpreter equipped

with monitoring code into a non-standard compiler. This compiler generates application code,

which contains the inlined monitoring code. If the monitor is enforcing a security policy, then

the result is a secured application code. If the policy is defined using a security automaton,

then the transformation can elide many run-time checks by using abstract interpretation. Our

approach relies on proper staging of the monitoring interpreter. The transformation runs in

linear time, produces code linear in the size of the original program, and is guaranteed not to

duplicate incoming code.

1 Introduction

Execution monitoring is a well-known methodology for detecting anomalities in

running systems (Plattner & Nievergelt, 1981). It is particularly common in operating

systems, as well as in the context of distributed systems where it can be hard or even

impossible to establish guarantees statically. Recently, it has been applied to enforce

security policies on untrusted code fragments received over a network (Erlingsson

& Schneider, 1999, 2000).

There are plenty of examples for security policies. Clearly, programs should not

violate the access control or other security policies of the computers on which they

run, e.g. accessing data or resources in an inappropriate manner.

A promising avenue is to concentrate on security policies that can be enforced

by having a reference monitor execute a security automaton (Schneider, 2000). A

reference monitor tracks the execution and checks each action for compliance with

the security policy before it is performed. If the check fails, the reference monitor

terminates the execution. Otherwise, the action is performed and execution continues.

This kind of execution monitoring can only enforce safety properties, which state that

https://doi.org/10.1017/S0956796802004586 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004586

574 P. Thiemann

nothing bad will ever happen. Liveness properties, like fair scheduling of resources,

are not in the scope of this method1.

One particular implementation of a reference monitor is code instrumentation

(Wahbe et al., 1993; Lee et al., 1999) or inlined reference monitors (Erlingsson &

Schneider, 2000). In this approach, before an application is executed, it is first trans-

formed by inserting instructions that perform the monitoring. In all implementations

that we know of, this instrumentation is implemented in an ad hoc fashion.

We propose a structured approach to inlined reference monitoring. First, we add

the reference monitor to an (existing) interpreter, which is easy to do and also easy

to examine for correctness. Then, we perform the transformation step automatically

using program specialization (partial evaluation). By automating this step, we can

be sure that the resulting specialized code

• retains the semantics of all admissible executions (the semantics is not generally

preserved because the reference monitor may terminate executions that do not

comply with the security policy);

• performs monitoring as implemented in the interpreter; and

• keeps monitoring data and application data apart, so it prevents the subversion

or circumvention of the reference monitor.

In the particular case where monitoring implements a security automaton, the

partial evaluator can perform some of the compliance checks at transformation time

(compile time).

The main goal of the paper is to present this partial-evaluation based approach in

a manner as simple as possible. Hence, we rely only on standard features of partial

evaluation and abstract interpretation.

Simplicity is also required due to another important concern in the application

of monitoring to security: the size of the Trusted Computing Base (TCB) should

be as small as possible to enable establishing its correctness by formal verification

or by other means. For that reason, many approaches start at the level of (virtual)

machine code to avoid having a compiler in the TCB (Erlingsson & Schneider, 1999;

Appel & Felty, 2000). Although we are presenting our work in the context of partial

evaluation for an applied lambda calculus, our actual implementation relies only

on a handful of combinators that implement program specialization and that are

proven correct (Thiemann, 1999b). In fact, correct execution of the combinators and

of the code generated by them is the only requirement for our approach to work.

• No program analysis (e.g. binding-time analysis to analyze the staging prop-

erties of the interpreter) is part of the TCB. The present paper proves all

necessary staging properties.

• The approach to program generation scales down to machine code, as was

shown by Lee & Leone (1996).

• We are not relying on interprocedural flow analysis (and hence may miss some

optimization opportunities) to keep the TCB small and to guarantee linear

time execution.

1 However, some liveness properties may be conservatively approximated.

https://doi.org/10.1017/S0956796802004586 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004586

Program specialization for execution monitoring 575

1.1 Related work

Related work falls in three broad categories. First, we discuss dynamic mechanisms

that enforce security policies by performing run-time checks. Secondly, we discuss

static mechanisms that trade run-time checks for static analysis. Thirdly, we discuss

works related to our implementation vehicle, partial evaluation.

1.1.1 Dynamic approaches

Reference monitors have been conceived and implemented with varying degrees of

sophistication. The naive approach to execution monitoring is to run the code on

an interpreter that checks each action before actually performing it. This approach

is highly flexible but it involves a substantial overhead. Hence, it has never been the

design principle of choice for security mechanisms. Our present work shows how

this approach can be made practical.

A more common approach is the one taken by the JDK (J2SE, 2000). It equips

strategic functions in the library with calls to a security manager. A user-provided

instantiation of the security manager is then responsible to keep track of the actions

and to stop the code, if necessary. This approach is less flexible, but more efficient.

Unfortunately, it requires arguing that there are sufficient calls to the security

manager and that they cannot be subverted. Java solves the problem of data and

memory integrity statically by subjecting all programs to a bytecode verification

process (Lindholm & Yellin, 1996).

The Omniware approach (Wahbe et al., 1993; Adl-Tabatabai et al., 1996; Lucco

et al., 1995) guarantees memory integrity by imposing a simple program transform-

ation on programs in assembly language. The transformation confines a foreign

module to its own private data and code segment. It could be expressed by partially

evaluating a machine-language interpreter with memory-safety checks. The approach

is very efficient, but of limited expressiveness. Compared to our work, Omniware

works on a lower level (virtual machine language) and implements the transformation

in an ad hoc way as part of the TCB.

Schneider (2000) considers the kind of security policies that can be enforced using

execution monitoring. He shows that only safety properties can be decided and

offers a mechanism, security automata, for keeping track of the execution history.

His work is inspired by earlier work with Alpern (Alpern & Schneider, 1987). The

SASI project implemented this idea (Erlingsson & Schneider, 1999) for x86-assembly

language and for JVM bytecode. Both allow for a separate specification of a state

automaton and rely on code transformation to integrate the propagation of the state

with the execution of the program. They demonstrate their use of partial evaluation

to optimize the occurrence of run-time checks with an example, but no further

information is given. The authors refined their approach for Java by showing that

Java stack inspection can also be enforced efficiently and flexibly by transforming

JVM bytecode (Erlingsson & Schneider, 2000). Compared to our work, they allow

the specification of a security policy in a separate specification language and they

are not specific about the partial evaluation techniques used in their implementation.

https://doi.org/10.1017/S0956796802004586 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004586

576 P. Thiemann

In contrast, our security policy is coded into the interpreter2 and we are explicit

about our use of partial evaluation. We take advantage of the latter to construct

our formal proofs.

Evans & Twyman (1999) have constructed a system that takes a specification of

a safety policy and generates a transformed version of the Java run-time classes.

Their safety policies apply on the level of method calls. Any program that uses the

transformed classes is guaranteed to obey the specified safety policy. In comparison

to our work, their granularity of checking is method calls and there is no formal

reasoning about their implementation. In addition, the entire transformer is part of

the TCB.

Colcombet & Fradet (2000) propose a framework for enforcing trace properties.

Essentially, they transform code to incorporate an inlined reference monitor. The

monitor maintains a state which is stepped and checked before executing operations

that are relevant to the particular trace property. They describe an automata-based

framework for straight-line programs that allows them to express optimizations

to the placement of run-time checks in the transformed code. In addition, they

extend the framework by considering interprocedural flow. Our approach has similar

features and similar expressiveness as their straight-line approach. However, we rely

on automatic partial evaluation techniques to achieve many of their optimizations. In

addition, we can generate non-standard securing compilers using partial evaluation,

whereas their approach is essentially hand-coded.

1.1.2 Static approaches

Many approaches trade run-time checks with static analysis at compile-time. To

avoid the problem of increasing the size of the TCB, the static checks yield code

annotations that can be quickly checked by a small program before starting the

application. No run-time checks need to be executed during actual execution and

only the small checker is part of the TCB. However, most work does not consider

properties beyond type safety and memory integrity.

Necula and Lee (Necula & Lee, 1998; Necula, 1997) have developed a framework

in which compiled machine programs can be combined with an encoding of a proof

that the program obeys certain properties (for example, a security policy). Before

executing the resulting proof-carrying code, the proof must be locally checked against

the code. Only this proof checker must be verified and trusted, to make sure that

the proof-carrying code obeys the security policy. This has been pursued further

down to the semantics of single machine instructions by Appel and others (Michael

& Appel, 2000; Appel & Felty, 2000). To date, these approaches have been used

to enforce type safety and memory integrity. In contrast, our approach is geared

towards monitoring primitive operations and it does not rely on annotations, but

rather performs a simple abstract interpretation while generating code.

