
Publications of the Astronomical Society of Australia (2019), 36, e037, 13 pages
doi:10.1017/pasa.2019.29

Research Paper

CAESAR source finder: Recent developments and testing

S. Riggi1 , F. Vitello1, U. Becciani1, C. Buemi1, F. Bufano1, A. Calanducci1, F. Cavallaro1, A. Costa1, A. Ingallinera1,
P. Leto1, S. Loru1, R. P. Norris2,3, F. Schillirò1, E. Sciacca1, C. Trigilio1 and G. Umana1
1INAF-Osservatorio Astrofisico di Catania, Via Santa Sofia 78, 95123 Catania, Italy, 2CSIRO, P.O. Box 76, Epping, NSW 1710, Australia and 3Western Sydney University,
Penrith, NSW, Australia

Abstract

A new era in radio astronomy will begin with the upcoming large-scale surveys planned at the Australian Square Kilometre Array Pathfinder
(ASKAP). ASKAP started its Early Science programme in October 2017 and several target fields were observed during the array commis-
sioning phase. The SCORPIO field was the first observed in the Galactic Plane in Band 1 (792–1 032 MHz) using 15 commissioned antennas.
The achieved sensitivity and large field of view already allow to discover new sources and survey thousands of existing ones with improved
precision with respect to previous surveys. Data analysis is currently ongoing to deliver the first source catalogue. Given the increased scale
of the data, source extraction and characterisation, even in this Early Science phase, have to be carried out in a mostly automated way. This
process presents significant challenges due to the presence of extended objects and diffuse emission close to the Galactic Plane.

In this context, we have extended and optimised a novel source finding tool, named CAESAR, to allow extraction of both compact and
extended sources from radio maps. A number of developments have been done driven by the analysis of the SCORPIO map and in view
of the future ASKAP Galactic Plane survey. The main goals are the improvement of algorithm performances and scalability as well as of
software maintainability and usability within the radio community. In this paper, we present the current status of CAESAR and report a first
systematic characterisation of its performance for both compact and extended sources using simulated maps. Future prospects are discussed
in the light of the obtained results.

Keywords: Galactic Plane – radio astronomy – source-finding – software

(Received 16 February 2019; revised 02 August 2019; accepted 02 August 2019)

1. Introduction

The Square Kilometre Array (SKA) precursor era has finally come
with the opening of the Australian SKA Pathfinder (ASKAP)
Early Science programme in October 2017. While the deploy-
ment phase is still ongoing, a number of target fields are being
observed with the commissioned antennas to demonstrate ASKAP
scientific capabilities, validate imaging pipeline, and facilitate the
development of analysis techniques in view of the operations with
the full 36-antenna array. In particular, the SCORPIO survey field
(∼40 deg2 in size, centred on l= 343.5◦, b= 0.75◦) was observed
in January 2018 in ASKAP Band 1 (912 MHz) with 15 anten-
nas. Details on the observation strategy and data reduction will
be presented in a forthcoming paper.

The SCORPIO survey (Umana et al. 2015), started in 2011
with a pilot programme conducted with the Australian Telescope
Compact Array (ATCA), has a clear scientific goal, which is the
study and characterisation of different types of Galactic radio
sources, from stars to circumstellar regions (HII regions, planetary
nebulae, luminous blue variables, Wolf–Rayet stars) and stel-

Author for correspondence: Simone Riggi, E-mail: simone.riggi@inaf.it
Cite this article: Riggi S, Vitello F, Becciani U, Buemi C, Bufano F, Calanducci A,

Cavallaro F, Costa A, Ingallinera A, Leto P, Loru S, Norris RP, Schillirò F, Sciacca E,
Trigilio C and Umana G. (2019) CAESAR source finder: Recent developments and test-
ing. Publications of the Astronomical Society of Australia 36, e037, 1–13. https://doi.org/
10.1017/pasa.2019.29

lar relics (e.g. supernova remnants). Besides its scientific goals,
it represents an important test bench for imaging and analysis
techniques in the Galactic Plane in view of the upcoming ASKAP
Evolutionary Map of the Universe (EMU) survey (Norris et al.
2011), planned to start at the end of 2019.

In this context, the accuracy of source finding algorithms is still
a concern considering that the size of the EMU survey in terms of
surveyed area and number of expected sources will severely limit
a manual intervention on the source cataloguing process.

Significant efforts have been spent within the ASKAP EMU
Collaborationa to systematically compare different source find-
ers, evaluating their performances on simulated data samples
(Hopkins et al. 2015). These analysis pointed out strong and weak
features of the tested finders, triggering new developments in spe-
cific areas, such as source deblending and fitting [e.g. see Hancock
et al. (2018) and Carbone et al. (2018) for recent works]. Existing
works, however, concentrate on compact sources, and well-known
source finders, such as Aegean (Hancock et al. 2012), PyBDSF
(Mohan et al. 2015), and BLOBCAT (Hales et al. 2012), have been
shown not to perform well on extended sources, revealing the
need for further developments in the characterisation of complex
extended sources and for a systematic testing with simulations.

The CAESAR source finder (Riggi et al. 2016) was developed to
overcome some of these issues and to provide missing features,
particularly for the analysis of radio maps in the Galactic Plane.

ahttp://askap.pbworks.com/TeamMembers© Astronomical Society of Australia 2019; published by Cambridge University Press.

https://doi.org/10.1017/pasa.2019.29 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2019.29
https://orcid.org/0000-0001-6368-8330
mailto:simone.riggi@inaf.it
https://doi.org/10.1017/pasa.2019.29
https://doi.org/10.1017/pasa.2019.29
http://askap.pbworks.com/TeamMembers
https://doi.org/10.1017/pasa.2019.29

2 S. Riggi et al.

This paper has multiple goals. Firstly we report the status of
CAESAR and recent developments made since Riggi et al. (2016) in
Section 2. Secondly, we resume the ongoing efforts to systemati-
cally characterise and evaluate the source detection accuracy and
computational performances with simulated data. In Section 3,
we describe the simulated data sample produced to test CAESAR
performances. The analysis carried out on simulated data are
reported in Section 4. Performance results (completeness, relia-
bility, etc.) obtained on both compact and extended sources are
presented and discussed. In Section 5, we analyse the compu-
tational performance (CPU and memory usage, scalability, etc.)
obtained in multithreaded and parallel runs performed over a
test computing infrastructure. Finally, in Section 6, we discuss the
CAESAR road map and further analysis to be carried out, taking
into consideration the results obtained in this paper.

This work constitutes also part of the ongoing analysis for the
preparation of ASKAP SCORPIO Early Science source catalogue.
Besides the SCORPIO and ASKAP EMU Galactic programmes,
this work is well suited in the context of SKA OurGalaxy key
science project and the European SKA Regional Data Centre
(ESDC) design.b Indeed, it is anticipated that the SKA Science
Data Processor (SDP) will invest limited resources for the develop-
ment, optimisation, and testing of science algorithms particularly
for the Galactic science (Johnston-Hollitt et al. 2016). These activ-
ities have therefore to be largely lead in synergy by science and
ESDC working groups.

