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We investigate enstrophy variations by collapse of point vortices in an inviscid flow
and, in particular, focus on the enstrophy dissipation that is a significant property
characterising two-dimensional (2-D) turbulent flows. To reveal the vortex dynamics
causing the enstrophy dissipation, we consider the dynamics of point vortices, whose
vorticity is concentrated on points and dynamics on the inviscid flow, governed by the
point-vortex system. The point-vortex system has self-similar collapsing solutions, which
are expected to be a key to understand the enstrophy dissipation, but the collapsing process
cannot be described by solutions to the 2-D Euler equations. We thus consider the 2-D
filtered-Euler equations, which are a regularised model of the 2-D Euler equations, and
their point-vortex solutions. The preceding studies (Gotoda and Sakajo, J. Nonlinear Sci.
2016, vol. 26, pp. 1525–1570, Gotoda and Sakajo, SIAM J. Appl. Math. 2018, vol. 78,
2105–2128) have proven that there exist three point-vortex solutions to the filtered model
such that they converge to self-similar collapsing orbits in the three point-vortex system
and dissipate the enstrophy at the event of collapse in the zero limit of the filter parameter.
In this study, we numerically show that the enstrophy dissipation by the collapse of point
vortices could occur for the four and five vortex problems in a filtered model. Moreover,
we show the detailed convergence process of the point vortices for gradually decreasing
filter parameters, which provides a new insight for the three vortex problem. In addition,
numerical computations suggest that the enstrophy dissipation is caused by collapse of
separated point vortices with the negative interactive energy.

Key words: vortex dynamics, vortex interactions, general fluid mechanics

1. Introduction
In two-dimensional (2-D) turbulent flows at high Reynolds number, there appears
inconsistency in flow regularity between inviscid limits of viscous flows and non-viscous
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ones: the dissipation of the enstrophy, which is the L2 norm of scalar vorticity, in the
inviscid limit gives rise to the inertial range of the energy density spectrum corresponding
to the forward enstrophy cascade in the 2-D turbulence (Kraichnan 1967; Leith 1968;
Batchelor 1969), but smooth solutions to the 2-D Euler equations conserve the enstrophy.
This inconsistency insists that turbulent flows subject to the 2-D Navier–Stokes equations
converge to non-smooth flows governed by the 2-D Euler equations in the inviscid limit.
Indeed, Tran & Dritschel (2006), Dritschel et al. (2007) and references therein have
indicated that the enstrophy dissipation rate of the 2-D Navier–Stokes flow with finite
vorticity converges to zero in the vanishing viscosity limit. In addition, Buckmaster et al.
(2019) and references therein have proven the existence of energy dissipating solutions to
the three-dimensional (3-D) Euler equations with weak regularity and those dissipative
solution are expected to describe 3-D turbulent flows. Our motivation of this study is to
characterise the anomalous enstrophy dissipation by vortex dynamics and describe it by
solutions to 2-D differential equations in fluid dynamics. However, the vorticity governed
by the Navier–Stokes equations spreads with complicated support as time evolves, so
that it is often difficult to analyse the precise dynamics of the solution mathematically
and numerically. Inviscid models such as the Euler equations preserve vorticity and, the
interaction among vortices has a simpler mechanism than viscous models, which makes
it possible to describe the vortex dynamics explicitly in some cases. Hence, we try to
construct enstrophy dissipating solutions with weak regularity using inviscid models and
understand the vortex dynamics in 2-D turbulent flows.

To construct non-smooth solutions dissipating the enstrophy using the 2-D Euler
equations, we have to deal with less regular vorticity that we call singular vorticity and,
according to Eyink (2001), the enstrophy dissipation could occur for the vorticity such as
distributions in the space of finite Radon measures. However, the global well posedness
of the 2-D Euler equations has not been established for vorticity described by finite
Radon measures. To overcome this difficulty, we regularise the Euler equations based
on a spatial filtering. We call this regularised model the filtered-Euler equations, which
are a generalised model of the Euler-α equations and the vortex blob regularisation. The
advantage of considering the filtered model is the existence of a unique global weak
solution for initial vorticity in the space of finite Radon measures Gotoda (2018). In
addition, the 2-D filtered-Euler equations converge to the 2-D Euler equations in the zero
limit of the filter parameter for certain classes of initial vorticity (Gotoda 2018, 2020). Our
strategy for constructing an enstrophy dissipating solution is to find a unique global weak
solution to the 2-D filtered-Euler equations that dissipates the enstrophy in the zero limit
of the filter parameter.

Another aim of this study is to clarify what kinds of vortex motions cause the enstrophy
dissipation. For this purpose, we consider the vorticity represented by a δ-measure, which
we call point vortex, as the initial vorticity in the space of finite Radon measures, since
the dynamics of point vortices is described by their orbits and it is enough to trace
them mathematically or numerically. Although the existence of a weak solution has
not been established for the 2-D Euler equations with point-vortex initial vorticity, the
point-vortex system is known as a model describing the dynamics of point vortices on
the 2-D Euler flow formally. One of the notable features of the point-vortex system is
the existence of self-similar collapsing solutions, that is, point vortices simultaneously
collide with each other at a finite time. The mechanism of collapse of multiple vortices
plays an important role to understand fluid phenomena. For example, the dynamics
of point vortices is used as a simple model of the 2-D turbulence, and collapse of
point vortices is considered as an elementary process in the 2-D turbulence kinetics
(Novikov 1975; Siggia & Aref 1981; Carnevale et al. 1991; Benzi et al. 1992; Weiss 1999;
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Leoncini et al. 2000). However, the 2-D filtered-Euler equations have a global weak
solution for point-vortex initial vorticity and the evolution of their point-vortex solution
is described by ordinary differential equations called the filtered-point-vortex system. Our
aim is to show the existence of solutions to the filtered-point-vortex system that cause the
anomalous enstrophy dissipation via collapse of point vortices in the zero limit of the filter
parameter.

As the first attempt of constructing a point-vortex solution dissipating the enstrophy,
Sakajo (2012) has considered the three-vortex problem in the α-point-vortex system,
which is the filtered-point-vortex system derived from the 2-D Euler-α equations, with
the initial data leading to self-similar collapse in the three-point-vortex system. Sakajo
(2012) has shown with a help of numerical computations that the solution to the three-
α-point-vortex system converges to a self-similar collapsing orbit in the α → 0 limit and
the enstrophy diverges to negative infinity at the collapse time. This result has been proven
with mathematical rigour for a wider set of initial data by Gotoda & Sakajo (2016b) and
mathematically extended to the general filtered-point-vortex system by Gotoda & Sakajo
(2018). In these preceding results, the enstrophy of the solution to the filtered-point-vortex
system is defined by a variational part of the total enstrophy since the total enstrophy is
not well defined in the zero limit of the filter parameter. Then, we say that the enstrophy
dissipates by collapse of point vortices in that limit when the variational part converges
to the Dirac delta function with negative mass and a point support at the collapse time,
see § 3.3 for the precise definition.

The purpose of the present paper is to show that the enstrophy dissipation by collapse
of point vortices could occur for the four- and five-vortex problems. As for the point-
vortex system, general formulae for self-similar collapsing solutions have not been found
for the four- and more vortex problems, but Novikov & Sedov (1979) has obtained an
example of the family of initial configurations leading to self-similar collapse of four and
five point vortices. We thus show that the solutions to the four- and five-filtered-point-
vortex systems, with initial data by Novikov & Sedov (1979), converge to self-similar
collapsing orbits and dissipate the enstrophy in the zero limit of the filter parameter. To
show that, we numerically solve the α-point-vortex system for several decreasing filter
parameters, which enables us to observe the zero limit process of the filter parameter
precisely. In the main results, we see the detailed behaviours of the mutual distances,
the enstrophy and the collapse time of point vortices for those filter parameters. Since
we treat not for specific initial data but for a one-parameter family of initial data, we
numerically cover wide sets of initial data leading to self-similar collapse in the point-
vortex system. Before considering the four- and five-vortex problems, we revisit the
three-vortex problem to investigate the behaviours of point vortices for several small filter
parameters converging to zero since Gotoda & Sakajo (2016b, 2018) have not revealed the
detailed process of the enstrophy dissipation by vortex collapse. After the investigations of
the four- and five-vortex problems, we show that the enstrophy dissipation occurs for the
initial data whose Hamiltonian energy is negative, and the total enstrophy at the collapse
time diverges to positive infinity in the zero limit of the filter parameter. This shows
that the enstrophy dissipation is caused by the interaction of collapsing point vortices
with negative interactive energy since the enstrophy of the filtered-point-vortex system
comes from the interaction among separated point vortices, Our results indicate that vortex
collapse plays an important role in understanding the 2-D turbulent flow, and we also
say that the filtered model is a useful model to see vortex dynamics on flows at high
Reynolds number. Indeed, owing to its regularity, the dynamics of unbounded vorticity in
the filtered model is often well defined globally in time, and the Euler-α equations and
the Navier–Stokes α equations are used as physically relevant models of turbulent flows
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(Chen et al. 1998, 1999; Foias et al. 2001, 2002; Mohseni et al. 2003; Lunasin et al. 2007)
and the dynamics of vortex sheets (Holm et al. 2006; Caflisch et al. 2017).