Kozen (1999) has developed a very light-weight version of proof-carrying code.

2 It would not be hard to parameterize the interpreter with respect to the security policy, giving rise to
a separate specification.

https://doi.org/10.1017/S0956796802004586 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004586

Program specialization for execution monitoring 577

He has built a compiler that includes hints to the structure of the compiled program

in the code. A receiver of such instrumented code can verify the structural hints and

thus obtain confidence that the program preserves memory integrity.

Typed Assembly Language (TAL) (Morrisett et al., 1998) provides another avenue

to generating high-level invariants for low-level code. Using TAL can guarantee type

safety and memory integrity. TAL programs include extensive type annotations that

enable the receiver to perform type checking effectively.

The capability calculus (Crary et al., 1999) extends typed lambda calculus by

an abstract notion of capabilities that are threaded through a computation. The

motivating example is memory management, but other capabilities (i.e. states of a

security automaton) could be considered. However, more machinery is required for

dealing properly with security policies as Walker’s work below demonstrates.

Walker (2000) presents a dependent type system that encodes Schneider’s security

automata in the type-level. Next he shows that the naive monitoring translation,

which inserts run-time checks before every primitive operation, yields typable code.

He gives a number of examples how the type system can verify the correctness

of transformations that remove run-time checks. Most of these transformations

require external lemmas about the security policy. These must be proved separ-

ately and fed into the system to enable transformations. The type system does

not provide guidance as to what transformations are possible. In contrast, our

system performs such transformations automatically on straight-line code during

the process of inlining the reference monitor. Optimizations that work across

procedure boundaries are outside the scope of our approach but can be proved

correct in Walker’s calculus. On the other hand, a design goal of our transformation

is to run in linear time which excludes any but the simplest kind of static

analysis, and this also ties well with the simplicity required for a trusted secure

system.

1.1.3 Partial evaluation

Implementing program transformations by program specialization has been pro-

posed by Turchin and Glück (Turchin, 1993; Glück, 1994) and put into practice

by Glück, Jørgensen, and others (Glück & Jørgensen, 1994b; Glück & Jørgensen,

1994a).

Kishon et al. (1991) have investigated the use of partial evaluation for execution

monitoring. The objective of their work is to transform an interpreter and a

specification for monitoring into a monitoring interpreter. Thus, their work may

be regarded as a pre-pass to our work: we start with a particular monitoring

interpreter and specialize it to a program with inlined monitoring instructions.

There are some works indicating that partial evaluation can benefit from abstract

interpretation (Jones, 1997; Consel & Khoo, 1991). The present work is another

evidence that their interplay can be fruitful.

Thiemann (2001) has investigated the use of type specialization to remove (in

some cases) all run-time safety checks from programs transformed for execution

monitoring. This approach relies on a translation to continuation-passing style that

https://doi.org/10.1017/S0956796802004586 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004586

578 P. Thiemann

exposes information to the specializer as much as possible. The approach is appealing

and works well in many cases, but it is prone to code duplication. Also, due to the

sophisticated specializer, the transformation phase may take exponential time, which

is not practical.

In contrast, the techniques in the present work are guaranteed to never duplicate

monitored code and to perform the transformation in linear time. This is due to

the reliance on a less powerful but more efficient specialization technique, which

does not perform interprocedural analysis. For example, the technique based on

type specialization treats non-recursive functions like straight-line code, whereas the

present approach forgets all knowledge about the state of the security automaton

across a function call.

1.2 Overview

The present work demonstrates that standard partial evaluation techniques can

implement inlined reference monitors by specialization of an interpreter instrumented

for execution monitoring. This is advantageous because it avoids ad-hoc solutions

by reusing partial evaluation practice (like efficient code generation) and theory. For

example, the correctness of a transformation can be shown using standard results

from partial evaluation. This allows for modular correctness proofs of the trusted

computing base and enables the user of execution monitoring to concentrate on the

specification of the security policy and on its correctness.

We start from a naive translation (in section 3) and modify it in section 4 to yield

two-level terms (in the sense of the partial evaluation textbook (Jones et al., 1993)),

which explicitly manage the computation of a security state. Traditional partial

evaluation of these terms implements a translation that never duplicates source

code. It yields satisfactory compiled secured programs. We consider a variant of the

translation that is more general and yields better results (section 4.2), comparable

to the results of Colcombet and Fradet’s method for straight-line code (Colcombet

& Fradet, 2000).

The purpose of this paper is to demonstrate the concepts involved in a manner

as simple as possible. Elsewhere (Thiemann, 2001), we demonstrate the use of an

advanced specialization method with a more complicated translation.

The main technical results are the correctness proofs of the translations and the

non-standard compilers generated by partial evaluation. They guarantee the safety

of the translated code and of the compiled code. In addition, we prove informally

that the translation takes O(n · s2) time where n is the size of the input expression

and s is the number of states of the automaton used to define the security policy.

We further prove that the translated term has size O(n).

2 Prerequisites

This section introduces the source language, the concept of a security automaton to

encode safety properties, and traditional partial evaluation.

https://doi.org/10.1017/S0956796802004586 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004586

Program specialization for execution monitoring 579

Syntax

expressions (Exp) e ::= v | (if e e e) | O(e) | e@e | (e, . . . , e)

values (Value) v ::= x | a | fix f(x, . . . , x)e | (v, . . . , v) | halt
evaluation contexts C ::= (if [] e e) | O([]) | []@e | v@[] |

(v, . . . , [], e, . . .)

security states σ ∈ State

base-type constants a ∈ Base

primitive operators O ∈ Op

types τ ::= BaseType | τ → τ | (τ, . . . , τ)

traces t ::= ε | O(a, . . . , a) | t t

Labeled reduction rules

(if true e1 e2)
ε−−−−→ e1

(if false e1 e2)
ε−−−−→ e2

O(a1 . . . an)
O(a1 ...an)−−−−→ a if a = �O�(a1, . . . , an) is defined

(fix x0(x1, . . . , xn)e)@(v1, . . . , vn)
ε−−−−→

e[x0 �→ fix x0(x1, . . . , xn)e, x1 �→ v1, . . . , xn �→ vn]

(if halt e1 e2)
ε−−−−→ halt

(v1, . . . halt . . . en)
ε−−−−→ halt

O(halt)
ε−−−−→ halt

halt@e
ε−−−−→ halt

v@halt
ε−−−−→ halt

Contextual rules

e
t−−−−→ e′

C[e]
t−−−−→ C[e′]

e
ε−−−−→∗ e

e
t−−−−→ e′ e′ t′−−−−→∗ e′′

e
tt′−−−−→∗ e′′

Fig. 1. The source language.

2.1 Source language

The source language is a simply-typed call-by-value lambda calculus with constants,

conditionals, tuples, and primitive operations on tuples of base-type values (see

figure 1). The expression fix x0(x1, . . . , xn)e denotes a recursively defined function.

We write λ(x1, . . . , xn)e if x0 does not appear in e, and let (x1, . . . , xn) = e1 in e2 for

(λ(x1, . . . , xn)e2)@e1. The latter is the only way to inspect the components of a tuple.

The standard typing rules defining the judgement Γ � e : τ are omitted. The only

exception is the exceptional value halt which stops the program when it appears in

an evaluation context. Since its value is never consumed, halt can assume any type.

Γ � halt : τ

The semantics is defined by a labeled transition relation
t−−−−→, where each

label, t, is a sequence of primitive operations and their arguments. The label, ε,

https://doi.org/10.1017/S0956796802004586 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004586

580 P. Thiemann

denotes the empty sequence. Every primitive operation, O : BaseTypen → BaseType,

is defined through an associated partial semantic function �O� ∈ BaseTypen ↪→
BaseType. The reduction rule for recursive function application relies on simultan-

eous, capture-avoiding substitution e[x0 �→ fix x0(x1, . . . , xn)e, x1 �→ v1, . . . , xn �→
vn]. The first four rules are the usual execution rules for conditionals, primitive

operations, and recursive functions with call-by-value semantics. The second group

of rules specifies the propagation of halt. It behaves like an exception: it pops its

entire evaluation context until only halt remains at last.

Each reduction sequence e0
t1−−−−→ e1

t2−−−−→ . . . gives rise to a potentially

infinite sequence �t = (t1, t2, . . .) of primitive operations (an execution trace). We

write e ↓t v if there is a finite sequence of reductions, e
t−−−−→∗ v.