2. CAESAR: Status and recent developments

CAESAR (Riggi et al. 2016) is a C++ tool for extraction of com-
pact and extended sources from astronomical images developed
in the context of the SCORPIO project and ASKAP EMU survey. It
is based on third-party libraries and software frameworks, among
themROOT (Brun & Rademakers 1997), OpenCV (Bradski 2000),
and MPI library.c

A number of improvements and developments have been done
in distinct areas since the original work (Riggi et al. 2016), sum-
marised as follows:

• Code refactoring: The software code was updated and reorgan-
ised to improve modularity and maintainability and to lower
memory demand. Dependency on some of the external libraries
(R, OpenMP, MPI) was made optional.

• Algorithm optimisation and speed-up: Recurrent tasks,
including image reading, statistics and background estima-
tion, and image filtering, were optimised and parallelised using
OpenMPd directives, whenever a benefit in speed-up was identi-
fied. For example, computation of image median estimators was
optimised to improve the original time complexity from O(N
log(N)) to O(N). Statistical moments (up to fourth order) are
computed using online parallel formulas (e.g. while reading and
filling the image in different threads). Benchmark tests were car-
ried out against corresponding python implementations (mostly
based on python numpy module) and a speed-up ∼ 12 was
found on sample images of size 32 000× 32 000 pixels.
Newer parallel algorithms available in the standard C++ library
(e.g. parallel nth_element) were also tested and benchmarked

bDetails on the SKA ESDC design and AENEAS EU H2020 project available at
https://www.aeneas2020.eu/

cwww.open-mpi.org
dwww.openmp.org

against the corresponding non-parallel version. No significant
improvements were found in this case.

• Distributed processing: A parallel MPI-based version of the
source finder application was implemented to support dis-
tributed processing of large maps on different computing
nodes. Multithread processing per node, based on OpenMP,
is also available and configurable. A serialiser, based on the
Google Protocol Buffer library,e was added to allow serialisa-
tion/deserialisation of CAESAR objects when exchanging data
across computing nodes.

• Logging:Custom logging macros were added to all components
and applications using log4cxx library.f Logging levels can be
customised from a configuration file or programmatically.

• Algorithm improvements and extensions: Compact source
finding was improved in different aspects with respect to pre-
vious version. Details are reported in the following sections.
Additional applications, besides source finding, were added to
ease post-processing tasks, such as source cross-matching and
analysis.

• Distribution and usability: Efforts have been made to
make CAESAR publicly available at https://github.com/
SKA-INAF/caesar.git, portable and usable in different sys-
tems with limited effort. To this aim, we provide recipe files
to build and run CAESAR applications in a Singularityg con-
tainer. Details on how to use CAESAR are given in the online
documentation at https://caesar-doc.readthedocs.io/
en/latest/.

2.1. Processing pipeline

A schema of the processing pipeline is shown in Figure 1. The
input image is partitioned into sub-images or tiles according to
configurable parameters (e.g. tile size and overlap). Tiles are then
distributed among available workers for processing. Each proces-
sor, thus, effectively reads and keeps in memory only a portion
of the input image, corresponding to the assigned tiles. Each
worker executes the source finding pipeline on the assigned tiles
in sequence. This includes a series of steps, shown in Figure 1 for
one representative processor and tile, summarised as follows:

1. Extract compact sources from input tile through the following
stages (see 2.1.1 for more details):
(a) Compute image statistic estimators, global and local back-

ground, noise, and significance maps.
(b) Iteratively extract blobs using significance map and nested

blobs using a blob-sensitive filter map.
(c) Reject anomalous blobs and promote blobs to source candi-

dates, tagging them as compact or point-like.
(d) Fit and parametrise source candidates present in the tile and

tag sources located at the borders.
2. Compute a residual map, obtained from input map by apply-

ing one or more filters (smoothing, filters to enhance diffuse
emission) after removal of compact bright sources (see 2.1.2).

3. Extract extended sources from residual map according to the
selected algorithm and tag them accordingly (see 2.1.3).

4. Merge adjacent and overlapping compact and extended sources
found in the tile (see 2.1.4).

ehttps://developers.google.com/protocol-buffers/
fhttps://logging.apache.org/log4cxx/index.html
ghttps://singularity.lbl.gov/

https://doi.org/10.1017/pasa.2019.29 Published online by Cambridge University Press

https://www.aeneas2020.eu/
www.open-mpi.org
www.openmp.org
https://github.com/SKA-INAF/caesar.git
https://github.com/SKA-INAF/caesar.git
https://caesar-doc.readthedocs.io/en/latest/
https://caesar-doc.readthedocs.io/en/latest/
https://developers.google.com/protocol-buffers/
https://logging.apache.org/log4cxx/index.html
https://singularity.lbl.gov/
https://doi.org/10.1017/pasa.2019.29

Publications of the Astronomical Society of Australia 3

fitting

Figure 1. A schema of CAESAR source finding pipeline. See text for a description of pipeline stages. Compact and extended source finding stages are described in 2.1.1 and 2.1.3,
respectively. Filtering and source merging stages are described in 2.1.2 and 2.1.4.

Amaster processor aggregates sources extracted by other workers,
merging them if overlapping or adjacent at tile borders. Source fit-
ting and parametrisation are finally performed on merged sources
(if any), and outputs (e.g. catalogues with sources and fitted
components, regions, etc.) are delivered as final results.

Details on the computing stages and specific algorithms can be
found in Riggi et al. (2016). In the following sections, we limit the
discussion on the improvements made in the new version, mainly
relative to compact source extraction.

2.1.1. Compact source extraction

Compact source extraction is based on four stages:

1. Blob search: Blobs are extracted from the input map with a
flood-fill algorithm using a pixel significance detection thresh-
old Zthr,d (usually equal to 5) and a lower aggregation threshold
Zthr,m (usually equal to 2.5). Pixel significance level Z is com-
puted as

Z = S− µbkg

σrms
, (1)

where S is the pixel flux and µbkg and σrms are the estimated
background level and noise rms, respectively.
Blob extraction can now be performed using an iterative proce-
dure in which the background and noisemaps are re-computed
at each iteration without pixels belonging to sources extracted

in the previous iterations. Detection thresholds can be progres-
sively lowered by a configurable amount �Z (0.5 by default) at
each jth step until a maximum number of iterations is reached:

Z(j)
thr,d = Z(0)

thr,d − j× �Z.

2. Nested blob search: A blob detector algorithm can be applied
on the input map to search for ‘nested’ (or ‘child’) blobs inside
the ‘primary’ (or ‘mother’) blobs extracted in the previous step.
Nested blobs are used in the image residual and source fitting
stages (described in the following paragraphs). When enabled,
the algorithm proceeds as follows:

• A primary blob mask is obtained using blobs detected with
the flood-fill approach.

• A blob-sensitive filter is applied to the input map, and blobs
are searched in the resulting filtered map using flood-fill
method around detected peaks above a specified significance
threshold (typically equal to 5). Extracted blobs are then used
to build a secondary blob mask.

• The secondary blob mask is cross-matched against the pri-
mary one to extract nested blobs and associate them to
primary blobs.