This paper is organised as follows. In § 2, we briefly review the point-vortex system. To
compare with the filtered-point-vortex system, we derive the point-vortex system from the
2-D Euler equation based on the Lagrangian flow map. Then, we introduce the definition
of self-similar motions and examples of exact self-similar collapsing solutions to the point-
vortex system. In § 3, we derive the filtered-point-vortex system from the 2-D filtered-Euler
equations and see fundamental properties. After introducing the variations of the total
enstrophy and the total energy to the filtered-point-vortex system, we mention preceding
results about the enstrophy dissipation via self-similar collapse of three point vortices.
The main results are shown in § 4. In this section, we first see numerical solutions to
the three-α-point-vortex system and the detailed process of the enstrophy dissipation by
triple vortex collapse in comparison with the mathematical theory in the preceding results.
After that, we numerically show that collapse of four and five point vortices could cause
the enstrophy dissipation by considering the zero limit of the filter parameter. Then, we
compare the total enstrophy with the variational part of it at the collapse time quantitatively
and see the dependence between the divergence of the enstrophy and the Hamiltonian
energy. Section 5 is devoted to concluding remarks.

2. The point-vortex system

2.1. Derivation based on the 2-D Euler equations
In this section, we review the formulation of the point-vortex system and its fundamental
properties. We start by considering the 2-D Euler equations as an inviscid model:

∂tv + (v · ∇)v + ∇ p = 0, ∇ · v = 0, (2.1)

where unknown functions v(x, t) = (v1(x, t), v2(x, t)) and p(x, t) describe a velocity
field and a pressure function, respectively. Taking the curl of (2.1), we obtain a transport
equation for the vorticity q := curl v = ∂x1v2 − ∂x2v1:

∂t q + (v · ∇)q = 0, (2.2)

which we call the vorticity form of (2.1), and the Biot–Savart law gives

v(x, t) = (K ∗ q)(x, t) :=
∫
R2

K (x − y)q( y, t)d y, K (x) := 1
2π

x⊥

|x|2 , (2.3)

where x⊥ := (−x2, x1). The initial value problem of (2.2) in R
2 has a unique global weak

solution for initial vorticity q0 ∈ L1(R2) ∩ L∞(R2) (Yudovich 1963). Then, owing to the
uniqueness, we have the Lagrangian flow map η governed by

∂tη(x, t) = v (η(x, t), t) , η(x, 0) = x. (2.4)

Note that a unique solution of (2.4) yields a solution of (2.2) via q(x, t) = q0(η(x, −t)).
The existence of a global weak solution to (2.2) has been extended to the case of
q0 ∈ L1(R2) ∩ L p(R2) with p > 1 (DiPerna & Majda 1987) and less regular vorticity
q0 ∈ M(R2) ∩ H−1

loc (R2) (Delort 1991; Majda 1993), where M(R2) and H−1
loc (R2) denote

the space of finite Radon measures and the Sobolev space, respectively.
In this paper, we focus on point-vortex initial vorticity, which is represented by

q0(x) =
N∑

m=1

Γm δ(x − km), (2.5)
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where N ∈N is the number of point vortices and δ(x) is the Dirac delta function. The given
constants Γm ∈R \ {0} and km ∈R

2 denote the strength and the initial position of the mth
point vortex, respectively. Unfortunately, the solvability of (2.2) has not been established
for initial vorticity (2.5) in general. In what follows, we formally derive the governing
equations of point vortices from (2.2) by assuming that point vortices are convected by the
flow map (2.4), and the solution of (2.2) is described by

q(x, t) =
N∑

m=1

Γm δ(x − η(km, t)). (2.6)

For simplicity, we set xm(t) := η(km, t). Then, (2.4) and the Biot–Savart law yield

d
dt

xm(t) =
N∑

n=1

Γn

∫
K (xm(t) − y) δ( y − xn(t))d y ∼

N∑
n 
=m

Γn K (xm(t) − xn(t)). (2.7)

Note that the last approximation is not a mathematically rigorous calculation but a
formal one, since the kernel K is not bounded at the origin. Introducing complex
positions of point vortices zm(t) := xm(t) + iym(t) for convenience of notation, we find
the point-vortex (PV) system:

dzm

dt
= −1

2π i

N∑
n 
=m

Γn

zm − zn
, zm(0) = km (2.8)

for m = 1, . . . , N , where zm denotes the complex conjugate of zm and km denotes the
complex position of km ∈R

2. The PV system is formulated as a Hamiltonian dynamical
system with the Hamiltonian,

H pv := − 1
2π

N∑
m=1

N∑
n=m+1

ΓmΓn log lmn, (2.9)

where lmn(t) := |zm(t) − zn(t)| (Kirchhoff 1876). In addition to the Hamiltonian H pv ,
the PV system has the following invariant quantities:

P + i Q :=
N∑

m=1

Γm xm + i
N∑

m=1

Γm ym, I :=
N∑

m=1

Γm |zm |2, (2.10)

and these quantities yield another invariant,

M :=
N∑

m=1

N∑
n=m+1

ΓmΓnl2
mn = 2(Γ I − P2 − Q2), (2.11)

where Γ :=∑N
m=1 Γm . Considering these invariants, we find that the PV system (2.8)

with N � 3 is integrable for any Γm ∈R \ {0} and the system with N = 4 is integrable
when Γ = 0 holds, see Newton (2001) for details. The system is no longer integrable for
N = 4 with Γ 
= 0 and N � 5, for which the dynamics of point vortices could be chaotic.

2.2. Self-similar solutions
Self-similar motions of point vortices are described by the form of

zm(t) = km f (t), f (t) := r(t)eiθ(t), (2.12)
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where r � 0 and θ ∈R satisfy r(0) = 1 and θ(0) = 0 (Kimura 1987). Here, owing to the
translational invariance of the PV system, we fix the centre of point vortices to the origin,
that is, P = Q = 0. Substituting (2.12) into (2.8), we find

2π
d f

dt
f = i

km

N∑
n 
=m

Γn

km − kn
, (2.13)

which implies that the existence of a self-similar solution is equivalent to the existence of
an initial configuration {km}N

m=1 for which there exist constants A, B ∈R independent of
m such that they satisfy

A + i B = i

2πkm

N∑
n 
=m

Γn

km − kn
(2.14)

for any m = 1, . . . , N . See Gotoda (2021) for the explicit formulae of the constants A
and B. For the case of A 
= 0, the self-similar solution of the PV system is explicitly
described by

zm(t) = km
√

2At + 1 exp
[

i
B

2A
log (2At + 1)

]
, m = 1, . . . , N , (2.15)

and the mutual distances are given by lmn(t) = lmn(0)
√

2At + 1 for m 
= n (Kimura 1987).
Thus, the point vortices simultaneously collide at the origin with the time

tc := − 1
2A

, (2.16)

which is called the collapse time. We call self-similar motions with A < 0 collapsing
and those with A > 0 expanding in the positive direction of time. For the initial position
satisfying A = 0, the corresponding self-similar solution is a relative equilibrium in the
form zm(t) = kmei Bt that rotates rigidly about their centre of vorticity with the angular
velocity B. It is easily confirmed that self-similar solutions with A 
= 0 satisfy I = M = 0
and

ΓH :=
N∑

m=1

N∑
n=m+1

ΓmΓn = 0, (2.17)

which follows from the invariance of the Hamiltonian. Note that we may fix the N th point
vortex of the initial configuration to zN = 1 on the real axis since the PV system has
rotational and scaling invariance.

2.3. Exact solutions for self-similar collapse
In the three-PV system, it is known that ΓH = M = 0 is a necessary and sufficient
condition for the self-similar collapse (Aref 1979; Kimura 1987; Newton 2001), and any
partial collapse does not occur. Note that ΓH = 0 allows us to assume that Γ1, Γ2 have
a same sign and Γ3 does the opposite one without loss of generality: Γ3 is replaced by
−Γ1Γ2/(Γ1 + Γ2). Under the condition ΓH = M = 0, initial configurations of self-similar
solutions are expressed by

k1 = Γ1Γ2

(Γ1 + Γ2)2

(
1 −

√
R

Γ1
eiθ

)
, k2 = Γ1Γ2

(Γ1 + Γ2)2

(
1 +

√
R

Γ2
eiθ

)
, k3 = 1 (2.18)
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for θ ∈ [0, 2π), where R := Γ 2
1 + Γ1Γ2 + Γ 2

2 , see Kimura (1987). Then, three point
vortices form equilateral triangles for θ = θ± satisfying cos θ± = −(Γ1 − Γ2)/(2

√
R) and

0 < θ+ < π < θ− < 2π . Since the initial configuration (2.18) is a one-parameter family
with the parameter θ ∈ [0, 2π), H and (A, B) in (2.14) are considered as functions of
θ , see Newton (2001) and Gotoda (2021) for the explicit formulae of them. All possible
equilibria, which are equivalent to A = 0, are collinear states for θ = 0, π and equilateral
triangles for θ = θ±. It is easily confirmed that the self-similar solution is collapsing for
θ ∈ (0, θ+) ∪ (π, θ−) and expanding for θ ∈ (θ+, π) ∪ (θ−, 2π). In the case of Γ1 = Γ2,
which is the case we use for numerical computations later, we have θ+ = π/2 and
θ− = 3π/2.