2.2 Security automata

According to Schneider (2000), a security policy P maps a set, Π, of finite and

infinite execution traces to a truth value (true or false). We say that Π satisfies P if

P(Π) = true. A policy P is a property if satisfaction is defined element-wise (Alpern

& Schneider, 1985). That is, there is a function P̂ mapping an execution trace, σ,

to a truth value so that P(Π) = (∀σ ∈ Π) P̂(σ). Hence, a reduction sequence is

acceptable with respect to a property if P̂ of its trace yields true. Safety properties are

particular properties which place further restrictions on the set of traces (Schneider,

2000). Schneider has further shown that execution monitoring can only enforce

safety properties. He proceeds to demonstrate that execution monitoring can be

modeled using a security automaton, i.e., a state automaton with a distinguished sink

state bad. The sink state models failure to comply with the security policy.

Following Walker (2000), a security automaton is a tuple S =

(State,Op,Value, δ, σ0, bad), where

• State is a countable set of states;

• Op is a finite set of operation symbols;

• Value is a countable set of values;

• δ : Op × Value∗ × State → State is a total function so that (∀O ∈ Op, x1 . . . xn ∈
Value∗) δ(O, x1 . . . xn, bad) = bad (state transition function);

• σ0 ∈ State is the initial state; and

• bad ∈ State is the sink state with σ0
= bad.

For a trace, t, define the iterated transition function δ∗(t, σ) by

δ∗(ε, σ) = σ

δ∗(O(a1 . . . an), σ) = δ(O, a1 . . . an, σ)

δ∗(t1t2, σ) = δ∗(t2, δ
∗(t1, σ))

A closed term e is safe with respect to S and some σ ∈ State \ {bad} if for all

traces t and expressions e′ where e
t−−−−→∗ e′, it holds that δ∗(t, σ)
= bad. It is safe

with respect to S if it is safe with respect to the initial state σ0.

A typical example (Schneider, 2000; Erlingsson & Schneider, 1999; Walker, 2000)

https://doi.org/10.1017/S0956796802004586 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004586

Program specialization for execution monitoring 581

is the policy that no network send operation happens after a read operation from

a local file.

The set of states has three elements

State = {before-read, after-read, bad}

with initial state σ0 = before-read. The transition functions are the identity functions

for all primitive operations except send and read:

σ δ(read, file, σ) δ(send, data, σ) δ(O, y1 . . . yn, σ)

before-read after-read before-read before-read

after-read after-read bad after-read

bad bad bad bad

The program (λ(x)read(file))@(send(data)) is safe (with respect to σ0) since its

trace is t = (send(data), read(file)) and δ∗(t, σ0) = after-read. It is not safe with

respect to after-read since δ∗(t, after-read) = bad.

The program (λ(x)send(data))@(read(file)) is not safe with respect to any state:

its trace t′ = (read(file), send(data)) yields δ∗(t′, before-read) = bad as well as

δ∗(t′, after-read) = bad.

2.3 Partial evaluation

Traditional partial evaluation techniques (Consel & Danvy, 1993; Jones et al., 1993)

rely on non-standard interpretation of a source program to perform as many

operations on compile-time data as possible. In offline partial evaluation, a binding-

time analysis determines the compile-time operations before actually specializing

the code. The analysis communicates with the specializer using two-level terms,

which indicate code generation by underlining and compile-time operations by

overlining. Interpretation of an underlined term first interprets the subterms and then

constructs a syntax tree from the values according to the underlined term constructor.

Interpretation of an overlined term is identical to standard interpretation.

Although offline partial evaluation misses some specialization opportunities, it

demonstrates the concepts involved in compiling monitoring execution well:

• It is simple to understand as non-standard interpretation.

• It is easy to predict the form and the size of the compiled code as well as the

compilation speed by inspecting the two-level term.

• It gives satisfactory results for this application.

• It is possible to circumvent the binding-time analysis and to directly generate

two-level terms if it can be proven in advance that they are well-annotated

with respect to the analysis.

• Specialization is very fast.

We rely on the PGG system (Thiemann, 2000), which specializes quickly because it

https://doi.org/10.1017/S0956796802004586 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004586

582 P. Thiemann

relies on the cogen approach to program specialization (Launchbury & Holst, 1991).

In this approach, there is no interpretation of two-level terms. Instead, two-level

terms are executed directly using a fast implementation of the code generating

constructs (Thiemann, 1999b).

Proving the correctness of a partial evaluator amounts to proving the MIX-

equation (Jones et al., 1993). Suppose that spec is the program text of a specializer

and p is a two-level term denoting a program with inputs �x and �y. Let further �·�
map a program text to a function from inputs to output. Considering the inputs �x

as compile-time inputs and the inputs�y as run-time inputs, the MIX-equation reads

��spec� p �x� �y = �erase(p)� �x �y. (1)

The function erase() maps a two-level term to a standard term by erasing all

overlining and underlining annotations as well as erase(lift e) = erase(e) (The

construct lift y converts a compile-time value, y, into a literal with the same run-

time value.). In reading this equation, it is assumed that the specializer is terminating,

i.e. p′ = �spec� p �x always yields a result. Furthermore, the specialized program, p′,

is assumed to terminate on input�y if and only if the original program, p, terminates

on input �x �y.

The text of the specialized (compiled) program is �spec� p �x. The cogen approach

mentioned above transforms a two-level program p into another program g, which

is equivalent to �spec� p, but is 6–8 times faster (Thiemann, 1999b). Hence, g takes

the compile-time inputs �x and produces the specialized program. The program g is

called a generating extension for p.

The correctness of offline partial evaluation has been considered in a number of

places (Hatcliff & Danvy, 1997; Hatcliff, 1995; Consel & Khoo, 1995; Lawall &

Thiemann, 1997). In this work, we take the correctness of the underlying specializer

for granted and make use of (1) where required. Since this might raise concerns

that the specializer becomes part of the TCB, we remark that (i) specializers have

been mechanically proves correct (Hatcliff, 1995) and (ii) by relying on the cogen

approach mentioned above, it is only necessary to verify the building bricks of the

generating extension, as we demonstrated elsewhere (Thiemann, 1999b).

3 Execution monitoring

One way to enforce safe execution is to install a reference monitor that observes

the execution and halts the system whenever it is about to violate a security policy.

In an interpreted setting based on security automata, the reference monitor can be

included in the interpreter. In the terminology of Erlingsson & Schneider (2000),

• the security events are the executions of primitive operations,

• the security state is the state of the security automaton, and

• the security updates are the extra constructs in the handling of primitive

operations that maintain the state of the security automaton: Before attempting

a primitive operation, the interpreter steps the security state according to the

operation and its arguments and checks whether the result is bad. If that is the

https://doi.org/10.1017/S0956796802004586 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004586

Program specialization for execution monitoring 583

case, the program is stopped. Otherwise, the interpreter performs the primitive

operation and continues using the new security state.

The interpreted setting seems well-suited to implementing such a reference monitor

because

1. the interpreter clearly mediates all security events;

2. the integrity of the interpreter is protected from malevolent applications; and

3. the presence of the interpreter is transparent to the application.

Erlingsson & Schneider (2000) continue to consider Inlined Reference Monitors

(IRMs). We are also aiming at providing an IRM, but instead of implementing a

system to instrument code with an IRM from scratch, we obtain such a system

by specializing an interpreter that includes a reference monitor. Another view

of this specialization process is to consider an interpreter and the translation

achieved by unfolding the interpreter’s defining equations interchangeably. This

view is quite natural because partial evaluation of an interpreter implements exactly

this translation.

3.1 Naive translation

Figure 2 shows a translation that makes the sequencing of the operations and the

passing of the security state explicit. The output of the translation is in A-normal

form (Flanagan et al., 1993), and thus well suited to compiling it. In particular,

the target language of the translation is a typed lambda calculus (like the source

language) extended by a separate let expression with the obvious derived evaluation

rule. A let expression is compiled to more efficient code than a function application.

The translation is specified using two pairs of mutually recursive functions, || · ||
and |·|. One pair of functions works on the type level and the other on the expression

level. In general, || · || translates values and types for values, whereas | · | translates

computations and their types. They are inspired by monadic translations (Hatcliff &

Danvy, 1994). The value translation for a type leaves most parts unchanged, except

for function types where the argument type is translated using || · || and the result

type is translated using | · |.
The translation of a computation yields a (security) state transformer. It is a

function that accepts a state and returns the updated state paired with a value of

suitable type.

Variables only contain values. Hence, all type assumptions on variables are

translated using || · ||.
The translation of value expressions is straightforward. Variables and base type

constants are passed through unchanged and, for a tuple, the translation rebuilds

the tuple with the translated values. Recursive functions are mapped into recursive

functions that take an extra parameter, the security state σ, and have their body

translated using the translation of computation expressions, as required by the type

translation outlined above.