Two alternative blob-sensitive filter models are provided [mul-
tiscale Laplacian of Gaussian (LoG), elliptical Gaussian] with
customisable kernel size and scale parameters (first/last scale,

https://doi.org/10.1017/pasa.2019.29 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2019.29

4 S. Riggi et al.

scale increment). The first method can be computationally
demanding if the chosen kernel size is large (e.g. say above 9–11
pixels) and several scales are requested. The second approach is
relatively fast as it employs only one scale, that is, the elliptical
beam of the input map.
Nested blob search can be disabled if not explicitly needed
(typically in the absence of extended sources) or, alternatively,
customised. For example, nested blobs can be searched only
on sources tagged as extended, that is, exceeding a certain
area-to-beam threshold factor (usually set to 10–20).

3. Blob selection: Extracted blobs are selected using simple mor-
phological parameters (blob area-beam ratio, roundness, elon-
gation, bounding box, etc.) to tag candidate point-like sources
and exclude anomalous blobs with elongated shapes, most
likely due to imaging artefacts.

4. Source deblending and fitting: Source fitting is performed by
workers on sources that are not located at the tile borders
and by the master processor on merged edge sources. The
adopted fitting procedure depends on the detected source size.
For extended sources, that is, above a configured area-to-beam
ratio, only nested blobs (if any) are individually fitted. Compact
sources (e.g. nested or not and below the area-to-beam ratio
threshold) are fitted with a mixture of M Gaussian compo-
nents, plus a background offset parameter S0. The following
χ 2 is minimised with respect to (M + 1) fitting parameters
�= {S0,�1,. . . ,�M}, where �k = {x̄k, ȳk, σxk , σyk , θk}:

χ 2 =
N∑
i=1

[Si(xi, yi)− Ŝi(xi, yi;�)]2

σ 2
i

, (2)

where

Ŝ(xi, yi,�)= S0 +
M∑
k=1

fk(xi, yi;�k), (3)

fk(xi, yi,�k)=Ak exp [− ak(xi − x̄k)2

− bk(xi − x̄k)(yi − ȳk) (4)
− ck(yi − ȳk)2],

ak = cos2 (θk)
2σ 2

xk
+ sin2 (θk)

2σ 2
yk

, (5)

bk = sin (2θk)
2σ 2

xk
− sin (2θk)

2σ 2
yk

, (6)

ck = sin2 (θk)
2σ 2

xk
+ cos2 (θk)

2σ 2
yk

, (7)

with N number of source pixels, Si and Ŝi the data and the pre-
dicted flux of the ith source pixel, respectively, and σ 2

i variance
of the measurements. We assumed σi equal to the estimated
noise averaged over fitted source pixels. Ak denotes the peak
brightness of the kth fitted component.
Total source flux density I is computed as

I =
M∑
k=1

Ik, Ik = 2πAkσxkσyk , (8)

with Ik flux density of the kth component. The flux density
error δI is computed by error propagation:

δI =
√
D�DT, D= ∂I

∂�
, (9)

where D is the derivative matrix of flux density with respect to
fit parameters � and
 is the fit parameter covariance matrix.
χ 2 numerical minimisation is performed with the ROOT min-
imiser libraries. Different minimisersh [e.g. Minuit (James
1972), Minuit2 (Hatlo et al. 2005), and RMinimiser] and min-
imisation algorithms (e.g.Migrad, Simplex, BFGS) are available
to the user, all of them providing estimated errors on the fitted
parameters as well as the fit parameter covariance matrix
.
The approach followed to determine the optimal starting num-
ber of fitted components and relative parameters is usually
denoted as the deblending process. Details are provided in
Appendix A.
All model parameters can be kept fixed or left free to vary
in the fit and limits can be applied around parameter start-
ing values. To guide fit convergence, the fit procedure is first
performed with some parameters fixed (e.g. offset and com-
ponent amplitudes) to the initial values. Fixed parameters are
released afterwards and a full fit is performed. If one or more
fitted parameters are found close or at the specified limits, the
fit procedure can be iteratively repeated, progressively enlarg-
ing the parameter range, until no more parameters are found at
limits or a maximum number of retry iterations are exceeded.
If the fit does not converge, it can be repeated by progressively
removing fainter fit components until convergence or until no
more components are left.

2.1.2. Residual image and filtering

Algorithms to extract faint extended sources are almost ineffec-
tive in presence of very bright point sources and noise artefacts in
the field. For these reasons, the search is carried out on a residual
image in which sources with peak flux above a configurable sig-
nificance threshold with respect to the background (usually equal
to 10) are removed from the map. Subtraction can be done in
two alternative ways. The first method simply replaces all pixels
belonging to bright sources with the estimated background.i The
advantage of this approach, proposed in Peracaula et al. (2011), is
that it can be performed with only background information com-
puted. A second, more refined, method subtracts the fitted model
of bright sources from the input map. This, on the other hand,
requires fit information to be available and accurate enough for
the subtraction to be effective.

A series of filters can be applied to the residual image to limit
the impact of small-scale artefacts and enhance the faint diffuse
emission. A guided or Gaussian smoothing filter is employed
in CAESAR for the former scope, while a Wavelet transform or
saliency filter [see Riggi et al. (2016)] can be finally applied to
produce the optimal input map for extended source search.

2.1.3. Extended source extraction

Four classes of algorithms are currently available in CAESAR to
extract extended sources from a suitable input map (typically a
residual map):

1. Wavelet transform: Input map is decomposed in J Wavelet
scales (typically J = 6–7) and extended sources are extracted
from higher scales by thresholding (e.g. employing the same
algorithm used for compact sources).

hFor multithreaded fitting, Minuit2 has to be used as the other minimisers are not
thread-safe.

iThe algorithm uses a dilation filter to replace also pixels surrounding the source
according to a configurable kernel size.

https://doi.org/10.1017/pasa.2019.29 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2019.29

Publications of the Astronomical Society of Australia 5

2. Saliency filtering: A multiscale saliency filter is applied to the
input map and extended sources are extracted from the filtered
image by thresholding (e.g. employing the same algorithm used
for compact sources).

3. Hierarchical clustering: Input map is oversegmented into a
series of superpixels (or regions) on the basis of a spatial and
flux similarity measure. Neighbouring regions are then adap-
tively merged by mutual similarity and a final segmentation
into background and sources is obtained. The method was pre-
sented in Riggi et al. (2016) and it is currently being updated to
lower its computing resource demand;

4. Active contour: The method iteratively determines the contour
that best separates objects from the background in the input
image, starting from an initial curve and evolving it by min-
imising an energy functional until convergence. Two different
algorithms are available, one based on the Chan–Vese active
contour model (Chan & Vese 2001) and the other based on
the localising region-based active contour model (Lankton &
Tannenbaum 2008).

2.1.4. Source merging

Two source merging steps can be optionally included in the
pipeline. The first is performed by workers at the end of each
tile processing task to merge overlapping extended and compact
sources found by different algorithms. This step was introduced
to allow full detection of faint extended sources with compact
brighter components. Indeed, the compact source finder typi-
cally detects only the bright regions, while the extended finder
detects only the diffuse part, particularly if the former was
removed/subtracted in the input residual map.

A secondmerging step is performed by the master process after
gathering all sources detected by workers. Sources located at the
edge or in overlapping regions of neighbouring tiles are merged if
adjacent or coincident.