In the PV system with N � 4, explicit formulae for configurations leading to self-similar
collapse have not been established in general. However, an example of exact self-similar
collapsing solutions for the four- and five-vortex problems has been obtained by Novikov &
Sedov (1979). In this example, four point vortices are located at vertices of a parallelogram
whose diagonals intersect at the origin and the fifth point vortex is located at the origin,
that is,

k1 = 1
2

d1eiθ , k2 = −1
2

d1eiθ , k3 = −1
2

d2, k4 = 1
2

d2, k5 = 0, (2.19)

where given constants d1, d2 are lengths of the diagonals and θ ∈ [0, 2π) is the angle
between the diagonals. The strengths of point vortices are Γ1 = Γ2 = α, Γ3 = Γ4 = β and
Γ5 = γ , where α, β, γ ∈R \ {0} are given constants. The configuration (2.19) satisfies
P = Q = 0 and, due to the self-similarity with rotation, we have

I = 1
2

(
αd2

1 + βd2
2
)= 0,

M = 1
2(2α + 2β + γ )

(
αd2

1 + βd2
2
)= 0,

ΓH = α2 + 4αβ + β2 + 2γ (α + β) = 0

(2.20)

and these conditions yield the relation d2
1/d2

2 = −β/α. Ignoring the fifth point vortex
k5, we have the initial configuration leading to self-similar collapse for the four-PV
system. Similarly to the five-PV problem, we have P = Q = 0 and (2.20) with γ ≡ 0
should be satisfied. Then, we have d2

1/d2
2 = −β/α = 2 ± √

3 > 0. Considering (2.19) as
a one-parameter family, the Hamiltonian H pv is represented by

H pv(θ) = −1
2π

log
[
cH dα(α+2γ )

1 dβ(β+2γ )

2
(
d4

1 + d4
2 − 2d2

1 d2
2 cos 2θ

)αβ
]
, (2.21)

where cH := 2−4αβ−2γ (α+β), and this formula is valid for the four-vortex problem by
setting γ ≡ 0. The explicit formulae for (A, B) in (2.14) for (2.19) have been obtained
as functions of θ , see Novikov & Sedov (1979). In both the four- and five-PV systems,
relative equilibria are diamond configurations for θ = π/2, 3π/2 and collinear states
for θ = 0, π . In this paper, we consider the case of α < 0, for which the self-similar
motions are collapsing for θ ∈ (0, π/2) ∪ (π, 3π/2) and expanding for θ ∈ (π/2, π) ∪
(3π/2, 2π).
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3. The filtered point-vortex system

3.1. Dynamics of point vortices on the 2-D filtered-Euler flow
We introduce the filtered-point-vortex (FPV) system, which describes the dynamics of
point-vortex solutions of the 2-D filtered-Euler equations. The filtered-Euler equations are
a regularised model of the Euler equations on the basis of a spatial filtering and given by

∂tv
ε + (uε · ∇)vε − (∇vε)T · uε − ∇ pε = 0, uε = hε ∗ vε, ∇ · vε = 0, (3.1)

where vε and pε are unknown functions, and hε has the form

hε(x) := 1
ε2 h

( |x|
ε

)
(3.2)

with a given filter function h ∈ L1(0, ∞) (Foias et al. 2001; Holm et al. 2006). We mention
detailed properties that a filter function h should satisfy in Remark 2. We consider the
vorticity qε := curl vε and the vorticity form of (3.1):

∂t q
ε + (uε · ∇)qε = 0, uε = K ε ∗ qε, (3.3)

where K ε := K ∗ hε is a filtered kernel and we call the relation uε = K ε ∗ qε the filtered-
Biot–Savart law. In contrast to the 2-D Euler equations, the 2-D filtered-Euler equations
have a unique global weak solution for initial vorticity q0 ∈ M(R2) (Gotoda 2018), which
guarantees the global solvability for the point-vortex initial data (2.5). Thus, we have the
filtered-Lagrangian flow map ηε convected by the filtered velocity uε:

∂tη
ε(x, t) = uε

(
ηε(x, t), t

)
, ηε(x, 0) = x, (3.4)

and the solution of (3.3) is expressed by qε(x, t) = q0(η
ε(x, −t)). The convergence of

the 2-D filtered-Euler equations to the 2-D Euler equations has been proven for the initial
vorticity in L1(R2) ∩ L p(R2) with 1 < p �∞ and M(R2) ∩ H−1

loc (R2), see Gotoda (2018,
2020).

REMARK 1. The singular kernel K appearing in the 2-D Euler equations is expressed
by K = ∇⊥G, where ∇⊥ = (−∂x2, ∂x1) and G is a fundamental solution to the 2-D
Laplacian �G = δ. The filtered kernel K ε in the 2-D filtered-Euler equations is
represented by K ε = ∇⊥Gε, where Gε is a solution to the 2-D Poisson equation
�Gε = hε. Since hε is radially symmetric, it is easily confirmed that K ε(x) =
∇⊥(Gr (|x|/ε)) and Gr satisfies

1
r

d

dr

(
r

d

dr
Gr (r)

)
= h(r). (3.5)

Then, we have

K ε(x) = K (x) P

( |x|
ε

)
, P(r) := 2πr

dGr

dr
(r). (3.6)

The function P ∈ C[0, ∞) is monotonically increasing and satisfies P(0) = 0 and P(r) →
1 as r → ∞. Note that K ε does not have singularity at the origin and belongs to C0(R

2),
the space of continuous functions vanishing at infinity.

We consider point-vortex solutions of (3.3). Owing to the uniqueness for the initial
vorticity (2.5), we have a unique filtered-Lagrangian flow map ηε and the solution of (3.3)
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is given by

qε(x, t) =
N∑

m=1

Γm δ(x − ηε(km, t)). (3.7)

Setting xε
m(t) := ηε(km, t), we find from (3.4) and the filtered-Biot–Savart law that

d
dt

xε
m(t) =

N∑
n=1

Γn

∫
K ε
(
xε

m(t) − y
)
δ
(

y − xε
n(t)

)
d y =

N∑
n 
=m

Γn K ε
(
xε

m(t) − xε
n(t)

)
.

(3.8)
Let zε

m(t) := xε
m(t) + iyε

m(t) and recall (3.6). Then, we obtain the FPV system in the
complex form:

dzε
m

dt
= −1

2π i

N∑
n 
=m

Γn

zε
m − zε

n
P

(
lεmn

ε

)
, zε

m(0) = km (3.9)

for m = 1, . . . , N , where lεmn(t) := |zε
m(t) − zε

n(t)|, see Gotoda & Sakajo (2018). We call
point vortices governed by the FPV system filtered point vortices. The FPV system is a
Hamiltonian system with the Hamiltonian

H ε := − 1
2π

N∑
m=1

N∑
n=m+1

ΓmΓn

[
log lεmn + HG

(
lεmn

ε

)]
, (3.10)

where HG(r) := − log r + 2πGr (r). The FPV system admits the conserved quantities
(Pε, Qε, I ε, Mε), which are defined in the same manner as (P, Q, I, M) in the PV
system, and H ε. The integrability of (3.9) depending on N is also same as the PV system.

It is important to remark that, owing to the global solvability and uniqueness, filtered
point vortices never collapse for any ε > 0. In contrast to the 2-D Euler equations, the
derivation of (3.9) is mathematically rigorous and thus the FPV system is equivalent to the
vorticity form of the 2-D filtered-Euler equations with initial data (2.5): a weak solution
to the 2-D filtered-Euler equations yields a solution to the FPV system and vice versa.

REMARK 2. The filter function h characterises the regularity of the filtered model.
In this paper, we suppose that h is a given function satisfying h ∈ C0(0, ∞) ∩ L1(0, ∞)

and

2π

∫ ∞

0
rh(r) dr = 1. (3.11)

Note that h may have a singularity at the origin but should decay at infinity, see
Gotoda (2018) and Gotoda & Sakajo (2018) for the detailed condition that guarantees
the global solvability for the point-vortex initial vorticity. For a suitable filter function h,
the 2-D filtered-Euler equations have a unique global weak solution for initial vorticity in
M(R2). Considering a specific filter function h, we obtain an explicit form of the filtered-
Euler equations. For instance, the Euler-α model, the vortex blob regularisation and the
exponential model are often used as a regularised inviscid model.