The translation of computation expressions takes a security state as a parameter

https://doi.org/10.1017/S0956796802004586 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004586

584 P. Thiemann

Types

||BaseType|| = BaseType

||τ1 → τ2|| = ||τ1|| → |τ2|
||(τ1, . . . , τn)|| = (||τ1||, . . . , ||τn||)
|τ| = State → (State, ||τ||)
Type environments

||∅|| = ∅
||Γ, x : τ|| = ||Γ||, x : ||τ||
Values

||x|| = x

||a|| = a

||fix x0(x1 . . . xn)e|| = fix x0(x1, . . . , xn)λ(σ)|e|σ
||(v1, . . . , vn)|| = (||v1||, . . . , ||vn||)
Terms

|v|σ = (σ, ||v||)
|(if e1 e2 e3)|σ = let (σ1, y1) = |e1|σ in

if y1 then |e2|σ1 else |e3|σ1

|(e1, . . . , en)|σ = let (σ1, y1) = |e1|σ in . . .

let (σn, yn) = |en|σn−1 in

(σn, (y1, . . . , yn))

|O(e)|σ = let (σ′, y) = |e|σ in

let σ′′ = δ(O, y, σ′) in

if σ′′ = bad then halt else (σ′′, O(y))

|e0@e1|σ = let (σ0, y0) = |e0|σ in

let (σ1, y1) = |e1|σ0 in

y0@y1@σ1

Fig. 2. Monitoring interpreter.

and constructs a pair containing the updated state and the actual result. The

cases for values, conditional, tuples, and application are standard, i.e. as usual

in a monadic translation to state-passing style. The case for primitive operations

inserts the stepping and testing of the security state as explained above: It evaluates

the argument to the primitive, determines the security state after execution of the

primitive, and stops execution if this results in a bad state. Otherwise, it continues

with the new security state and the result of the operation.

3.2 Properties of the naive translation

The translation acts on types as follows.

Proposition 3.1

1. If Γ � e : τ then ||Γ|| � |e| : |τ|.
2. If Γ � v : τ then ||Γ|| � ||v|| : ||τ||.

A translated program is always safe with respect to the underlying security

automaton because it has reified the security state and explicitly checks this state

before attempting an operation. The check itself does not subvert safety because

https://doi.org/10.1017/S0956796802004586 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004586

Program specialization for execution monitoring 585

the primitive operation δ on the explicit security state does not affect the implicit

state of the security automaton. Formally, let S′ = (State,Op′,Value, δ′, σ0, bad) with

Op′ = Op ∪ {δ} where δ′ is specified by δ′(O, y1 . . . yn, σ) = δ(O, y1 . . . yn, σ), for all

O ∈ Op, and δ′(δ, y0y1 . . . yn, σ) = σ. While the automaton S determines the safety

of the original expression, the automaton S′ determines the safety of the translated

expression.

We conclude by stating the key properties of the translation. An expression

translated with state σ is safe with respect to S′ and σ.

Proposition 3.2

Let σ
= bad. If |e|σ ↓t′ (σ′, v′) then δ′∗(t′, σ) = σ′ where σ′
= bad.

Proof

By induction on the number of steps needed for |e|σ ↓t′ (σ′, v′) and a case analysis

on e. �

For the following propositions, we need a simple lemma. It states that substitution

of values is compatible with the translation.

Lemma 3.3

1. |e|σ[x := ||v′||] = |e[x := v′]|σ
2. ||v||σ[x := ||v′||] = ||v[x := v′]||σ

If the original term evaluates to a value without entering a bad state then so

does the translated term. For first-order results, the values of both computations are

equal. For functional results, the values are related by || · ||. To state this connection

precisely, it is necessary to relate execution traces for S with those of S′. If t is a

trace for S and σ is a security state then define |t|σ as follows:

|ε|σ = ε

|O(a1 . . . an)|σ = δ(O, a1 . . . an, σ) O(a1 . . . an)

|t1t2|σ = |t1|σ |t2|(δ∗(t1, σ))

Hence, each operation in a trace is transformed into its checking operation δ(O, . . .)

followed by the actual operation. First, we need a lemma that shows that the

translated term simulates the behavior of the original term in some way.

Lemma 3.4

Suppose that e
t−−−−→ e′ and σ′ = δ(t, σ)
= bad.

Then |e|σ |t|σ
−−−−→∗ |e′|σ′.

Proof

By induction on the definition of
t−−−−→. �

A further induction on the definition of
t−−−−→∗ yields the corresponding result

for values.

https://doi.org/10.1017/S0956796802004586 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004586

586 P. Thiemann

Proposition 3.5

Let σ
= bad. Suppose e ↓t v and σ′ = δ∗(t, σ).

If σ′
= bad then |e|σ ↓t′ (σ′, ||v||) where t′ = |t|σ.

If evaluation of the translation of a typed term leads to non-termination or to an

undefined primitive operation then so does evaluation of the source term.

Proposition 3.6

Suppose ∅ � e : τ. If there exist no σ′, v′, and t′ such that |e|σ ↓t′ (σ′, v′) then there

exist no v and t such that e ↓t v.

4 Compiling policies by partial evaluation

The naive translation (figure 2) is already amenable to partial evaluation, by

considering the functions | · | and || · || as compile-time functions and unfolding

their invocations. The resulting programs are safe but inefficient because they test

the security state at every primitive operation.

To achieve more interesting results, we must transform the naive translation to

(1) expose compile-time information about the security state, and to (2) stage all

operations to make sure that compile-time operations do not depend on run-time

values. The first task requires some creativity and insight in the particular problem.

The second task is performed with the help of a type system or a binding-time

analysis.

In particular, we must decide which values should become compile-time values.

Quite often, the most obvious choice does not yield a correct staging (a violation

of (2)) or it leads to an ill-behaved specialization: Either too much is specialized so

that code is duplicated or too little is specialized so that only trivial computations

are performed at specialization time. In such a case, the two-level program must be

augmented to compute additional values at compile-time. Determining these values

and taking advantage of them requires creativity and insight into the problem.

The revised translation makes the staging explicit using a two-level language. In a

two-level program, overlining indicates compile-time operations whereas underlining

indicates run-time operations. The same markup applies to types, too. Running a

two-level program executes the compile-time operations and generates code for the

run-time operations. Invocations of the translation are considered as compile-time

operations. Specializing the translation with respect to an incoming program results

in an optimized, secured program.

The translation that we are showing is written in a two-level language, that is,

it is already binding-time analyzed. This is proves in Proposition 4.1 in section 4.3.

The binding-time analysis that we are using relies on context propagation (or

continuation-based partial evaluation (Bondorf, 1992)), a standard feature of state-

of-the-art partial evaluators. Inspection of the translation reveals that compile-time

values are returned from the bodies of run-time let expressions. Context propagation

enables the partial evaluator to float the run-time let expression outward so that the

compile-time computation can continue in the body of the let expression. Technically,

https://doi.org/10.1017/S0956796802004586 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004586

Program specialization for execution monitoring 587

Types

||BaseType||o = BaseType

||τ1 → τ2||o = (||τ1||o)→|τ2|d
||(τ1, . . . , τn)||o = (||τ1||o, . . . , ||τn||o)
|τ|d = (State)→(State, ||τ||o)
|τ|o = 〈P(State),State→State, State〉

→ 〈P(State),State→State, State, ||τ||o〉
Type environments

||∅||o = ∅
||Γ, x : τ||o = ||Γ||o, x : ||τ||o

Fig. 3. Staged translation I: types and environments.

the partial evaluator “collects” the let-definitions in the nearest enclosing run-time

expression (usually a run-time function or conditional).

4.1 Staged translation

The first idea is to make the security state a compile-time value. However, this

approach quickly leads to problems. In a traditional partial evaluator, run-time data

structures cannot contain compile-time values. In particular, run-time functions

neither take compile-time parameters nor deliver compile-time results. Since the

translation must treat all functions from the incoming code as run-time functions,

it is not possible to thread a compile-time state through them (at least not without

code duplication, which we want to avoid).

The next idea is to represent the changes to the security state by a compile-time

value. Unfortunately, even that is not possible, in general, because δ can depend

upon the actual (run-time) arguments to a primitive operation.

However, we can consider the compile-time component, δ(O) : State → State, of

the transition function, δ. It is defined by

δ(O)(σ) :=

{
σ′ if ∀y1 . . . yn.δ(O, y1, . . . , yn, σ) = σ′

bad otherwise

The first case applies if the next state is independent of the runtime arguments,

y1, . . . , yn, to O, so it can be computed at compile-time. In the second case, the next

state depends upon the runtime arguments so it must be computed at run-time. The

latter is signaled by returning bad at compile-time.