3. Simulated data

In order to test source finding performances, we generated sim-
ulated sky models (2 560× 2 560 pixels, 1′′ pixel size) with both
point and extended sources uniformly distributed in (α,δ). A
source density of 1 000 deg−2 was assumed for point-sources
and 50 deg−2 for extended sources. Source densities assumed in
the simulation correspond to values measured in the SCORPIO
ATCA survey (Umana et al. 2015). Source peak brightness Speak
was randomly generated with a uniform distribution in log (Speak)
in the range Speak = [0.1,1 000] mJy/pixel for point sources and
Speak = [1,100]µJy/pixel for extended sources. The peak brightness
distribution assumed was driven by the need of having a suffi-
cient number of simulated sources for statistical analysis over the
entire flux range, rather than by physical considerations or existing
observations. Extended sources were generated with equal propor-
tion weights from five different shape models (disc + shell, ring,
ellipse, Gaussian, Sérsic profile) with a maximum angular scale of
10 arcmin.j

For each sky model, we simulated 12 h observations with the
Australia Telescope Compact Array (ATCA) using CASA tool
(McMullin et al. 2007). All available ATCA configurations were

jFor Gaussian and Sérsic source generation models, the maximum angular scale
assumed corresponds to the standard deviation and effective radius, respectively.

used. Eight pointings were needed to cover the sky model area
given the ATCA primary beam.

The imaging stage was performed in an automated way assum-
ing a 100-µJy clean threshold and cleaning mask boxes around
each generated source. Simulated fields were imaged singularly
and combined afterwards to produce the final simulated mosaic.
To limit computing time, the imaging process was not fully opti-
mised. In fact, the focus was put in achieving a sufficient imaging
of both compact and extended objects to carry out source finding.
A number of 200 simulated mosaics are available to test source
finding. The average noise level is 300–400 µJy with the chosen
imaging parameters and mosaic strategy. The synthesised beam of
simulated maps is bmaj = 13.3′′, bmin = 8.4′′, and bpa = 0◦. Although
a number of effects have been neglected or ideally modelled (e.g.
perfect calibration is considered), the simulated maps include typ-
ical interferometric noise patterns and can be used as a valid test
bench for existing source finders. To this aim, the entire simu-
lated data set was made publicly available at http://doi.org/
10.5281/zenodo.3257594.

4. Analysis

In this section, we report the detection performances for com-
pact and extended sources obtained on the simulated data sample
described in Section 3.

4.1. Validation of simulated data

To test the imaging quality, we compared generated and imaged
sources following this approach. Each generated source was con-
volved with the synthesis beam and the resulting image thresh-
olded to keep 99% of the total source flux. The convolved source
mask obtained represents the ground truth. Imaged sources are
obtained by applying the convolved source mask to the simulated
mosaic. Overlapping compact and extended sources were merged
so that three classes of sources (point, extended + point, extended)
have to be inspected.

A sample simulated map with convolved source contours
for the three classes (point-like in red, extended in blue, and
extended+point-like in green) is shown in Figure 2 (left panel).
In Figure 2 (right panel), we compared the flux density of con-
volved and imaged sources (with background subtracted) for the
three classes of sources and using the full simulated data set. As
can be seen, fluxes are reconstructed with an accuracy better than
10% for bright sources, increasing to 40% for very faint sources.
Systematic biases are found below 10%.

In the following analysis, we will take the imaged source flux
as the reference when evaluating the flux uncertainty of the source
finding process.

4.2. Detection of compact sources

Compact source finding was run on the N = 200 simulated maps
using the set of parameters reported in Table 1. A number of 71 640
generated point-sources are available for analysis.

Sources tagged as point-like were cross-matched in position to
generated sources. A generated source is labelled as ‘detected’ if the
distance between its centroid and the one of a measured source
is smaller than 10′′ (corresponding to 10 pixels and slightly less
than the average of beam dimensions). If many measured source
candidates are present, the matched source will be the one with the
shortest distance.

https://doi.org/10.1017/pasa.2019.29 Published online by Cambridge University Press

http://doi.org/10.5281/zenodo.3257594
http://doi.org/10.5281/zenodo.3257594
https://doi.org/10.1017/pasa.2019.29

6 S. Riggi et al.

−3 −2 −1 0 1
log10(Sgen/Jy)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(S
-S

ge
n)/S

ge
n

point
extended
extended + point

Figure 2. Left: Sample simulated map in mJy/beam units with convolved source contours superimposed (red = point-like, blue = extended, green = extended + point-like). Right:
Imaging flux accuracy for point sources (black dots), extended sources with nested point sources (green triangles), isolated extended sources (red squares) obtained on the
simulated data set. Each dot represents the median of the pull distribution (S-Sgen)/Sgen in log10Sgen bins, being Sgen the generated source flux density (after convolution with the
synthesis beam as described in the text), and S the imaged source flux density. Error bars are the interquartile range of the pull distribution.

Table 1. Compact source finder parameters.

Parameter Value

Bkg/Noise

Bkg Median

Noise MAD

Box size 10×beam
Grid step 20%box

Blob detection

Zthr,d 5

Zthr,m 2.5

npix 5

niter 2

�σseed 0.5

Nested blob detection

Method LoG

Min scale 1×beam
Max scale 2×beam
Scale step 1

Zthr,d 5

Zthr,m 2.5

nthrbeams 20

Source fitting

nthrbeams 10

Max components 5

Zthr,peak 1

Bkg offset Fixed

4.2.1. Completeness and reliability

Following the described procedure, we computed the source com-
pleteness (or detection efficiency) and reliability metrics for the
simulated data sample. Completeness, at a given level of quality
selection, denotes the fraction of generated point-sources identi-
fied by the source finder, given the assumed match criteria, and
passing the imposed selection cuts. Reliability is the fraction of
detected sources passing the quality selection that corresponds to
real sources. Completeness and reliability are reported in Figure 3
for four different selection cuts as a function of the source gener-
ated and measured flux density, respectively. The grey shaded area
indicates a region of source significance below 5σ , assuming an
average rms of 400 µJy. Black dots (labelled as ‘fit’) are obtained
using a minimal set of quality cuts:

• Source match in position
• Source fit performed and converged
• Positive fitted amplitude parameters.

Red squares (labelled as ‘presel’) corresponds to high-quality fitted
sources, passing the following preselection cuts:

• Fit χ 2/ndf<10
• Accurate fit error matrix (flag returned by fit minimiser).

Blue diamonds and green triangles correspond to two addi-
tional quality selection cuts applied to the detected sources after
preselection (described in the following).