3.2. Variations of enstrophy and energy
We introduce variations of the enstrophy and the energy for solutions to the FPV system.
The derivations of them are based on the Fourier transform and we here start with the
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final forms of the total enstrophy and the approximated total energy, see Gotoda & Sakajo
(2018) for the detailed derivations. We define the total enstrophy by the L2-norm of the
filtered vorticity ωε := hε ∗ qε. Then, the total enstrophy of the FPV system is given by

1
2

∫
R2

∣∣ωε(x, t)
∣∣2 dx = 1

4πε2

N∑
m=1

Γ 2
m

∫ ∞

0
s
∣∣2π ĥ(s)

∣∣2 ds

+ 1
2πε2

N∑
m=1

N∑
n=m+1

ΓmΓn

∫ ∞

0
s
∣∣2π ĥ(s)

∣∣2 J0

(
s

lεmn

ε

)
ds,

(3.12)
where ĥ is the Fourier transform of h and J0 is the zeroth-order Bessel function of the
first kind. The first term in the right-hand side describes the enstrophy produced by self-
interaction of point vortices and the second one comes from interaction among separated
point vortices. Since the self-interaction term is constant in time and diverges to infinity
in the ε → 0 limit, we consider the variational part of the total enstrophy provided by the
second term,

Z ε(t) := 1
2πε2

N∑
m=1

N∑
n=m+1

ΓmΓn

∫ ∞

0
s
∣∣2π ĥ(s)

∣∣2 J0

(
s

lεmn(t)

ε

)
ds, (3.13)

and investigate how the enstrophy varies with mutual interaction of point vortices. In what
follows, we call the variation Z ε the enstrophy of the FPV system. The total energy for
the filtered model is defined by the L2-norm of the filtered velocity uε. However, the total
energy on the whole space R

2 is not finite in general, since the filtered-Biot–Savart law
implies uε(x) ∼ |x|−1 as |x| → ∞. Thus, we consider the total energy cut off at a scale
larger than L � 1. Then, the following approximation holds:

1
2

∫
R2

∣∣uε(x, t)
∣∣2 dx ∼ 1

4π

N∑
m=1

Γ 2
m

∫ ∞

εL−1

1
s

∣∣2π ĥ(s)
∣∣2 ds

+ 1
2π

N∑
m=1

N∑
n=m+1

ΓmΓn

(
log

Leζ

2
+ O

(
L−2 log L−1

))

− 1
2π

N∑
m=1

N∑
n=m+1

ΓmΓn

[
log lεmn(t) +

∫ ∞

εL−1

1
s

(
1 − ∣∣2π ĥ(s)

∣∣2) J0

(
s

lεmn(t)

ε

)
ds

]
,

(3.14)

where ζ is Euler’s constant. Taking the L → ∞ limit in the non-constant part, we obtain
a variational part of the approximated total energy:

E ε(t) := − 1
2π

N∑
m=1

N∑
n=m+1

ΓmΓn

[
log lεmn(t) +

∫ ∞

0

1
s

(
1 − ∣∣2π ĥ(s)

∣∣2) J0

(
s

lεmn(t)

ε

)
ds

]
,

(3.15)
in which the integrand of the second term does not have any singularity owing to
2π ĥ(0) = 1. Then, we define the energy dissipation rate of the FPV system by the time
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derivative of E ε(t):

Dε
E (t) := d

dt
E ε(t). (3.16)

3.3. Preceding results about enstrophy dissipation
As the first attempt of constructing a point-vortex solution dissipating the enstrophy,
Sakajo (2012) has numerically shown that self-similar collapse of three point vortices
could dissipate the enstrophy by using the Euler-α model. Let us review the preceding
results for the Euler-α model more precisely since we use this model later for numerical
computations. In the Euler-α model, the filter function h is given by

h(r) = 1
2π

K0(r), (3.17)

where K0 is the zeroth-order modified Bessel function of the second kind, for which the
corresponding equations (3.1) are called the 2-D Euler-α equations. Then, we find that the
smoothing function P in the FPV system (3.9) is expressed by

P(r) = 1 − r K1(r), (3.18)

where K1 denotes the first-order modified Bessel function of the second kind, see Gotoda
& Sakajo (2016a,b) and Sakajo (2012). The FPV system and filtered point vortices
with (3.18) are called the α-point-vortex (αPV) system and α-point vortices, respectively.
Note that the filter parameter in the Euler-α model is often denoted by α, but we
consistently use ε to avoid confusion in this paper. The quantities H ε, Z ε and E ε for
the α-PV system are explicitly described by

H ε = − 1
2π

N∑
m=1

N∑
n=m+1

ΓmΓn

[
log lεmn + K0

(
lεmn

ε

)]
, (3.19a)

Z ε = 1
4πε2

N∑
m=1

N∑
n=m+1

ΓmΓn
lεmn

ε
K1

(
lεmn

ε

)
, (3.19b)

E ε = − 1
2π

N∑
m=1

N∑
n=m+1

ΓmΓn

[
log lεmn + K0

(
lεmn

ε

)
+ lεmn

2ε
K1

(
lεmn

ε

)]
, (3.19c)

and they satisfy E ε + ε2Z ε = H ε. Sakajo (2012) has considered the three-α-PV system
and shown with the help of numerical computations that, under the condition ΓH = Mε =
0, three α-point vortices converge to a self-similar collapsing solution of the PV system
in the ε → 0 limit and dissipate the enstrophy at the event of the triple collapse while the
energy is conserved. Subsequently, this result has been proven with mathematical rigour
by Gotoda & Sakajo (2016b) and then Gotoda & Sakajo (2018) have proven that the same
result holds for the FPV system (3.9) with the general filter function h. In these preceding
studies, the enstrophy dissipation by collapse of point vortices and the energy conservation
mean that there exist constants tc ∈R and mz < 0 such that we have

lim
ε→0

lεmn(tc) = 0 (3.20)
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for any m 
= n, and

lim
ε→0

Z ε = mzδ(· − tc), lim
ε→0

Dε
E = 0 (3.21)

in the sense of distributions. Here, tc is the time when the self-similar collapse occurs and
mz is the mass of the enstrophy dissipation. For the N vortex problem with N � 4, we
have one numerical example of quadruple collapse causing the enstrophy dissipation in
the four-α-PV system of Gotoda & Sakajo (2016a) with specific initial data that is also
found numerically. In the present study, we consider the four- and five-vortex problems
in the FPV system for the one-parameter family of initial data (2.19) and give numerical
solutions leading to the enstrophy dissipation by vortex collapse in the ε → 0 limit.

REMARK 3. The preceding studies have also shown that three filtered-point vortices
converge to a self-similar collapsing solution to the three-PV system with the collapse
time tc. Although the filtered-point vortices exist globally in time for ε > 0, the ε → 0
limit of them is no longer defined at t = tc and we cannot connect the two limit solutions
for t < tc and t > tc at the collapse time. As we see in § 4, the enstrophy for the filtered-
point vortices with ε > 0 decreases to minimum at the critical time and then returns to
the original value as time evolves. However, in the ε → 0 limit, the minimum value of
the enstrophy diverges to negative infinity at the collapse time. Therefore, the ε → 0 limit
solution of the FPV system exists in the time interval (−∞, tc) and breaks down at t = tc
with the divergence of the enstrophy, which holds for the limit solution for t > tc, that is,
it exists in (tc, ∞) and the enstrophy diverges at t = tc as time evolves in the negative
direction.

4. Main results

4.1. Numerical method
To conduct numerical computations for dynamics of solutions to the FPV system, we have
to give an explicit filter function h. In this paper, we employ the α-PV system, that is,
the FPV system (3.9) with (3.17), and consider the three-, four- and five-vortex problems:
the three-α-PV system with (2.18), the four-α-PV system with (2.19) without k5 and the
five-α-PV system with (2.19). Similarly to the PV system, solutions to the FPV system for
θ ∈ (π, 2π) are symmetric to those for θ ∈ (0, π) with the real axis. In addition, solutions
for θ ∈ (π/2, π) are expanding and thus there is no collapse of filtered point vortices in
the ε → 0 limit for any positive time. For the cases of θ = 0, π/2, π and 3π/2 on the
axes, as we mentioned in § 2.3, the corresponding solutions to the PV system are relative
equilibria. However, the solutions to the FPV system for those initial configurations are not
relative equilibria and they are expanding, except for the three filtered-point vortices with
θ = π/2. Thus, it is enough to pay attention to θ ∈ (0, π/2) for considering the enstrophy
dissipation by vortex collapse.

For later use, we introduce several notation. Since solutions to the FPV system are
parametrised by θ in the initial data (2.18) and (2.19), we describe

lεmn(t; θ) = lεmn(t) (4.1)

when we emphasise that the solutions depend on θ . Then, for θ ∈ (0, π/2), we define the
critical time tεc = tεc (θ) as the time when the total length of lεmn in the L2-sense,

Lε(t; θ) :=
N∑

m=1

N∑
n=m+1

(
lεmn(t; θ)

)2
, (4.2)
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attains its minimum, that is,

tεc = tεc (θ) := argmin
t�0

Lε(t; θ). (4.3)

The critical time tεc corresponds to the collapse time of the PV system. Indeed, for initial
data (2.18) and (2.19), the collapse time (2.16) of the PV system is a function of θ , which
we describe by

tc = tc(θ) := 1
2A(θ)

, (4.4)

where A(θ) is given by (2.14). Then, as we see later, numerical computations show that
tεc (θ) converges to tc(θ) in the ε → 0 limit for any θ ∈ (0, π/2). The enstrophy Z ε and the
energy dissipation rate Dε

E are also functions of θ and denoted by Z ε(t; θ) and Dε
E (t; θ).