Building on δ(O), our translation (shown in figures 3 and 4) transforms incoming

code using three parameters:

1. A compile-time set, S ∈ P(State), of possible current security states.

2. A compile-time function, d ∈ State→State, that maps dynamic security states.

3. A run-time value σ that holds a dynamic security state.

The same three values are also returned (together with the computed value) from

the translated two-level expression. The main trick of the translation is to handle

https://doi.org/10.1017/S0956796802004586 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004586

588 P. Thiemann

Values

||x||o = x

||a||o = a

||fix x0(x1 . . . xn)e||o = fix x0(x1, . . . , xn)λσ.

let 〈S, d, σ′, y〉 = |e|o@〈State \ {bad}, λσ.σ, σ〉
in (d@(σ′), y)

||(v1, . . . , vn)||o = (||v1||o, . . . , ||vn||o)

Terms

|v|o@〈S, d, σ〉
= 〈S, d, σ, ||v||o〉

|(if e1 e2 e3)|o@〈S, d, σ〉
= let 〈S1, d1, σ1, y1〉 = |e1|o@〈S, d, σ〉 in

let (σ′, y′) =

if y1

then let 〈S 2, d2, σ2, y2〉 = |e2|o@〈S1, d1, σ1〉 in (d2@(σ2), y2)

else let 〈S 3, d3, σ3, y3〉 = |e3|o@〈S1, d1, σ1〉 in (d3@(σ3), y3)

in 〈State \ {bad}, λσ.σ, σ′, y′〉
|(e1, . . . , en)|o@〈S, d, σ〉

= let 〈S1, d1, σ1, y1〉 = |e1|o@〈S, d, σ〉 in . . .

let 〈Sn, dn, σn, yn〉 = |en|o@〈Sn−1, dn−1, σn−1〉 in
〈Sn, dn, σn, (y1, . . . , yn)〉

|O(e)|o@〈S, d, σ〉
= let 〈S ′

, d′, σ′, y〉 = |e|o@〈S, d, σ〉 in
let S

′′
= δ(O)(S

′
) in

let d′′ = δ(O) ◦ d′ in

if bad /∈ S
′′
then let y′ = O(y) in 〈S ′′

, d′′, σ′, y′〉 else
let σ′′ = δ(O, y, d′@(σ′)) in

if σ′′ = lift bad then halt else

let y′ = O(y) in

〈S ′′ \ {bad}, λσ.σ, σ′′, y′〉
|e0@e1|o@〈S, d, σ〉

= let 〈S0, d0, σ0, y0〉 = |e0|o@〈S, d, σ〉 in
let 〈S1, d1, σ1, y1〉 = |e1|o@〈S0, d0, σ0〉 in
let (σ′, y′) = y0@(y1)@(d1@(σ1)) in

〈State \ {bad}, λσ.σ, σ′, y′〉

Fig. 4. Staged translation II: expressions.

updates to σ (which necessarily happen at run-time) lazily. At any point in the

execution, σ contains a past security state. The current security state is always

represented by d@(σ) and is approximated by S . The state σ is only current when

it is completely unknown, that is, on entry to a function, on return from a function,

or after a primitive operation that cannot be checked at compile-time.

For easier readability, we have chosen not to use the overlining/underling markup

for tuples. Instead, we write 〈S, d, σ〉 for constructing and examining compile-time

tuples and (σ′, y′) for run-time tuples.

Although d acts on run-time values, it is a compile-time value. It can be composed

and examined at compile-time.

https://doi.org/10.1017/S0956796802004586 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004586

Program specialization for execution monitoring 589

The translated term uses the set S at compile-time to predict whether a run-

time test for bad is necessary. Formally, the translation maintains the following

compile-time invariants:

1. the current state is equal to d@σ,

2. the current state is contained in S: d@σ ∈ S , and

3. bad /∈ S .

To initialize these invariants, the approximation S is set to State\{bad}3, whenever

the current security state is completely unknown. This happens in the translation

of fix, function application, the conditional (to some extent), and the primitive

operations.

To maintain the invariants throughout the translation, each application of a

primitive updates S by computing4

δ(O)(S) :=
⋃
σ∈S

δ(O)(σ).

In addition, the translation composes d with the static state transition function δ of

the primitive operation. Only if the test for bad is not possible at compile-time does

the translated term apply d to the dynamic security state σ to compute the current

security state at run-time and perform the test.

The translation of values, || · ||o, does not involve passing of state information.

Except for fix, the cases are straightforward. In the case of fix, each function

receives an additional argument and an additional result, both of type State (a

run-time security state). Since the security state passed to a function is unknown

at compile-time, the corresponding argument σ represents the security state at the

time the function is called. To transform the body of the function, we start with

the set State \ {bad} and the identity transition function λσ.σ which verifies the

invariant that (λσ.σ)@(σ) = σ is the current state. Correspondingly, at the end of

the computation in the body, the function can only return run-time values. Hence,

the translated term applies the accumulated compile-time transition function to the

run-time state to return the current run-time state to the caller. We call this flushing

the compile-time information. Dually, in the translation of a function application, the

current state is passed to the function as a run-time value and the returned state is

paired up with a compile-time identity as transition function.

This explains the two different translations for the type of an expression, | · |d
and | · |o. The translation | · |d applies to the result of a run-time function and thus

returns a run-time type, where the compile-time parts have been flushed as just

explained. The translation | · |o yields a two-level type with non-trivial staging, i.e.

3 It would be possible to do better here by designing an abstract interpretation that computes a
conservative estimate of the set of possible states on entry to each body of a function. However, this
approach requires an additional prepass involving a fixpoint computation. Thus, it would break the
conceptual simplicity of the approach as well as the linear time complexity.

4 This computation can take time quadratic (or worse) in the size of State. To bring this time down to a
constant, we can conservatively approximate δ(O)(S) by δ(O)(State\{bad}), which can be precomputed
and then looked up at translation time.

https://doi.org/10.1017/S0956796802004586 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004586

590 P. Thiemann

with compile-time and run-time parts in expressions that do not immediately crop

up as the body of a function.

The translation of a value as a computation just passes on the approximation, the

state, and the transition function without change.

The translation of a conditional also involves flushing. It threads approximation,

state, and translation functions through the computation of the conditional and

passes it to one of the branches according to the outcome of the condition. Since each

of the branches may compute a different compile-time transition function (remember

that the two-level language executes both branches of a dynamic conditional), the

translation flushes both of them to return just a dynamic state in σ′. This state is

then packaged with State \ {bad} and a compile-time identity to satisfy the invariant

once again.

The translation of a tuple that contains non-values threads the compile-time

information through the evaluation from left to right.

The translation of a primitive operation is the most complicated part. Suppose

the translated term is about to execute a primitive operation, O. Let S
′
, d′, and

σ′ be the approximation, the transition function, and the state after evaluating the

argument of O. First, the translated term computes S
′′

= δ(S
′
), the approximate state

after applying the primitive. Next, it composes the static transition function for O

with the current transition function: d′′ = δ(O)◦d′. To test whether d′′(σ′) (the state

after the operation) is not bad, it is sufficient to test if bad /∈ S
′′
, by the invariant.

If this test succeeds, the operation is performed and the compile-time transition is

updated to d′′ in the rest of the computation. Otherwise, the run-time state is first

bumped to d′(σ′), the current run-time state. Then, the translated term applies the

dynamic state transition function for O to the actual parameters y and the current

run-time state. Hence, the run-time state after the operation is σ′′ = δ(O, y, d′(σ′)).

This value is tested for bad at run-time and the computation is halted if that is the

case. Otherwise, the translated term performs the operation and the compile-time

transition is reset to the identity function.

Function application first threads the translation arguments through the compu-

tation of the function and the argument. Next, it flushes the state and passes it

as a run-time argument to the function. On return from the function, there is no

information about σ′, so its approximation has to start with State \ {bad}.
The implementation encodes d as a list of primitive operators in reverse order

of execution. The meaning of the list On . . . O1 is the composition of the associated

static state transition functions δ(On)◦ . . . ◦δ(O1) and the empty list stands for λσ.σ.

This representation enables simple computation of d(σ) regardless of σ’s binding

time and it is amenable to memoization.