As can be seen, 90–95% of the generated sources at a 5σ flux
significance are detected, assuming the finder parameters listed
in Table 1 and the preselection cuts. The corresponding false
detection rate is of the order of 20% at 5σ and 5–10% at larger
significance levels. False detections are largely due to the over-
deblending of imaging artefacts and extended sources present in
the simulated maps. For instance, we report in Figure 4 examples

https://doi.org/10.1017/pasa.2019.29 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2019.29

Publications of the Astronomical Society of Australia 7

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5

log10(Sgen/Jy) log10(Smeas/Jy)

0

0.2

0.4

0.6

0.8

1
C

om
pl

et
en

es
s

fit
presel
cut sel
NN sel
5 σ detection limit

Completeness

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
0

0.2

0.4

0.6

0.8

1

R
el

ia
bi

lit
y

fit
presel
cut sel
NN sel
5 σ detection limit

Reliability

(a) (b)

Figure 3. Left: Compact source detection efficiency as a function of the generated source flux density for four different source selections (described in the text): fit converged (black
dots), preselection cuts (red squares), preselection + cut selection (blue diamonds), preselection + NN selection (green triangles). Right: Compact source detection reliability as a
function of the measured source flux density for four different source selections (described in the text): fit converged (black dots), preselection cuts (red squares), preselection +
cut selection (blue diamonds), preselection + NN selection (green triangles).

Figure 4. Sample false compact sources detected by CAESAR in simulated maps (red
ellipses). Green ellipses represent sources detected by the AEGEAN source finder, while
white ellipses represent generated point sources.

of false sources (shown with red contours) detected in two differ-
ent simulated maps. White contours represents true point sources,

while green contours are the sources detected by the AEGEAN
(Hancock et al. 2018) source finder for comparison. As can be
seen, faint diffuse emission induces a large number of source com-
ponents in the deblending process. This effect, expected to be
observed in all finders implementing a deblending stage, is appar-
ently less evident in similar analysis reported in the literature [e.g.
see Hopkins et al. (2015)]. This is most likely due to a combina-
tions of multiple factors: a better imaging in the (real or simulated)
data, the absence of extended sources in the test samples, the usage
of tighter quality cuts, etc.

Over-deblending can be partially prevented in CAESAR by
increasing the source significance threshold and the deblending
threshold parameters (peak threshold, nthrbeams for fitting or themax-
imum number of fitted components). However, we have found
that with a different choice of deblending parameters, the relia-
bility can be slightly increased but no more than a few per cent.
We therefore tried applying a further selection to the data to
identify false sources. For this, we have exploited the physical
consideration that true fitted point-like sources are expected to
be morphologically similar to the beam and thus defined three
classification parameters:

• δθ : rotation angle (in degrees) of source fitted ellipse with
respect to the beam ellipse, expected to be peaked around 0 for
true sources, provided that the beam is elliptical in shape (as in
this analysis);

• Esource/Ebeam: source fitted ellipse eccentricity divided by the
beam ellipse eccentricity, expected to be peaked around 1 for
true sources;

• Asource/Abeam: source fitted ellipse area divided by the beam area,
expected to be peaked around 1 for true sources;

In Figure 5, we report the distributions of the three parame-
ters for real (red histograms) and false (black histograms) sources.
Using these parameters, we have set up two different classifiers:

https://doi.org/10.1017/pasa.2019.29 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2019.29

8 S. Riggi et al.

−80 −60 −40 −20 0 20 40 60 80
δθ (deg)

0

0.1

0.2

0.3

0.4

0.5

N
or

m
al

is
ed

 s
ou

rc
e

co
un

ts

Entries 26700

Mean 0.07591

Std Dev 8.017

real sources
false sources

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Esource/Ebeam

0

0.05

0.1

0.15

0.2

N
or

m
al

is
ed

 s
ou

rc
e

co
un

ts

Entries 26700

Mean 0.9993

Std Dev 0.1117

real sources
false sources

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Asource/Abeam

0

0.1

0.2

0.3

0.4

N
or

m
al

is
ed

 s
ou

rc
e

co
un

ts

Entries 26700

Mean 1.04

Std Dev 0.1953

real sources
false sources

Figure 5. Distribution of the classification parameters for real (red histogram) and false sources (black histogram). δθ (upper panel) represents the rotation angle (in degrees) of
source fitted ellipsewith respect to the beamellipse. Esource/Ebeam (middle panel) represents the ratio between the source fitted ellipse eccentricity and thebeamellipse eccentricity.
Asource/Abeam (bottompanel) represents the ratio between the source fitted ellipse area and the beamarea. Histograms are normalised to unit areawith normalised counts reported
in the y-axis.

• Cut-based classifier: Sources passing these quality cuts on the
three source parameters are selected as real:

– |δθ | < 45,
– 0.5 < Esource/Ebeam < 1.5,
– 0.1 < Asource/Abeam < 10.

Cuts are not fine-tuned and no correlation among variables is
taken into account (e.g. cuts are derived separately for each
parameter). Cut values can be customised in the finder configu-
ration file.

• Neural network classifier: We trained a multilayer perceptron
(MLP) neural network (NN) on 50% of the available source sam-
ple to identify real and false sources using the three parameters
as input variables.k

Both classifiers were applied to the full set of detected sources, and
completeness and reliability were computed on the selected data

kWe are deliberately employing in this paper the simplest NN architecture possible
(i.e. MLP with two hidden layers) trained with only three input parameters. In the future,
we plan to increase performances by employing more advanced deep learning network
architectures (e.g. convolutional NNs) working on the full image pixel data.
Moreover, additional simulated maps are planned to be generated to provide a completely
independent training sample with respect to the one currently used for testing.

sample. We reported the obtained results in Figure 3: blue dia-
monds are relative to the cut-based classifier; green triangles are
obtained using the NN classifier. As can be seen, both classifiers
allow to increase the detection reliability by ∼ 10–15% at the cost
of a moderate completeness degrade. The NN approach, working
on a joint set of classification variables and providing a non-
linear decision boundary, outperforms, as expected, the simpler
cut analysis.

4.2.2. Position and flux accuracy

We report in Figure 6 the source position (left panel) and flux
density (right panel) accuracy as a function of the source gener-
ated flux obtained over preselected source sample. Reconstruction
bias is estimated using the sample median in each flux bin and
reported in the top panels. Statistical resolution is estimated using
the semi-interquartile range (SIQR) and reported in the bottom
panels.

Ideal position resolutions in both coordinates are reported in
the bottom left panel and given by [see (Condon 1997)]

IQR(x)= f ×
√

2σx

πσy

σrms

A
h,

https://doi.org/10.1017/pasa.2019.29 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2019.29

Publications of the Astronomical Society of Australia 9

−2

−1

0

1

2

3

P
os

iti
on

 b
ia

s
(''

)

<ΔRA>
<ΔDec>
5 σ detection limit

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
log10(Sgen/Jy) log10(Sgen/Jy)

0

1

2

3

4

P
os

iti
on

 re
so

lu
tio

n
("

)

SIQR(RA)
SIQR(Dec)
5 σ detection limit
SIQRideal(RA)
SIQRideal(Dec)

Position accuracy

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fl
ux

 d
en

si
ty

 b
ia

s

<ΔS/S>
5 σ detection limit

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5
−0.2

0

0.2

0.4

0.6

0.8

Fl
ux

 d
en

si
ty

 re
so

lu
tio

n

SIQR(ΔS/S)
1σrms
3σrms
5 σ detection limit

Flux density accuracy

Figure 6. Left: Compact source position reconstruction bias (upper panel) and resolution (bottompanel) as a function of the source generated flux. Bias is estimated using sample
median in each flux bin, while resolution is computed using the SIQR. Black dots and red squares indicate RA and Dec coordinates, respectively. Dashed and dotted lines denote
the ideal resolution in both coordinates computed with expression 10 (see text). Right: Compact source flux density reconstruction bias (top panel) and resolution (bottom panel)
as a function of the source generated flux. Dashed and dotted lines indicate the expected 1σrms and 3σrms flux density errors, respectively, with σrms = 400µJy rms noise level.