In particular, we represent the values of Lε(t; θ) and Z ε(t; θ) at the critical time by

Lε
c(θ) := Lε(tεc (θ), θ), Z ε

c (θ) := Z ε(tεc (θ), θ) (4.5)

for simplicity. We remark that the convergence of Lε
c(θ) to zero and the divergence of

Z ε
c (θ) to negative infinity in the ε → 0 limit indicate collapse of point vortices and the

enstrophy dissipation, respectively.
For numerical computations, we divide the interval (0, π/2) into 200 segments and

compute solutions to the α-PV system with the initial configuration for

θi := π

2
× i

200
, i = 1, . . . , 199. (4.6)

As for the filter parameter ε, we compute the five cases of

ε1 := 0.01, ε2 := 0.025, ε3 := 0.05, ε4 := 0.075, ε5 := 0.1. (4.7)

As the numerical scheme for solving the α-PV systems, we use the five-stage implicit
Runge–Kutta method based on the n-point Gauss–Legendre quadrature formula (Butcher
1964) with the time step size �t = 0.0001. To ensure the accuracy of numerical solutions,
we use variables with 32 decimal digit precision. For the four-α-PV system with several
initial configurations near θ = 0, we have used �t = 0.00001 and 50 decimal digit
precision to accurately compute long time behaviours of the solutions. For the five-α-
PV system, mathematical analysis shows that the fifth point vortex is fixed to the origin
throughout time evolution and thus we have fixed it in the numerical scheme. Figure 1
shows examples of the four and five α-point vortices for the initial data (2.19) with θ = θ30.

4.2. Three-vortex problem
In the three-vortex problem, it has already been proven that the solution to the FPV system
with initial data (2.18) for θ ∈ (0, π/2) converges to a self-similar collapsing solution of
the PV system and dissipates the enstrophy at the collapse time. However, its mathematical
analysis has not revealed the detailed process of the enstrophy dissipation by collapse of
three point vortices. To see the convergence process of the filtered-point vortices up to
collapse and the associated enstrophy variation as ε decreases precisely, we investigate the
three-α-PV system with initial data (2.18) by numerical computations.

For simplicity, we consider the case of Γ1 = Γ2: we may set Γ1 = Γ2 = −1 and Γ3 = 1/2
without loss of generality. Then, (2.18) is expressed by

k1 = 1
4

(
1 + √

3eiθ
)

, k2 = 1
4

(
1 − √

3eiθ
)

, k3 = 1 (4.8)
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Figure 1. Orbits of the (a) four and (b) five α-point vortices for the initial data (2.19) with θ = θ30 and the filter
parameter ε3 = 0.05. The circular, triangle and square points describe the configurations at t = 0, t = tεc and
t = 2tεc , respectively.

for θ ∈ (0, π/2). Figures 2(a) and 2(b) show the graphs of Lε3(t; θi ) and Z ε3(t; θi )

for i = 20, 40, 70, 120, 180. These graphs indicate that, for any fixed θ ∈ (0, π/2), the
functions Lε(t; θ) and Z ε(t; θ) of the variable t are monotonically decreasing for t < tεc
and increasing for t > tεc : Z ε(t; θ) attains its minimum at tεc (θ) that is defined by the
time when Lε(t; θ) reaches its minimum. That is to say, three α-point vortices approach
each other with decreasing the enstrophy as time evolves, and then the enstrophy decreases
the most when α-point vortices are at their closest. After the critical time, the enstrophy
increases as the α-point vortices move away from each other. Note that Z ε(t; θ) is a
negative function for any fixed θ ∈ (0, π/2), which is specific to the three-vortex problem
as we see in the four- and five-vortex problems later.

We focus on the total length and the enstrophy at the critical time. As we see in
figure 2(c), Lε

c(θ) is monotonically decreasing and, for any fixed θ ∈ (0, π/2), it seems
to approach zero as ε gets smaller. Figure 2(d) shows that Z ε

c (θ) has the minimum in
(0, π/2) and numerical computations suggest

θ69 < argminθ∈(0,π/2) Z ε
c (θ) < θ71 (4.9)

and argminθ Z ε
c (θ) is independent of ε > 0. We also find from figure 2(d) that, for any

fixed θ ∈ (0, π/2), Z ε
c (θ) seems to diverge to negative infinity as ε tends to zero, though it

is not a monotonically decreasing function of ε near θ = 0. Although we omit the figures,
numerical computations indicate that the configuration of the three α-point vortices at
tεc (θ) is a collinear state for any ε > 0 and θ ∈ (0, π/2), and it is similar to (4.8) with
θ = 0, which is a relative equilibrium of the three-PV system, see § 2.3.

Next, we see the ε → 0 limits of Lε
c(θ), Z ε

c (θ) and tεc (θ) for θ ∈ (0, π/2) more
precisely. For i ∈ {1, . . . , 199}, we consider the following three sets of five points
on R

2:

L(i) := {
(ε2

n, Ln(i))
}5

n=1, Z(i) := {
(ε2

n, Zn(i))
}5

n=1, T (i) := {
(ε2

n, Tn(i))
}5

n=1,
(4.10)
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0.4
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(d )

Figure 2. Graphs of (a) {Lε3 (t; θi )}i∈I , (b) {Z ε3 (t; θi )}i∈I with I = {20, 40, 70, 120, 180}, (c) {Lεn
c (θ)}5

n=2
and (d) {Z εn

c (θ)}5
n=2 for the three α-PV system. In panels (a) and (b), the time axes are rescaled so that

{tεc (θi )}i∈I are placed at the same midpoint. The curves in panels (c) and (d) are interpolating data for i =
1, . . ., 199 with lines.

where {εn}5
n=1 is given by (4.7) and Ln , Zn , Tn are defined by

Ln(i) := Lεn
c (θi )

2

Lε5
c (θi )2 , Zn(i) := 1/Z εn

c (θi )

1/|Z ε5
c (θi )| = |Z ε5

c (θi )|
Z εn

c (θi )
, Tn(i) := tεn

c (θi )

tc(θi )
− 1.

(4.11)
Here, tc(θ) is the collapse time (4.4) in the PV system. Note that we use normalised values
of Lεn

c (θ), 1/Z εn
c (θ) and tεn

c (θ) divided by Lε5
c (θ), 1/|Z ε5

c (θ)| and tc(θ), respectively.
Our purpose is to show that L(i), Z(i) and T (i) are on curves connected to the origin on
R

2 for any i = 1, . . . , 199, which indicates that Lε
c(θ) converges to zero, Z ε

c (θ) diverges
to negative infinity and tεc (θ) converges to tc(θ) in the ε → 0 limit. We apply the least
squares method to L(i), Z(i) and T (i), and try to approximate these sets by straight lines.
We describe the approximate lines by

y = aX (i)x + bX (i), (4.12)

and the errors between the approximate lines and the three sets by

eX (i) :=
( 5∑

n=1

(
Xn(i) −

(
aX (i)ε2

n + bX (i)
))2

)1/2

(4.13)

for X = L , Z , T . Figure 3(a) shows the graphs of bL(i), bZ (i), bT (i) and eL(i), eZ (i),
eT (i) for i = 1, . . . , 199. For large i , L(i), Z(i) and T (i) are well approximated by straight
lines connected to the origin since both (bL(i), bZ (i), bT (i)) and (eL(i), eZ (i), eT (i)) are
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Figure 3. Interpolating curves of (a) bL (i), bZ (i), bT (i) and eL (i), eZ (i), eT (i), i = 1, . . ., 199 with lines,
in which the continuous curves describe bL , bZ , bT and the dashed ones describe eL , eZ , eT . The plots of
(b) L(i), (c) Z(i) and (d) T (i) with interpolating straight lines. The purple graphs in panels (b) and (c)
are plotting data for all i from 60 to 199 and those in panel (d) are plotting skipped data for i = j × 10,
j = 6, . . ., 19 for visibility.

sufficiently small. Although the errors eL(i), eZ (i) and eT (i) for small i are large, which
means that L(i), Z(i) and T (i) are not on any straight line, these three sets are still on
curves connected to the origin, see figures 3(b), 3(c) and 3(d). Hence, we find from the
numerical computations that the desired convergences of Lε

c(θ), Z ε
c (θ) and tεc (θ) hold,

and conclude that the enstrophy dissipation occurs by the collapse of three point vortices.
We again remark that these numerical results are consistent with the mathematical results
of Gotoda & Sakajo (2016b, 2018).