4.2 Refined translation

Several refinements to the translation in figure 4 are possible. We consider im-

provements for conditionals, for primitive operations, and for the let expression. In

addition, we consider structuring the state and the treatment of large or infinite sets

of states.

https://doi.org/10.1017/S0956796802004586 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004586

Program specialization for execution monitoring 591

|(if e1 e2 e3)|′o@〈S, d, σ〉
= let 〈S1, d1, σ1, y1〉 = |e1|′o@〈S, d, σ〉 in

let (S
′
, σ′, y′) =

if (∪,φ,φ)y1

then let 〈S 2, d2, σ2, y2〉 = |e2|′o@〈S 1, d1, σ1〉 in 〈S 2, d2@(σ2), y2〉
else let 〈S 3, d3, σ3, y3〉 = |e3|′o@〈S 1, d1, σ1〉 in 〈S 3, d3@(σ3), y3〉

in 〈S ′
, λσ.σ, σ′, y′〉

Fig. 5. Refined translation: conditional.

|O(e)|′o@〈S, d, σ〉
= let 〈S ′

, d′, σ′, y〉 = |e|′o@〈S, d, σ〉 in
let S

′′
= δ(O)(S

′
) in

let d′′ = (λ(σ)δ(O, y, σ)) ◦ d′ in

if bad /∈ S
′′
then let y′ = O(y) in 〈S ′′

, d′′, σ′, y′〉 else
let σ′′ = d′′@(σ′) in

if σ′′ = lift bad then halt else

let y′ = O(y) in

〈S ′′ \ {bad}, λσ.σ, σ′′, y′〉

Fig. 6. Refined translation: primitive operations.

4.2.1 Conditionals

The translation of conditionals can be improved by using techniques from paramet-

erized partial evaluation (Consel & Khoo, 1993). If there is a lattice of compile-

time values which only supply approximate information (as is the case here

with S ∈ P(State)) then the dynamic conditional can propagate the compile-time

information by taking the join of the values from the branches as it is shown

in Fig. 5. The annotation (∪, φ, φ) on the if declares this behavior. Here, ∪ is

the join operation on the lattice P(State) and φ is the trivial join operator on

dynamic values. The annotation follows the type (a triple of values) and specifies

one join operator for each component. Otherwise, the translation is analogous to

the previous one. In particular, the run-time state σ must also be updated because

the transition functions di cannot be returned through the dynamic conditional.

This behavior amounts roughly to renumbering states as suggested by Colcombet

& Fradet (2000).

It is possible to improve further on this behavior by starting from a translation

to continuation-passing style, but this improvement can lead to code duplication.

4.2.2 Primitive operations

Another possible improvement lies in the definition of δ in the previous section 4.1.

It leads to very conservative results if the state resulting from the application of a

primitive operator depends on the actual arguments. For example, consider a refined

read primitive, rread, in the running example. Suppose that sending after reading

https://doi.org/10.1017/S0956796802004586 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004586

592 P. Thiemann

|let x = e1 in e2|′o@〈S, d, σ〉 = let 〈S1, d1, σ1, x〉 = |e1|′o@〈S, d, σ〉 in
|e2|′o@〈S1, d1, σ1〉

Fig. 7. Refind translation: let expressions

is disallowed only if sensitive files have been read, that is,

δ(rread, file, before-read) :=

{
after-read if sensitive (file)

before-read otherwise.

In this case, δ(rread)(before-read) = bad, so that every rread operation in the

translated term comes with a run-time check. However, these run-time checks are

superfluous because δ(rread, file, σ) is never equal to bad.

To address this problem, we redefine δ so that it is no longer a function but rather

a binary relation on State:

(σ, σ′) ∈ δ(O) ⇔ ∃y1 . . . yn.δ(O, y1, . . . , yn, σ) = σ′ (2)

Using the relation δ(O) as a function P(State) → P(State), we now compute with

δ(O)(S) := {σ′ | σ ∈ S, (σ, σ′) ∈ δ(O)}

the set of all possible next states after being in a state σ ∈ S . As before, this is

a static computation and if the resulting set does not contain bad, then it is safe

to assume that the state after the operation is not bad. The composition of the

transition function d is a little bit more complicated. It cannot be completely static

anymore because δ is now a relation, that is, it only yields approximate information.

Hence, the translation composes d with the dynamic transition function δ for the

operation O and the current arguments y.

In consequence, the representation of d changes slightly. The implementation

encodes it as a list of pairs of primitive operators and their run-time arguments

in reverse order of execution. The meaning of the list (On,�yn) . . . (O1,�y1) is the com-

position of the associated state transition functions λσ.δ(On,�yn, σ)◦ . . . ◦λσ.δ(O1,�y1, σ)

and the empty list stands for λσ.σ. As before, this representation enables simple

computation of d(σ) regardless of σ’s binding time and is amenable to memoization.

4.2.3 Handling let expressions.

In the definition of the source language (section 2.1), we have regarded let expressions

as a derived notation for an application of a lambda abstraction. However, our

translation assumes that each function application involves a non-trivial change in

the flow of control. Hence, it obtains unnecessarily bad results for let expressions

because it flushes the compile-time information at each let expression.

The remedy is to extend the translation by handling let expressions directly in the

obvious way as indicated in figure 7.

https://doi.org/10.1017/S0956796802004586 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004586

Program specialization for execution monitoring 593

4.2.4 Structuring the security state

Many works advise to structure the security state in several independent components

(Erlingsson & Schneider, 1999, 2000). This kind of structuring is also possible in

our approach. A standard feature of partial evaluators, partially static structures,

enables us to model the security state as a compile-time tuple of components that

may have independent binding times. For example, there might be static components

for small finite sets and dynamic components for elements of large or infinite sets.

This structure is also imposed on the static approximation S .

The introduction of structured states does not require any conceptual change in

our translations. Hence, we are not giving new code fragments.

4.2.5 Large and infinite sets of states

For effective use of S in the translation, it is vital that it has a finite representation.

This is guaranteed if the set State is finite. However, it is not essential that S contains

exact information. Any conservative approximation, that is, any set, which contains

the set of possible current states, will do. This is also the key to handle large

or even infinite sets of states: we need to design approximations that have finite

representations. Technically, what we have specified in section 4.1 is the collecting

interpretation of the run-time state d@σ and the relation δ (from section 4.2.2)

is the most accurate approximation of δ. Constructing further approximations is

a standard task in abstract interpretation, with many examples in the literature

(Cousot & Cousot, 1977; Jones & Nielson, 1995), so we do not go into this here.

4.3 Properties of the staged translation

This section states the properties of the translation in figure 4. The same properties

also hold for the refined translation (figures 5, 6 and 7).

The translation is type preserving and fulfils the well-formedness restriction of

partial evaluation. In other words, the translation is binding-time analyzed. The

judgement Γ �bta e : τ states the latter fact in the form of a two-level type system

(Jones et al., 1993).

Proposition 4.1

1. If Γ �bta e : τ then ||Γ||o � |e|o : |τ|o.
2. If Γ �bta v : τ then ||Γ||o � ||v||o : ||τ||o.

Next, we prove a sequence of results analogous to the ones in section 3. The only

difference is that we first have to erase the newly introduced two-level annotations.

The proof techniques are again analogous to those in section 3.2.

A translated expression is safe with respect to S′ (see section 3) and σ.

Proposition 4.2

Let S ⊆ State \ {bad} with S
= ∅ and let σ ∈ S .

If erase(|e|o)@(S, λσ.σ, σ) ↓t′ (S ′, d′, σ′, v′) then δ′∗(t′, σ) = d′(σ′) where d′(σ′)
= bad.

https://doi.org/10.1017/S0956796802004586 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004586

594 P. Thiemann

If the original term delivers a result without entering a bad state then so does the

translated term. In the case of a first-order result, the values agree. Otherwise, they

are related by || · ||o.

Proposition 4.3

Let S ⊆ State \ {bad} with S
= ∅, σ ∈ S and σ′
= bad. Suppose e ↓t v and

σ′ = δ∗(t, σ).

Then erase(|e|o)@(S, λσ.σ, σ) ↓t′ (S ′, d′, σ′′, erase(||v||o)), so that d′(σ′′) = σ′ and

t′ = |t|σ.

If evaluation of the translated term leads to non-termination or to an undefined

primitive operation then so does evaluation of the source term.

Proposition 4.4

If there exists no σ′, v′, and t′ such that erase(|e|o)@(S, λσ.σ, σ) ↓t′ (S ′, d′, σ′, v′) then

there exists no v and t such that e ↓t v.

The safety of the translated program specialized with respect to an initial state

σ0 follows directly from the MIX-equation (1). In our application, there are two

compile-time inputs, the program, e, and the initial value for δ, and one run-time

input, the initial value for σ.

Proposition 4.5

Let trans be the two-level term so that �trans�e = |e|o, e a closed expression in the

source language, S ⊆ State with bad /∈ S , and σ0 ∈ S .