IQR(y)= f ×
√

2σy

πσx

σrms

A
h, (10)

with h= 1′′ map pixel scale size, A source peak flux, σx,y source
Gaussian sigma in the x and y directions (bmaj ∼13.3′′, bmin ∼8.4′′),
σrms = 400 µJy image noise rms, and f ∼ 0.674 factor to convert
from Gaussian standard deviation to SIQR. Typical values are
∼0.2′′ at 5σ and ∼ 0.05′′ at 20σ source significance levels. The
reconstructed position uncertainties above 5σ are found of the
order of 0.4–0.5′′. No significant position bias is found even well
below the source detection threshold.

Flux reconstruction presents a small positive bias (∼5–10%)
near the detection threshold. A similar trend was found also in
other finders (Hopkins et al. 2015). Flux accuracy is found better
than few per cents for bright sources and ∼ 10% at the detection
threshold.

4.3. Detection of extended sources

Extended source finding was run on the N = 200 simulated maps.
A number of 3 459 generated extended sources are available for
this analysis. For this work, we considered the saliency filtering
algorithm among those available in CAESAR. The algorithm steps
were summarised in 2.1.3 and extensively described in Riggi et al.
(2016). Algorithm parameters used in this analysis are reported in
Table 2.

Sources tagged as extended or extended + compact were cross-
matched to generated sources (convolved with the synthesis beam
as described in Section 3) using overlap area and flux ratio param-
eters.

A generated source i is considered as ‘detected’ by a measured
source j if

• ni∩j/ni > f highthr ,
• ni∩j/nj > f highthr ,

or, alternatively, if

• ni∩j/ni > f lowthr , t
min
thr < Si∩j/Si < tmax

thr ,
• ni∩j/nj > f lowthr , t

min
thr < Si∩j/Sj < tmax

thr ,

where

– ni: number of pixels in generated source i,
– nj: number of pixels in measured source j,
– ni∩j: number of overlapping pixels between generated and

detected sources,
– Si: sum of pixel fluxes for generated source i,
– Sj: sum of pixel fluxes for measured source j,
– Si∩j: sum of pixel fluxes for measured source j, computed over

pixels overlapping with generated source i.

f highthr , f lowthr , t
min
thr , and t

max
thr are configurable thresholds, assumed equal

to 60%, 10%, 80%, and 120%, respectively, in this work. The first
condition imposes a large overlap area between generated and
measured sources without any condition applied on their fluxes.
The second condition, instead, requires a minimal overlap area
plus a high match between fluxes.

https://doi.org/10.1017/pasa.2019.29 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2019.29

10 S. Riggi et al.

−4 −3 −2 −1 0 1 2
log10(Sgen/Jy)

1

1.5

2

2.5

3

3.5

4

lo
g 1

0(
n b

ea
m

s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
om

pl
et

en
es

s

Completeness

−4 −3 −2 −1 0 1 2
log10(Smeas/Jy)

1

1.5

2

2.5

3

3.5

4

lo
g 1

0(
n b

ea
m

s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
el

ia
bi

lit
y

Reliability

(a) (b)

Figure 7. Left: Extended source detection efficiency as a function of the generated source flux density and nbeams (multiple of the synthesised beam size). Right: Extended source
detection reliability as a function of the measured source flux density and nbeams.

Table 2. Extended source finder parameters.

Parameter Value

Compact source filter

Zresthr,low 5

Zresthr,high 10

Filter kernel size (#pix) 21

Removed sources Point-like

Smoothing filter

Filter model Guided

Radius (# pix) 12

ε 0.04

Saliency filter

spSize (# pix) 20

spBeta 1

spMinArea 10

saliencyResoMin (#pix) 20

saliencyResoMax (#pix) 60

saliencyResoStep (#pix) 20

saliencyNNFactor 1

saliencyThrFactor 2.5

4.3.1. Completeness and reliability

Similarly to what has been done for compact sources, we com-
puted the completeness and reliability obtained for extended
sources as a function of generated/measured source flux den-
sity and nbeams (multiple of the synthesised beam size). Results
are reported in Figure 7. Completeness is on average 60–70%
for fainter sources and ∼ 80% for brightest sources. Reliability is
found of the order of ∼ 70% on average and above 90% for high
flux densities. Detection efficiency slightly degrades for sources
with size comparable with the minimum spatial scale assumed in
the finding algorithm. A similar trend is observed for the largest

Table 3. Detection efficiency ε for different extended source types.

Source type ε (%)

Ring 58

Disc + shell 81

Ellipse 82

Sérsic 61

Gaussian 69

Mixed 80

sources injected in the simulation. For a given flux density, this is
due to their intrinsic smaller pixel detection significance.

Given the limited size of the simulated sample currently avail-
able, we are not able to disentangle the relative contributions of
different simulated source types (ring, disc + shell, ellipse, Sérsic,
Gaussian) in the above trends.

We therefore limit our report (see Table 3) to the detection
efficiency obtained for different source classes irrespective of flux
density and source size. Sources formed by a combination of dif-
ferent types have been labelled as ‘mixed’. Sources of a given
pure class having point-like sources inside were still considered as
belonging to the same class.

These results suggest that ring-shaped sources and sources with
tailed flux profiles (Sérsic, Gaussian) are harder to be identified
with respect to other types.

As expected, the detection performances are not at the same
level of point sources. Nevertheless, as we have shown in Riggi
et al. (2016) with real interferometric data, the outcomes would
have been considerably worse or even close to a null detection
efficiency if we had used the same algorithm used for compact
source.

4.3.2. Flux accuracy

In Figure 8, we report the flux accuracy (bias and resolution)
obtained for the detected extended sources. Flux density was com-
puted using the sum of pixel fluxes divided by the beam area. A
flux resolution below 10% was obtained on the selected source
sample. No significant biases were found.

https://doi.org/10.1017/pasa.2019.29 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2019.29

Publications of the Astronomical Society of Australia 11

−0.4

−0.2

0

0.2

0.4

0.6
Fl

ux
 d

en
si

ty
 b

ia
s

S/S>Δ<

−4 −3 −2 −1 0 1 2
log10(Sgen/Jy)

−0.1

0

0.1

0.2

0.3

0.4

Fl
ux

 d
en

si
ty

 re
so

lu
tio

n S/S)ΔSIQR(

Figure 8. Extended source flux density reconstruction bias (top panel) and resolu-
tion (bottom panel) as a function of the source generated flux. Bias is estimated using
sample median in each flux bin, while resolution is computed using the SIQR.

5. Computational performance

As discussed in Section 2, CAESAR was improved to support par-
allel processing. An hybrid programming model with two levels
of parallelism was adopted. The outer MPI-based level enables
to distribute source finding over image tiles on multiple proces-
sors in the available computing nodes. The inner OpenMP-based
level distributes source finding tasks for a single image tile across
multiple threads.