4.3. Four-vortex problem
We consider the four-α-PV system with initial data (2.19) without k5, that is,

k1 = 1
2

d1eiθ , k2 = −1
2

d1eiθ , k3 = −1
2

d2, k4 = 1
2

d2 (4.14)

for θ ∈ (0, π/2). For numerical computations, we set d2 = 2 and α = −1, which determine
the other parameters d1 and β by the relation d2

1/d2
2 = −β/α = 2 − √

3.
As we see in figures 4(a) and 4(c), similarly to the three-vortex problem, Lε3(t; θi )

decreases as time evolves and, after attaining its minimum at tεc (θi ), it turns to increase,
which holds for the other εn as well. At the critical time, Lεn

c (θ) attains its minimum at a
certain θL ∈ (0, π/2) and it is monotonically decreasing for θ < θL and increasing for θ >

θL , which is a feature different from the three-vortex problem. Numerical computations
indicate θ136 < θL < θ138 for any εn . As ε > 0 gets smaller, Lε

c(θ) seems to converge to
zero: the four α-point vortices simultaneously collapse at a finite time in the ε → 0 limit.
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Figure 4. Graphs of (a) {Lε3 (t; θi )}i∈I , (b) {Z ε3 (t; θi )}i∈I with I = {10, 66, 120, 138, 160, 190},
(c) {Lεn

c (θ)}5
n=2 and (d) {Z εn

c (θ)}5
n=2 for the four-α-PV system. Similarly to figure 2, the time axes are rescaled

in panels (a) and (b), and the graphs of panels (c) and (d) are interpolating curves for i = 1, . . ., 199.

Regarding the enstrophy, figures 4(b) and 4(d) show that Z ε(t; θ) could be positive for
θ larger than a certain value θZ ∈ (0, π/2) in contrast to the three-vortex problem. More
precisely, it is suggested that Z ε(t; θ) is a negative function of t for any fixed θ < θZ ,
but Z ε(t; θ) for θ > θZ becomes positive around tεc (θ) and it is a positive function for
sufficiently large θ . In addition, numerical computations show that, as a function of t ,
Z ε(t, θi ) has one local extremum at tεc (θi ) for i � 132 and i � 173, that is, the value
Z ε

c (θi ) is the global minimum for i � 132 and the global maximum for θ � 173. For the
case of 132 < i < 173, Z ε(t; θi ) is in a transition process: the critical time tεc (θi ) is not
just one extremum but Z ε(t; θi ) has several extrema, see figures 5(a) and 5(b). Focusing
on the critical time, Z ε

c (θ) attains its minimum around θ = θ66 and maximum around θ =
θ160. The sign of Z ε

c (θ) changes at θ = θZ satisfying θ137 < θZ < θ138. Considering the
ε → 0 limit, Z ε

c (θ) seems to diverge to negative infinity for θ < θZ and positive infinity
for θ > θZ . Namely, the enstrophy dissipation by collapse of the four α-point vortices in
the ε → 0 limit occurs for θ < θZ . It is numerically suggested that θZ is the same value as
θL which we describe by θc, and the critical angle θc is a universal constant with respect
to ε > 0.

We remark on the configuration of the four α-point vortices at the critical time.
Figure 6(a) shows the rescaled configurations at tε3

c (θi ) for i = 1, . . . , 199 and figure 6(b)
shows the angle between lε3

12(t
ε3
c ; θi ) and lε3

34(t
ε3
c ; θi ) divided by π , which is denoted by

θd(i)/π . For any i = 1, . . . , 137, the configuration at the critical time is a collinear state
whose enstrophy Z ε

c (θi ) is negative, see figure 4(d). For i = 138, . . . , 199, the four α-
point vortices form a rhombus at tεc (θi ) and Z ε

c (θi ) has a positive value, which has
never been observed in the three-vortex problem. Thus, θc is also critical in terms of the
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Figure 5. (a) Numbers of local maximum and local minimum of Z ε(t; θi ) for i = 131, . . ., 173. (b) Graphs
of {Z ε3 (t; θi )}i∈{130,135,140,168}.
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Figure 6. (a) Rescaled configurations of the four α-point vortices at tε3
c (θi ). (b) Angle between the diagonals

lε3
12(t

ε3
c ; θi ) and lε3

34(t
ε3
c ; θi ) divided by π .

configuration of α-point vortices at the critical time. It is noteworthy that the collinear
and the rhombus states observed in figure 6(a) are the same as (4.14) with θ = 0 and
θ = π/2, that is, relative equilibria in the four-PV system. We have numerically obtained
the same figures as figure 6 for the other εn . Thus, the enstrophy dissipation could occur
by vortex collapse in the ε → 0 limit of the four α-point vortices keeping a collinear
configuration.

Next, we investigate the ε → 0 limits of Lε
c(θ), Z ε

c (θ) and tεc (θ). In the same manner
as the three-vortex problem, we consider the three sets L(i), Z(i) and T (i) in (4.10), and
show that L(i), Z(i) and T (i) are on curves connected to the origin for any i = 1, . . . , 199.
We also use the same notation about the approximate lines (4.12) and the errors (4.13)
based on the least squares method. Figure 7(a) shows graphs of bL(i), bZ (i), bT (i) and
eL(i), eZ (i), eT (i) for i = 1, . . . , 199. Except for θi near i = 0 and i = 199, the three
curves interpolating L(i), Z(i) and T (i) with lines are approximated by straight lines and
the errors eL(i), eZ (i), eT (i) are sufficiently small. Note that, for θi around the critical
angle θc, absolute values of bL(i), bZ (i), eL(i) and eZ are slightly larger than zero, but
they are still well approximated by straight lines. As for θi near i = 0 and i = 199, the
errors eL(i), eZ (i) and eT (i) are large, and thus the three sets are not on any straight line.

1015 A14-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
34

2 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10342


Journal of Fluid Mechanics

1.0
bLbZ
bT
eL
eZ
eT

0.8

0.6

0.4

0.2

0

0.2

0

−0.2

−0.4

T 
 (

i)
L 

(i)

Z 
(i)

−0.6

−0.8

−1.0

0.6

0.4

0.2

0

−0.2

−0.4

−0.6

110 40 i 138 190

1.0

0.5

0

−0.5

−1.0

−1.5

−2.0

i = 3, 5, 10

i = 40–137

i = 138

i = 139–195

i = 199 i = 3, 5, 10

i = 40–130

i = 138

i = 140–190

i = 195, 199

i = 3, 5, 10

i = 40–137

i = 138

i = 139–195

i = 199

0ε2
2 ε2

3 ε2
4 ε2

50ε2
2 ε2

3 ε2
4 ε2

5

0ε2
2 ε2

3 ε2
4 ε2

5

(a) (b)

(c) (d )

Figure 7. Interpolating curves of (a) bL (i), bZ (i), bT (i) and eL (i), eZ (i), eT (i), i = 1, . . ., 199 with lines.
Plots of (b) L(i), (c)Z(i) and (d) T (i) with lines. The purple and green graphs in panels (b) and (c) are
plotting data for all i in the described ranges and those in panel (d) are plotting skipped data for i = j × 10,
j = 4, . . ., 19.

However, they are on curves connected to the origin, see figures 7(b), 7(c) and 7(d). Hence,
numerical computations indicate that, for any θ ∈ (0, π/2), the solution to the four-α-PV
system with (4.14) converges to a collapsing orbit with the collapse time tc(θ) and the
enstrophy diverges to infinity: it diverges to negative infinity for θ < θc and positive infinity
for θ > θc.

Finally, we show that the convergences (3.20) and (3.21) in the sense of distributions
hold for the four-vortex problem with θ ∈ (0, θc). The abovementioned analysis about the
ε → 0 limit has already shown (3.20) for θ ∈ (0, π/2). To see that Z ε converges to the
Dirac delta function, it is sufficient to show that, for any θ ∈ (0, θc), there exists a constant
mz(θ) < 0 such that

lim
ε→0

mε
z(θ) = mz(θ), mε

z(θ) :=
∫ ∞

−∞
Z ε(t; θ) dt, (4.15)

since we have already confirmed

lim
ε→0

Z ε
c (θ) =

{ −∞ (θ < θc),

+∞ (θ > θc)
(4.16)

and

lim
ε→0

tεc (θ) = tc(θ) (4.17)
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Figure 8. Graphs of (a) {mεn
z (θ)}5

n=1, (b) {Z ε(t, θ137)}5
n=2 and (c) {Dε

E (t, θ60)}5
n=2 for the four-α-PV system.

for any θ ∈ (0, π/2). As we see in figure 8(a), for any fixed θ ∈ (0, π/2), mε
z(θ) converges

to a certain value as ε tends to zero. Thus, defining the function mz(θ) by the pointwise
limit, we obtain the convergence to the Dirac delta function. Note that Z ε(t, θ) has several
local minima for θ ∈ (θ132, θc), see figure 5(a), and thus the convergence to the Dirac delta
function is not obvious. However, as we see in figure 8(b), the times when Z ε(t, θ137)
attains its local minima get close to tεc (θ137) as ε tends to zero, that is, it converges to the
collapse time tc(θ137) owing to (4.17). Since numerical computations show that the same
result holds for θi , i = 133, . . . , 136, we find from (4.16) that the desired convergence
holds for any θ ∈ (θ132, θc). As for the convergence of the energy dissipation rate Dε

E , it
is enough to show that Dε

E (t − tεc ) is an odd and integrable function on R, see the proof
of theorem 6 of Gotoda & Sakajo (2018). As an example, figure 8(c) shows the graph of
Dε

E (t − tεc ; θ60) that is odd and rapidly decreasing as t gets further away from tεc (θ60) for
any εn . Although we omit the figures, numerical computations show that Dε

E (t − tεc ; θi )

is odd and integrable for any i = 1, . . . , 199. Thus, we conclude that, for any θ ∈ (0, θc),
Z ε(·; θ) converges to the Dirac delta function with the mass mz(θ) < 0 and the point
support t = tc(θ), and Dε

E (·; θ) converges to zero in the sense of distributions.