��spec� (let 〈S ′, d′, σ′, v〉 = trans@e@〈S, λ(σ)σ, σ0〉 in v)�

= let (S ′, s′, σ′, v) = erase(|e|o)@(S, λσ.σ, σ0) in v

Here, σ0 is the dynamic “lifted” value corresponding to σ0.

The safety of the thus compiled program follows from the MIX-equation (1) and

from Proposition 4.5.

Corollary 4.6

The compiled program

�spec� (let 〈S ′, d′, σ′, v〉 = trans@e@〈S, λ(σ)σ, σ0〉 in v)

is safe with respect to S′ (as defined in section 3).

4.4 Non-functional properties

We have claimed that a partial evaluator running the staged translations in figures

4–7 will translate a program in linear time and that the size of the translated program

will be linear, both in the size of the original program. Technically, we prove the

following claims, where n is the size of the translated expression and s = |State|:

• The translation runs in time O(n · s2).
• The size of the translated code is in O(n).

• As a corollary of the latter, we obtain that the translation does not duplicate

code.

https://doi.org/10.1017/S0956796802004586 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004586

Program specialization for execution monitoring 595

The following assumptions are used to justify this claim:

• The partial evaluator employs context propagation, that is, it floats dynamic

let expressions out of the way of compile-time computations. This is a

standard feature of partial evaluators for functional programming languages.

The consequence of context propagation is that the body of a dynamic let

expression can return compile-time values (Bondorf, 1992).

• Contexts are not propagated to the branches of dynamic conditionals. This

feature was suggested by Lawall & Danvy (1994), but dismissed because it

may lead to code duplication.

• Dynamic conditionals may return approximate compile-time values (only used

for parameterized partial evaluation in section 4.2).

• An application of the transition function δ takes constant time.

We have used the author’s PGG system for the Scheme language in our experiments

(Thiemann, 2000, 1999a). The released version of the system contains the features

listed.

To support the claim that the translation runs in time O(n · s2), we examine each

case of the translation in figure 4.

• x: constant time.

• a: constant time.

• fix: all operations in the translated term take constant time except the

computation of δ(σ′). Since δ is represented by a list of operations, this last

step may take time proportional to the number of operations in the body of

the function. At this point, we require a simple amortization argument: Since

each list of operations is flushed in this way at most once, we distribute the

time taken for applying δ by adding a constant-time step to each primitive

operation.

• For an n-tuple, only the tuple must be created in constant time (assuming that

there is an upper bound on the size of tuples created in a program).

• The embedding of a value takes constant time.

• if: all operations take constant time except the computations of δ2(σ2) and

δ3(σ3), each of which is again dealt with by the amortization argument.

• Tuple computation: all operations take constant time.

• Primitive operation:

— The computation of δ(O)(S
′
) can take time quadratic in the size of State

(assuming that the set is implemented as a boolean vector and δ is

represented by a boolean matrix the translation must multiply the matrix

with the vector).

— Composing the transition functions as in δ(O) ◦ d′ takes constant time.

— The static text bad /∈ S
′′

takes time linear in |State|, which is again

dominated by the quadratic time bound above.

— The remaining expressions are run-time computations, so their construction

takes constant time.

— For technical reasons, we need to spend one unit of constant time, which

we lend to at most one use of flushing in the transformation.

https://doi.org/10.1017/S0956796802004586 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004586

596 P. Thiemann

• Function application: The only non-trivial computation is d1@(σ1), which is

dealt with using our amortization argument.

In summary, the time spent at each of the n subexpressions of the source program

is bounded by O(s2), so that the time spent for translating the source program is

O(n · s2).
To conclude that the translation produces code whose size is linear in the size of

the input code, we recall the following facts:

• The translation takes linear time to run.

• The output code is a tree, i.e. there is no sharing of output program fragments.

• The operations working in time quadratic in |State| are purely compile-time,

they do not generate any code.

The claim is immediate from these facts.

As a corollary, we find that no code duplication can occur. In the presence of

code duplication, it would not be possible to prove a linear size bound.

Both claims still hold for our refined translations of conditionals and primitive

operations. In the case of the conditional, only the ∪ operation annotating the

conditional in figure 5 can make a difference with respect to our analysis. It can

take quadratic time in |State|. Hence, it is also dominated by the assumed quadratic

time bound.

The analysis for primitive operations (figure 6) is identical to the previous one.

5 Conclusions

Offline partial evaluation is well-suited to translate programs into secured programs

that comply with security policies specified by security automata. We have demon-

strated this using a simple homogeneous translation to have a clear presentation of

the fundamental concepts. More run-time checks could be eliminated by considering

a number of avenues, for example, by using stronger specialization techniques

(Thiemann, 2001), by allowing for code duplication, or by flow analysis (Jagannathan

& Wright, 1998).

The techniques shown here are designed to

• never duplicate code,

• run efficiently and predictably in time linear in the size n of the input (O(n · s2)
where s is the number of states of the security automaton), and

• be applicable with all specialization techniques, e.g. online partial evaluation

(Weise et al., 1991), offline partial evaluation (Jones et al., 1993), type special-

ization (Hughes, 1996), type-directed partial evaluation (Danvy, 1996).

The translations presented in this work have been designed and tested using the

PGG system (Thiemann, 2000), an offline partial evaluator for Scheme. Since this

system relies on combinators to generate specialized programs (Thiemann, 1999b),

only these combinators need to be part of the TCB.

The factor O(s2) above looks daunting. We rely on suitable abstractions (see

https://doi.org/10.1017/S0956796802004586 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004586

Program specialization for execution monitoring 597

section 4.2.5) of the set of run-time states to a tractable number of compile-time

states, so that s is never large and we can regard O(s2) as a constant.

On straight-line code, the results of the refined translation are comparable to

those of Colcombet & Fradet (2000). For programs that involve function calls, their

technique yields better results because our translation does not transfer information

across function calls. Basing the translation on the results of a flow analysis will

improve on that. However, this option means to increase the size of the trusted

computing base and it is rejected by Erlingsson & Schneider (2000) for that reason.

Only extensive practical experience can show whether the number of run-time

tests remaining in transformed programs is acceptable. For that reason, we plan to

integrate the translation with run-time code generation and conduct such tests. The

resulting framework will provide just-in-time securing compilation and it will serve

as a vehicle for experiments with mobile code.

Acknowledgements

Many thanks to the reviewers for their extensive and thorough comments. Their

remarks have lead to considerable improvements in the presentation of the work.

References

Adl-Tabatabai, A.-R., Langdale, G., Lucco, S. and Wahbe, R. (1996) Efficient and language-

independent mobile programs. Proc. ACM SIGPLAN Conference on Programming Language

Design and Implementation. Philadelphia, PA. ACM Press.

Alpern, B. and Schneider, F. B. (1985) Defining liveness. Infor. Process. Lett. 21(4), 181–185.

Alpern, B. and Schneider, F. B. (1987) Recognizing safety and liveness. Distributed Comput.

2, 117–126.

Appel, A. W. and Felty, A. P. (2000) A semantics model of types and machine instructions for

proof-carrying code. In: Reps, T., editor, Proc. 27th Annual ACM Symposium on Principles

of Programming Languages. Boston, MA. ACM Press.

Bondorf, A. (1992) Improving binding times without explicit CPS-conversion. Proc. 1992

ACM Conference on Lisp and Functional Programming, pp. 1–10.

Colcombet, T. and Fradet, P. (2000) Enforcing trace properties by program transformation.

In: Reps, T., editor, Proc. 27th Annual ACM Symposium on Principles of Programming

Languages. Boston, MA. ACM Press.

Consel, C. and Danvy, O. (1993) Tutorial notes on partial evaluation. Proc. 20th Annual ACM

Symposium on Principles of Programming Languages, pp. 493–501. Charleston, SC. ACM

Press.

Consel, C. and Khoo, S. C. (1991) Parameterized partial evaluation. Proc. Conference on

Programming Language Design and Implementation. Toronto, Canada. ACP Press.

Consel, C. and Khoo, S. C. (1993) Parameterized partial evaluation. ACM Trans. Program.

Lang. Syst. 15(3), 463–493.

Consel, C. and Khoo, S. C. (1995) On-line and off-line partial evaluation: semantic

specifications and correctness proofs. J. Functional Program. 5(4), 461–500.

Cousot, P. and Cousot, R. (1977) Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints. Proc. 4th Annual ACM

Symposium on Principles of Programming Languages, pp. 238–252. ACM.

https://doi.org/10.1017/S0956796802004586 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004586

598 P. Thiemann

Crary, K., Walker, D. and Morrisett, G. (1999) Typed memory management in a calculus

of capabilities. In: Aiken, A., editor, Proc. 26th Annual ACM Symposium on Principles of

Programming Languages, pp. 262–275. San Antonio, TX. ACM Press.