To validate the current implementation and estimate the
achieved performances, we measured the computing times of
compact source finding on large simulated images over this com-
puting infrastructure:

• two computing nodes connected through a 10 Gbit network
link,

• 4 sockets×10 Core Intel(R) Xeon(R) CPU E5-4627 2.60 GHz
per node,

• 256 GB DDR4 2133 MHz memory per node.

In Figure 9 (left panel), we report the obtained speed-up as a
function of the number of threads allocated by OpenMP for dif-
ferent source finding stages and overall (shown in black) over a
simulated image of size 10 000×10 000 pixels. In the performed
runs, the MPI processing was switched off and the image was
not partitioned in tiles. We also imposed thread affinity on the
basis of the Non-Uniform Memory Access (NUMA) architecture
reported by the two computing nodes; for example, we bound
threads to run on the same socket if fitting the available number of
cores per socket. As can be seen, a computational speed-up ∼ 3–4
is achieved overall up to a moderate number of threads (4–6),
above which no significant improvement is observed for most

of the tasks. Some tasks (e.g. blob finding, background calcula-
tion, and source fitting) exhibit a better scalability (up to ∼ 10
allocated threads) due to their embarrassingly parallel nature and
implementation. Others (e.g. image statistic calculation and blob
masking) are rather flat in speed-up, either because dominated by
serial parts or because affected by thread management overhead
(creation, synchronisation, etc.).

In Figure 9 (right panel), we report the percentage of total CPU
time spent in different finding stage for two representative num-
ber of allocated threads: 1 (red histogram), 4 (blue histogram). A
CPU time of ∼ 1.3/2.6 h was spent in total with/without splitting
the input image into tiles, improving by a factor of 3–4 using 4–
6 threads. As expected, the largest contribution is due to source
finding and fitting stages. Local background and rms map calcu-
lation contributes to less than 10% of the total CPU time. Image
reading and computation of statistical estimators contribute to less
than 1%.

In Figure 10, we report the speed-up obtained on a sample sim-
ulated image of size 32 000× 32 000 pixels as a function of the
number of MPI processes used. Runs were performed on an NFS
file systemmounted on both nodes. Input image was split into tiles
of size 4 000× 4 000 pixels. Red squares and black dots correspond
to runs performed with 1 and 4 OpenMP threads per MPI process,
respectively. Green triangles refer to the speed-up obtained using
nthreads = 4 per MPI process, with all four threads running on the
same computing core rather than in a dedicated core. As can be
seen, a good speed-up is found using one single OpenMP thread.
The speed-up with four OpenMP threads is superlinear up to ∼ 8
processes, above which the effect of inter-process communication
and data serialisation becomes dominant. This is expected given
that the load is partitioned over a larger number of cores, with
respect to the case nthreads = 1. However, when running OpenMP
threads in a single core (green triangles) rather than in a separate
one (black dots), the obtained speed-up is comparable to the single
thread speed-up (red squares).

The performance degrade due to the network file system and
log activity was investigated by comparing the computing times
obtained when running on a local file system and disabling log-
ging.We observed an increase of∼ 5% in the total computing time
in the NFS file system. Tests will be performed in the future to
evaluate the benefits of using a parallel file system such as Lustrel
or BeeGFS.m Logging was also found to negatively impact perfor-
mances with an increase of ∼ 40% in the total computing time.

6. Summary and outlooks

We have presented in the paper the current status of CAESAR
source finder. Considerable improvements were done since the
first reference paper (Riggi et al. 2016), among them distributed
source processing and algorithm improvements on compact
sources.

We reported the performances achieved on both compact and
extended source detection using simulated data. Results obtained
on compact sources are comparable to similar analysis reported in
the literature (Westmeier 2012; Hopkins et al. 2015), despite the
presence of background emission from extended sources (typically
not included in other analysis). We discussed also possible meth-
ods to discover and remove false source detections from the final
catalogue.

To the best of our knowledge, this paper reports also a first
attempt to systematically test extraction of extended sources with

lhttp://lustre.org/
mhttps://www.beegfs.io/content/

https://doi.org/10.1017/pasa.2019.29 Published online by Cambridge University Press

http://lustre.org/
https://www.beegfs.io/content/
https://doi.org/10.1017/pasa.2019.29

12 S. Riggi et al.

0 5 10 15 20 25 30
nthreads

0

1

2

3

4

5

6

7

8

9

10

S
pe

ed
-u

p
ra

tio

linear
tot
stats
bkg

blob find
blob mask
source find
source fit

Multithread speedup

bkg sfind sfit
0

10

20

30

40

50

60

70

Ta
sk

 C
P

U
 ti

m
e

(%
)

nthreads=1

nthreads=4

blob find

blob mask

CPU time fraction

(a) (b)

Figure 9. Left: Computational speed-up of multithreaded compact source finding over a 10 000×10 000 pixel map as a function of the number of allocated threads (black line)
compared with the ideal speed-up (black dashed line). Coloured lines indicate the speed-up obtained on different tasks: image statistic calculation (orange line), image back-
ground calculation (blue line), source finding (purple line), and source fitting (green line). Source finding is further decomposed in two subtasks: blob finding (red line) and blob
mask (light blue line). Right: Fraction of the total CPU time spent in different source finding tasks with nthreads = 1 (red histogram) and nthreads = 4 (blue histogram).

0 2 4 6 8 10 12 14 16
nproc

0

1

2

3

4

5

6

7

8

9

10

S
pe

ed
-u

p

nthreads=1
nthreads=4
nthreads=4, nthreads /core=4
linear

Figure 10. Computational speed-up of compact source finding in MPI +OpenMP runs
over a 32 000×32 000 pixel simulatedmap as a function of the number of allocatedMPI
processes using nthreads = 1 (red squares) and nthreads = 4 (black dots) per MPI process.
Green triangles refer to the speed-up obtained using nthreads = 4 per MPI process, with
all four threads running on the same computing core rather than in a dedicated core.

different shapes, other than the standard Gaussian model used in
other analysis. The overall performance achieved by the extended
finder algorithm tested in this paper does not compete yet with
those obtained by compact finder algorithms on point sources.
Nevertheless, when considering the complete sample of sources
(compact plus extended) present in the observed field, the results
are encouraging since the combination of different algorithms in
CAESAR allows to recover a significant fraction of sources that
would have been undetected if only using the compact source
finder.

Despite the progress made, there is still room to extend and
improve CAESAR both at the code and algorithmic level. For
future releases, we foresee additional refinements and optimi-
sations in the code to improve memory usage, scalability, and

fault tolerance of the parallel implementation. In a shorter time
scale, scalability can be slightly improved by exploiting parallelism
on selected tasks of the pipeline that are still serially performed,
particularly in extended source extraction. In a longer term,
following the current trends in exascale computing, we expect a
potential boost in performances if additional developments will be
made to fully exploit new generations of HPC systems equipped
with high-capacity memories and one or more accelerators (GPUs
or FPGAs) per node.

The obtained results highlighted that additional efforts are to
be spent to improve source finding performances in view of future
large area surveys. For compact sources, we expect that improv-
ing the deblending stage and the spurious source identification
will be the major area of investigation using deep NNs trained to
identify real and false components in extracted sources. Extended
source finding will instead require different and more refined
algorithms to be tested. For this purpose, additional test cam-
paigns are planned to be performed using the algorithms already
implemented in CAESAR.