4.4. Five-vortex problem
We consider the five-vortex problem with initial data (2.19) for θ ∈ (0, π/2). In the
following numerical computations, we use the parameters d2 = 2, α = −1 and β = 1/2.
Then, d1 and γ are determined by (2.20).

As we see in figures 9(a) and 9(b), the functions Lε(t; θi ) and Z ε(t; θi ) behave almost
in the same way as the four-vortex problem and numerical computations for the other εn
show the same features. As for the values of Lε(t; θ) and Z ε(t; θ) at the critical time,
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Figure 9. Graphs of (a) {Lε3 (t; θi )}i∈I , (b) {Z ε3 (t; θi )}i∈I with I = {10, 41, 70, 84, 123, 180},
(c) {Lεn

c (θ)}5
n=2 and (d) {Z εn

c (θ)}5
n=2 for the five-α-PV system. Similarly to figures 2 and 4, the time

axes are rescaled in panels (a) and (b), and the graphs of panels (c) and (d) are interpolating curves for
i = 1, . . ., 199.
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Figure 10. (a) Numbers of local maximum and local minimum of Z ε(t; θi ) for i = 80, . . ., 100. (b) Graphs
of {Z ε3 (t; θi )}i∈{80,82,85,96}.

figures 9(c) and 9(d) show that there exists a critical angle θc in (θ83, θ84), which seems
to be universal with respect to ε > 0, such that Lε

c(θ) attains its minimum at θ = θc and
Z ε

c (θ) changes its sign before and after θc. In addition, Z ε
c (θ) has the global minimum

around θ41 and the global maximum around θ123. These features are similar to the four-
vortex problem, but the critical angle θc for the present parameters (α, β, γ ) is smaller
than that observed in the four-vortex problem.
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Figure 11. (a) Rescaled configurations of the five α-point vortices at tε3
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34(t
ε3
c ; θi ) divided by π .

As for the behaviour of Z ε(t, θi ) for θi around θc, similarly to the four-vortex problem,
the number of its extremum is not single and there is a transition process, see figure 10 for
the details. The configuration of the five α-point vortices at the critical time also varies
before and after θc: configurations for θ < θc are collinear states and those for θ > θc are
rhombuses, see figure 11. Note that the abovementioned collinear and rhombus states are
similar to relative equilibria (2.19) with θ = 0 and θ = π/2 in the five-PV system. Since
we have obtained the same result as figure 11 for the other εn , the enstrophy dissipation is
caused by the collapse in the ε → 0 limit of the five α-point vortices keeping a collinear
configuration as well as the four-vortex problem.

We investigate the ε → 0 limits of Lε
c(θ), Z ε

c (θ) and tεc (θ) by considering L(i), Z(i)
and T (i) in (4.10) and using the notation (4.12) and (4.13) based on the least squares
method. As we see in figure 12(a), except for θi near i = 0, i = 84 and i = 199, the three
curves interpolating L(i), Z(i) and T (i) are approximated by straight lines and bL(i),
bZ (i), bT (i) are sufficiently close to zero. Although the errors eL(i), eZ (i) and eT (i) near
i = 0, i = 84 and i = 199 are large and their data are not on any straight line, they are
on curves connected to the origin, see figures 12(b), 12(c) and 12(d). Thus, we conclude
that, for any θ ∈ (0, π/2), the solution to the five-α-PV system with (2.19) converges to
a collapsing orbit with the collapse time tc(θ), which is equivalent to (3.20), and the
enstrophy diverges to negative infinity for θ < θc and positive infinity for θ > θc.

As for the convergence (3.21), figure 13(a) shows that, for any fixed θ ∈ (0, π/2), mε
z(θ)

converges to a constant in the ε → 0 limit. Thus, similarly to the four-vortex problem, we
define the function mz(θ) by the pointwise limit and then find

lim
ε→0

mε
z(θ) = mz(θ) (4.18)

for θ ∈ (0, π/2) and, especially, mz(θ) < 0 for θ ∈ (0, θc). Since (4.16) follows from
the abovementioned argument about the ε → 0 limit, we obtain the convergence (3.21).
Although figure 10(a) shows that Z ε(t, θ) has several local minima for any θ ∈ (θ81, θc),
we find from figure 13(b) that the convergence of Z ε(t, θ) to the Dirac delta function still
holds in the same manner as the four-vortex problem. As for Dε

E , figure 13(c) and other
numerical computations indicate that Dε

E (t − tεc ; θ60) is an odd and integrable function
for any ε > 0, and Dε

E (t − tεc ; θi ) is as well for i = 1, . . . , 199. Thus, we conclude that,
for any θ ∈ (0, θc), Z ε(·; θ) converges to the Dirac delta function with the negative
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Figure 12. Interpolating curves of (a) bL (i), bZ (i), bT (i) and eL (i), eZ (i), eT (i), i = 1, . . ., 199 with lines.
The plots of (b) L(i), (c)Z(i) and (d) T (i) with lines. The purple and green graphs in panels (b) and (c) are
plotting data for all i in the described range and those in panel (d) are plotting skipped data for i = j × 10,
j = 4, . . ., 18.

mass mz(θ) < 0 and the support t = tc(θ), and Dε
E (·; θ) converges to zero in the sense

of distributions.

4.5. Remark on the total enstrophy and the Hamiltonian energy
Recall that the total enstrophy (3.12) consists of the constant term and the time-dependent
term, that is,

1
2

∫
R2

∣∣ωε(x, t)
∣∣2 dx = Z ε

0 + Z ε(t). (4.19)

In the Euler-α model, it follows from 2π ĥ(s) = (1 + s2)−1 that

Z ε
0 = 1

8πε2

N∑
m=1

Γ 2
m, Z ε(t; θ) = 1

4πε2

N∑
m=1

N∑
n=m+1

ΓmΓn
lεmn(t; θ)

ε
K1

(
lεmn(t; θ)

ε

)
.

(4.20)
We now show that the total enstrophy diverges to positive infinity in the ε → 0 limit for any
θ ∈ (0, π/2). For the case of t 
= tc(θ) in (4.4), Gotoda (2020) has proven that the solution
to the FPV system converges to the solution to the PV system with the same initial data,
that is,

lim
ε→0

lεmn(t; θ) = lmn(t; θ) > 0, t 
= tc(θ), (4.21)
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Figure 13. Graphs of (a) {mεn
z (θ)}5

n=1, (b) {Z ε(t, θ83)}5
n=2 and (c) {Dε

E (t, θ60)}5
n=2 for the five-α-PV system.

where lmn(t; θ) is the mutual distance of the mth and nth point vortices in the PV system.
Thus, considering K1(r) ∼ e−r as r → ∞, we find that Z ε(t; θ) converges to zero as
ε → 0 for any θ ∈ (0, π/2), and the total enstrophy diverges to positive infinity due to the
divergence of Z ε

0 . For the case of t = tc(θ), as we see in § 4, it has been shown that

lim
ε→0

lεmn

(
tεc (θ); θ

)= 0, lim
ε→0

tεc (θ) = tc(θ) (4.22)

and the divergence of Z ε
c (θ) for θ 
= θc in the ε → 0 limit. We consider

ε2Z ε
c (θ) = 1

4π

N∑
m=1

N∑
n=m+1

ΓmΓn
lεmn

(
tεc (θ); θ

)
ε

K1

(
lεmn

(
tεc (θ); θ

)
ε

)
, (4.23)

and plot the data set

Z̃(i) :=
{(

ε,
ε2Z εn

c (θi )

|ε2Z ε1
c (θi )|

)}5

n=1
=
{(

ε,
Z εn

c (θi )

|Z ε1
c (θi )|

)}5

n=1
(4.24)

on R
2 for i = 1, . . . , 199 in figure 14. Then, we find from the figures that ε2Z ε

c (θ)

converges to a non-zero constant as ε → 0 and the limit value is quite close to ε2
1Z

ε1
c (θ).