Danvy, O. (1996) Type-directed partial evaluation. Proc. 23rd Annual ACM Symposium on

Principles of Programming Languages, pp. 242–257. St. Petersburg, FL. ACM Press.

Erlingsson, Ú. and Schneider, F. B. (1999) SASI enforcement of security policies: A

retrospective. Proceedings New Security Paradigms Workshop.

Erlingsson, Ú. and Schneider, F. B. (2000) IRM enforcement of Java stack inspection. IEEE

Symposium on Security and Privacy. Oakland, CA. IEEE Computer Society, California.

Evans, D. and Twyman, A. (1999) Flexible policy-directed code safety. IEEE Symposium on

Security and Privacy.

Flanagan, C., Sabry, A., Duba, Bruce F. and Felleisen, M. (1993) The essence of compiling

with continuations. Proc. ACM SIGPLAN ’93 Conference on Programming Language Design

and Implementation, pp. 237–247.

Glück, R. (1994) On the generation of specializers. J. Functional Program. 4(4), 499–514.

Glück, R. and Jørgensen, J. (1994a) Generating optimizing specializers. IEEE International

Conference on Computer Languages 1994, pp. 183–194. Toulouse, France. IEEE Press.

Glück, R. and Jørgensen, J. (1994b) Generating transformers for deforestation and

supercompilation. In: Le Charlier, B., editor, Static Analysis: Lecture Notes in Computer

Science 864, pp. 432–448. Springer-Verlag.

Hatcliff, J. (1995) Mechanically verifying the correctness of an offline partial evaluator. In:

Swierstra, D. and Hermenegildo, M., editors, International Symposium on Programming

Languages, Implementations, Logics and Programs (PLILP ’95): Lecture Notes in Computer

Science 982, pp. 279–298. Springer-Verlag.

Hatcliff, J. and Danvy, O. (1994) A generic account of continuation-passing styles. Proc. 21st

Annual ACM Symposium on Principles of Programming Languages, pp. 458–471. Portland,

OR. ACM Press.

Hatcliff, J. and Danvy, O. (1997) A computational formalization for partial evaluation. Math.

Struct. Comput. Sci. 7(5), 507–542.

Hughes, J. (1996) Type specialisation for the λ-calculus; or, a new paradigm for partial

evaluation based on type inference. In: Danvy, O., Glück, R. and Thiemann, P., editors,

Partial Evaluation: Lecture Notes in Computer Science 1110, pp. 183–215. Schloß Dagstuhl,

Germany. Springer-Verlag.

J2SE (2000) Java2 platform. http://www.javasoft.com/products/.

Jagannathan, S. and Wright, A. (1998) Polymorphic splitting: An effective polyvariant flow

analysis. ACM Trans. Program. Lang. Syst., 20(1), 166–207.

Jones, N. D. (1997) Combining abstract interpretation and partial evaluation (brief overview).

In: Van Hentenryck, P., editor, Proc. International Static Analysis Symposium, SAS’97:

Lecture Notes in Computer Science 1302, pp. 396–405. Berkeley, CA. Springer-Verlag.

Jones, N. D. and Nielson, F. (1995) Abstract interpretation. In: Abramsky, S., Gabbay, D.

and Maibaum, T. S. E., editors, Handbook of Logic in Computer Science, vol. 4. Oxford

University Press.

Jones, N. D., Gomard, C. K. and Sestoft, P. (1993) Partial Evaluation and Automatic Program

Generation. Prentice-Hall.

Kishon, A., Hudak, P. and Consel, C. (1991) Monitoring semantics: A formal framework

for specifying, implementing and reasoning about execution monitors. Proc. Conference on

Programming Language Design and Implementation. Toronto, Canada. ACP Press.

Kozen, D. (1999) Language-based security. Technical Report TR99-1751, Cornell University,

Computer Science.

https://doi.org/10.1017/S0956796802004586 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004586

Program specialization for execution monitoring 599

Launchbury, J. and Holst, C. K. (1991) Handwriting cogen to avoid problems with static

typing. Draft Proceedings, Fourth Annual Glasgow Workshop on Functional Programming,

pp. 210–218.

Lawall, J. L. and Danvy, O. (1994) Continuation-based partial evaluation. Proc. 1994 ACM

Conference on Lisp and Functional Programming, pp. 227–238. Orlando, FL. ACM Press.

Lawall, J. L. and Thiemann, P. (1997) Sound specialization in the presence of computational

effects. Proc. Theoretical Aspects of Computer Software: Lecture Notes in Computer Science

1281, pp. 165–190. Sendai, Japan. Springer-Verlag.

Lee, I., Kannan, S., Kim, M., Sokolsky, O. and Viswanathan, M. (1999) Runtime assurance

based on formal specifications. 1999 International Conference on Parallel and Distributed

Processing Techniques and Applications.

Lee, P. and Leone, M. (1996) Optimizing ML with run-time code generation. Proc. Conference

on Programming Language Design and Implementation. Toronto, Canada. ACP Press.

Lindholm, T. and Yellin, F. (1996) The Java Virtual Machine Specification. Addison-Wesley.

Lucco, S., Sharp, O. and Wahbe, R. (1995) Omniware: A universal substrate for web

programming. Worldwideweb JL. 1(1).

Michael, N. G. and Appel, A. W. (2000) Machine instruction syntax and semantics in higher

order logic. 17th International Conference on Automated Deduction (CADE-17).

Morrisett, G., Walker, D., Crary, K. and Glew, N. (1998) From system F to typed assembly

language. In: Cardelli, L., editor, Proc. 25th Annual ACM Symposium on Principles of

Programming Languages. San Diego, CA. ACM Press.

Necula, G. C. (1997) Proof-carrying code. In: Jones, N. D., editor, Proc. 24th Annual ACM

Symposium on Principles of Programming Languages. Paris, France. ACM Press.

Necula, G. C. and Lee, P. (1998) Safe, untrusted agents using proof-carrying code. In: Vigna,

G., editor, Mobile Agent Security: Lecture Notes in Computer Science 1419, pp. 61–91.

Springer-Verlag.

Plattner, B. and Nievergelt, J. (1981) Monitoring program execution: A survey. Computer,

16(11), 76–93.

PLDI ’96 (1996) Proc. ACM SIGPLAN Conference on Programming Language Design and

Implementation. Philadelphia, PA. ACM Press.

PLDI ’91 (1991) Proc. Conference on Programming Language Design and Implementation.

Toronto, Canada. ACM Press.

Reps, T. (ed) (2000) Proc. 27th Annual ACM Symposium on Principles of Programming

Languages. Boston, MA. ACM Press.

Schneider, F. B. (2000) Enforceable security policies. ACM Trans. Infor. Syst. Security, 3(1),

30–50.

Thiemann, P. (1999a) Aspects of the PGG system: Specialization for Standard Scheme. In:

Hatcliff, J., Mogensen, T. Æ. and Thiemann, P., editors, Partial Evaluation – Practice and

Theory. Proceedings DIKU International Summerschool: Lecture Notes in Computer Science

1706, pp. 412–432. Copenhagen, Denmark. Springer-Verlag.

Thiemann, P. (1999b) Combinators for program generation. J. Functional Program 9(5), 483–

525.

Thiemann, P. (2000) The pgg system—user manual. Universität Freiburg, Freiburg, Germany.

(Available from http://www.informatik.uni-freiburg.de/proglang/software/pgg/.)

Thiemann, P. (2001) Enforcing safety properties using type specialization. In: Sands, D.,

editor, Proc. 10th European Symposium on Programming: Lecture Notes in Computer Science.

Genova, Italy. Springer-Verlag.

Turchin, V. F. (1993) Program tranformation with metasystem transitions. J. Functional

Program 3(3), 283–313.

https://doi.org/10.1017/S0956796802004586 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004586

600 P. Thiemann

Wahbe, R., Lucco, S., Anderson, T. E. and Graham, S. L. (1993) Efficient software-based fault

isolation. Proceedings 14th ACM Symposium on Operating Systems Principles, pp. 203–216.

Walker, D. (2000) A type system for expressive security policies. Proc. 27th Annual ACM

Symposium on Principles of Programming Languages. Boston, MA. ACM Press.

Weise, D., Conybeare, R., Ruf, E. and Seligman, S. (1991) Automatic online partial evaluation.

In: Hughes, J., editor, Proc. Functional Programming Languages and Computer Architecture:

Lecture Notes in Computer Science 523, pp. 165–191. Cambridge, MA. Springer-Verlag.

https://doi.org/10.1017/S0956796802004586 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004586