Acknowledgements. We acknowledge the computing centre of INAF -
Osservatorio Astrofisico di Catania, under the coordination of the CHIPP
project, for the availability of computing resources and support. The research
leading to these results has received funding from the European Commissions
Horizon 2020 research and innovation programme under the grant agreement
No. 731016 (AENEAS). We thank the authors of the following software tools
and libraries that have been extensively used for data analysis and visualisa-
tion: CASA, astropy, ROOT, ds9, and APLpy. The authors thank in particular
the anonymous referee for helpful comments that led to the improvement of
this paper.

References
Bradski, G. 2000, Dr. Dobb’s Journal of Software Tools, record: citeu-

like:2236121. See also http://opencv.org/
Brun, R., & Rademakers, F. 1997, in Nucl. Inst. and Meth. in Phys. Res. A 389,

Proc. of the AIHENP’96 Workshop, Lausanne, Switzerland, p. 81. See also
http://root.cern.ch/, doi:10.1016/S0168-9002(97)00048-X

Carbone, D., et al. 2018, Astronomy and Computing, 23, 92, doi:10.1016/j.
ascom.2018.02.003

Chan, T., & Vese, L. 2001, IEEE Transaction on Image Processing, 10, 266,
doi:10.1109/83.902291

https://doi.org/10.1017/pasa.2019.29 Published online by Cambridge University Press

http://opencv.org/
http://root.cern.ch/
http://dx.doi.org/10.1016/S0168-9002(97)00048-X
http://dx.doi.org/10.1016/j.ascom.2018.02.003
http://dx.doi.org/10.1016/j.ascom.2018.02.003
http://dx.doi.org/10.1109/83.902291
https://doi.org/10.1017/pasa.2019.29

Publications of the Astronomical Society of Australia 13

Condon, J. J. 1997, PASP, 109, 166, doi:10.1086/133871
Hales, C. A., et al. 2012, MNRAS, 425, 979, doi:10.1111/j.1365-2966.2012.

21373.x
Hancock, P. J., et al. 2012, MNRAS, 422, 1812, doi:10.1111/j.1365-2966.2012.

20768.x
Hancock, P. J., et al. 2018, PASA, 35, E011, doi:10.1017/pasa.2018.3
Hatlo, M., et al. 2005, IEEE Trans. Nucl. Sci., 52, 2818, doi:10.1109/TNS.2005.

860152
Hopkins, A. M., et al. 2015, PASA, 32, E037, doi:10.1017/pasa.2015.37
Johnston-Hollitt, M., et al. 2016, SKA-TEL-SDP-0000031
James, F. 1972, CERN Program Library Long Writeup D506
Lankton, S., & Tannenbaum A. 2008, IEEE Transaction on Image Processing,

17, 2029, doi:10.1109/TIP.2008.2004611
McMullin, J. P., et al. 2007, Astronomical Data Analysis Software and Systems

XVI (ASP Conf. Ser. 376), ed. R. A. Shaw, F. Hill, & D. J. Bell (San Francisco,
CA: ASP), 127

Mohan, N., & Rafferty, D. 2015, Astrophysics Source Code Library, record
ascl:1502.007

Norris, R. P., et al. 2011, PASA, 28, 215, doi:10.1071/AS11021
Peracaula, M., et al. 2011, Proc. of the 18th IEEE International Conference on

Image Processing (ICIP), Brussels, Belgium, 2805, doi:10.1109/ICIP.2011.
6116254

Riggi, S., et al. 2016, MNRAS, 460, 1486, doi:10.1093/mnras/stw982
Umana, G., et al. 2015, MNRAS, 454, 902, doi:10.1093/mnras/stv1976
Westmeier, T. 2012, PASA, 29, 276, doi:10.1071/AS11041

Appendix A. Source deblending and fit initialisation
The number of components to be fitted for a detected source is set to the num-
ber of nested blobs, eventually ordered and selected by significance level and
limited to a maximum number (5, for example). Starting values for component
fit parameters are determined from blob moments.

If no nested blobs are present in the source, the number of components and
relative starting parameters are estimated with the following algorithm:

1. Compute blob masks at different configurable scales (usually 1 to 3 times
the beam size). A blob mask is obtained by thresholding the source image
convolved by an LoG kernel at a given scale.

2. Find peaks in blob masks with a dilation filter using different kernel sizes
(3, 5, 7 pixels by default).

3. Reject peaks below desired flux significance level.
4. Compare surviving peaks found at different scales. If multiple peaks match

within a tolerance (1–2 pixels usually), consider the one with the largest
intensity and select the blob optimal scale.

5. Set number of estimated components to selected peaks, again ordered by
significance level and limited up to a maximum number.

6. Set initial fit component centroid and amplitude to the peak position and
flux, respectively.

7. Estimate fit component shape from the previously computed masks at opti-
mal blob scale using a Watershed segmentation algorithm seeded to the
detected peak. Compute initial fit component sigma and position angle
parameters from segmented blob moments. Fall back to beam parameters
if segmentation fails.

The starting offset parameter can be either specified by the user from the con-
figuration file or determined from the map, for example, set to the estimated
background averaged over source pixels or computed in a box centred on
the source. If desired, the offset parameter can be included as a free param-
eter in the fit. By default, however, it is kept fixed as pixel data included
in the fit (down to 2.5 σ significance) do not allow the possibility to fully
constrain it.

https://doi.org/10.1017/pasa.2019.29 Published online by Cambridge University Press

http://dx.doi.org/10.1086/133871
http://dx.doi.org/10.1111/j.1365-2966.2012.21373.x
http://dx.doi.org/10.1111/j.1365-2966.2012.21373.x
http://dx.doi.org/10.1111/j.1365-2966.2012.20768.x
http://dx.doi.org/10.1111/j.1365-2966.2012.20768.x
http://dx.doi.org/10.1017/pasa.2018.3
http://dx.doi.org/10.1109/TNS.2005.860152
http://dx.doi.org/10.1109/TNS.2005.860152
http://dx.doi.org/10.1017/pasa.2015.37
http://dx.doi.org/10.1109/TIP.2008.2004611
http://dx.doi.org/10.1071/AS11021
http://dx.doi.org/10.1109/ICIP.2011.6116254
http://dx.doi.org/10.1109/ICIP.2011.6116254
http://dx.doi.org/10.1093/mnras/stw982
http://dx.doi.org/10.1093/mnras/stv1976
http://dx.doi.org/10.1071/AS11041
https://doi.org/10.1017/pasa.2019.29

	Caesar source finder: Recent developments and testing
	Introduction
	Caesar: Status and recent developments
	Processing pipeline
	Compact source extraction
	Residual image and filtering
	Extended source extraction
	Source merging

	Simulated data
	Analysis
	Validation of simulated data
	Detection of compact sources
	Completeness and reliability
	Position and flux accuracy

	Detection of extended sources
	Completeness and reliability
	Flux accuracy

	Computational performance
	Summary and outlooks
	Source deblending and fit initialisation