Hence, both Z ε
0 and Z ε

c (θ) diverge with the same order 1/ε2 and it is enough to
compare the values of ε2Z ε

0 , which no longer depends on ε, and ε2
1Z

ε1
c (θ) to show the

divergence of the total enstrophy. The value of ε2Z ε
0 and the range of ε2

1Z
ε1

c (θ) obtained
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Figure 14. Interpolating curves of Z̃(i), i = 1, . . ., 199 with lines for the (a) four- and (b) five-vortex
problems. Three horizontal lines describe y = 1, y = 0 and y = −1.

by numerical computations are as follows:

ε2Z ε
0 =

⎧⎪⎪⎨⎪⎪⎩
0.08952 . . . N = 3,

0.08529 . . . N = 4,

0.12185 . . . N = 5,

ε2
1Z

ε1
c (θ)∈

⎧⎪⎪⎨⎪⎪⎩
[−0.01458 . . . , 0) N = 3,

[−0.01105 . . . , 0.00192 . . . ] N = 4,

[−0.02818 . . . , 0.01788 . . . ] N = 5
(4.25)

for any θ ∈ (0, π/2). Thus, we conclude that the total enstrophy diverges to positive infinity
since

lim
ε→0

(
ε2Z ε

0 + ε2Z ε
c (θ)

)
> 0 (4.26)

holds for any θ ∈ (0, π/2), that is, the enstrophy produced by self-interaction is relatively
larger than the variable enstrophy by mutual interaction of point vortices.

Next, we see the relation between the enstrophy and the Hamiltonian energy. The
numerical computations for the four- and five-vortex problems indicate that the sign of
Z ε

c (θ) changes before and after the critical angle θc. We deduce the value of θc in terms
of the Hamiltonian energy. Figure 15 shows the graphs of the Hamiltonian energies,
{H εn (θ)}5

n=1 of the α-PV system with the initial data (2.19) and H pv(θ) in (2.21) of
the PV system. We find from the figures that {H εn (θ)}5

n=1 and H pv(θ) seem to be zero
at θ = θc and thus we expect that the critical angle θc is the zero point of H pv(θ). Recall
that H pv(θ) is given by

H pv(θ) = −1
2π

log
[

cH dα(α+2γ )

1 dβ(β+2γ )

2

(
d4

1 + d4
2 − 2d2

1 d2
2 cos 2θ

)αβ
]
, (4.27)

where cH := 2−4αβ−2γ (α+β), and H pv(θ) is monotonically increasing in [0, π/2]. Then,
for the four-vortex problem, it is confirmed that H pv(θ)� 0 is equivalent to

cos2 θ � 3
2

− 4(2 − √
3)

√
3/2 ∈ (0, 1). (4.28)

Thus, setting

θ
pv
c := arccos

(
3
2

− 4(2 − √
3)

√
3/2
)1/2

∈ (0, π/2), (4.29)
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Figure 15. Hamiltonian energies Hpv(θ) and H ε(θ) for the (a) four- and (b) five-vortex problems.

we find H pv(θ
pv
c ) = 0 and H pv(θ) < 0 for θ < θ

pv
c . Note that θ

pv
c is independent of the

vortex strength (α, β) satisfying −β/α = 2 ± √
3. For the five-vortex problem, we find

that H pv(θ)� 0 leads to

cos2 θ � F

(
−β

α

)
, F(r) := 1

2
+ 1

4

(
r + 1

r
− 2r+1/rr−1/2+1/(1−r)

)
. (4.30)

The function F(r), r > 0 satisfies F(r) = F(1/r), F(r) < 1 for r ∈ (0, ∞) and F(r) →
−∞ as r → 0+ and r → +∞: there exists r0 ∈ (0, 1) such that F(r0) = F(1/r0) = 0,
F(r) > 0 for r ∈ (r0, 1/r0) and F(r) < 0 for r ∈ (0, r0) ∪ (1/r0, ∞). Thus, for the vortex
strength (α, β) satisfying r0 < −β/α < 1/r0, the zero point of H pv(θ) is given by

θ
pv
c := arccos

(
F

(
−β

α

))1/2

∈ (0, π/2), (4.31)

and, for the case of −β/α 
∈ (r0, 1/r0), H pv(θ) is negative for any θ ∈ (0, π/2).
Solving F(r) = 0 numerically, we obtain r0 = 0.24427 . . . and 1/r0 = 4.09373 . . . .
As the example, the parameters (α, β) = (−1, 1/2) used in § 4.4 yield −β/α = 0.5 > 1/r0
and

cos θ
pv
c = √

10/4, θ
pv
c = 0.65905 . . . . (4.32)

For the angles θ
pv
c in (4.29) and (4.32), H ε(θ

pv
c ) has the following values with 50 decimal

digit precision:

H ε1(θ
pv
c ) = 0.00000000000000000000000000000000000000004774156710, (4.33)

H ε2(θ
pv
c ) = 0.00000000000000000796175871454158934707611832596294, (4.34)

H ε3(θ
pv
c ) = 0.00000000048910839350430301244288127565540176406427, (4.35)

H ε4(θ
pv
c ) = 0.00000018223482101614445263682135598596595421823532, (4.36)

H ε5(θ
pv
c ) = 0.00000325269532525068849213275840879218226860975190 (4.37)

for the four vortex problem, and

H ε1(θ
pv
c ) = 0.00000000000000000000000000003652118959255022897325, (4.38)

H ε2(θ
pv
c ) = 0.00000000000070340760920868777298657288061992813740, (4.39)
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Figure 16. Graph of (a) H ε3 (θ) and (b) Z ε3
c (θ) for the five-vortex problem with the parameters α = −2.05

and β = 0.5. The vertical line describes the angle for which Z ε3
c gets its minimum.

H ε3(θ
pv
c ) = 0.00000018385254207161893676571683279896647647117553, (4.40)

H ε4(θ
pv
c ) = 0.00001039320650198493256045089710397484679028994850, (4.41)

H ε5(θ
pv
c ) = 0.00007106778013595361344004641215888167270122817411 (4.42)

for the five-vortex problem. Hence, the critical angle θc slightly depends on ε > 0, that
is, θc(ε), but it converges to θ

pv
c rapidly, which insists that θ

pv
c is the critical angle for

the sign of the enstrophy variation. Finally, we remark on the case of −β/α 
∈ (r0, 1/r0).
Figure 16 shows H ε3(θ) and Z ε3

c (θ) for α = −2.05, β = 0.5 and d2 = 2, for which we
have −β/α = 0.24390 . . . < r0 and (γ, d1) are determined by (2.20). We find from the
figures that both H ε3(θ) and Z ε3

c (θ) are negative for any θ ∈ (0, π/2), which suggests
that the enstrophy at the critical time diverges to negative infinity. Summarising the results,
the Hamiltonian energy produced by interaction of separated point vortices is closely
related to the enstrophy variation, and the negative energy yields the strict dissipation
of the enstrophy, which is consistent with the three-vortex problem of Gotoda & Sakajo
(2016b, 2018).

5. Concluding remarks
We have numerically investigated the dynamics of point-vortex solutions to the 2-D
Euler-α equations with the initial data for which the solution to the PV system leads to
self-similar collapse in a finite time. In particular, we have considered the three-, four-
and five-vortex problems in which we have explicit formulae of self-similar collapsing
solutions. The preceding results have already proven that the solution to the FPV system
with that initial data converges to a self-similar collapsing orbit in the three-PV system
and dissipates the enstrophy by the triple collapse in the ε → 0 limit. In this paper, we
have numerically shown that the enstrophy dissipation by collapse of point vortices could
occur for the four- and five-vortex problems of the α-PV system in that limit by visualising
the detailed processes of the vortex dynamics and the induced enstrophy variation in the
limit, which has never been shown in the preceding results and has given a new insight
into the mechanism of the enstrophy dissipation. Our result insists that the anomalous
enstrophy dissipation by vortex collapse is not specific to three vortices and it could be
universal mechanism for multiple vortices in 2-D inviscid flows. We have also shown
that enstrophy dissipation is mainly caused by the interaction of point vortices with the
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negative interactive energy by comparing the total enstrophy, its variational part and the
Hamiltonian energy of the FPV system.

We make some remarks and mention future directions. Our numerical computations
have shown that, for some initial data leading to self-similar collapse in the PV system,
the corresponding filtered point vortices converge to a collapsing orbit, but the mass
of the enstrophy variation is not negative. Although, we have numerically suggested
that the configuration of filtered point vortices at the critical time and the sign of the
Hamiltonian energy are essentially related to the sign of the mass, further mathematical
analysis is required to interpret this phenomenon physically and show the robustness of
the enstrophy dissipation against the vortex strength. It is also necessary to investigate
whether or not the same result holds for other filtered models such as the vortex blob
regularisation and the exponential filter, and how differences among these models appear.
It is challenging to find the enstrophy dissipating solutions for N -vortex problems with
N � 6, and computing the multiple FPV system accurately is a difficult problem due to
numerical errors induced by nonlinear effects of the system. Another direction of future
works is considering the filtered model with periodic boundary conditions. Indeed, O’Neil
(1989) has shown examples of a periodic array of point vortices leading to self-similar
collapse. It is interesting to observe the dynamics of them in the periodic filtered model.
We are also studying the inviscid limit of the 2-D Navier–Stokes equations with point-
vortex initial vorticity. Gallay (2011) has proven that, for given initial profile of point
vortices, the solution to the 2-D Navier–Stokes equations converges to the solution to
the PV system with the same initial data in the inviscid limit except for the collapse
time. Although it seems to be difficult to show the convergence at the collapse time, it
is challenging to investigate whether the enstrophy dissipation by vortex collapse occurs
in the inviscid limit or not.
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