ON THE THEOREM OF WÓJCIK

by A. ROTKIEWICZ

Dedicated to the memory of my friend Jan Wójcik (1936-1994)
(Received 13 October, 1994)
In the paper [3] the following lemma was proved.
Lemma. Let a, b and c be positive integers such that a and $b c$ are relatively prime. Then there are infinitely many primes p in the arithmetic progression $a x+b$ ($x=$ $0,1,2, \ldots$) such that

$$
p \mid\left(2^{(p-1) / c}-1\right)
$$

In 1982 Jan Wójcik proved [10] a similar result about the so called Lehmer numbers. Lehmer numbers can be defined as follows:

$$
P_{n}(\alpha, \beta)= \begin{cases}\left(\alpha^{n}-\beta^{n}\right) /(\alpha-\beta) & \text { if } n \text { is odd } \\ \left(\alpha^{n}-\beta^{n}\right) /\left(\alpha^{2}-\beta^{2}\right) & \text { if } n \text { is even }\end{cases}
$$

where α, β roots of the trinomial $z^{2}-\sqrt{L} z+M$, its discriminant is $D=L-4 M$ and $L>0$ and M are rational integers. We can assume without any essential loss of generality that $(L, M)=1$.

Put for the moment $P_{n}^{\prime}=P_{n}(\alpha, \beta)$. Lehmer numbers can be also defined as follows

$$
\begin{gathered}
P_{1}^{\prime}=P_{2}^{\prime}=1 \\
P_{n}^{\prime}= \begin{cases}L P_{n-1}^{\prime}-M P_{n-2}^{\prime} & \text { if } n \text { is odd } \\
P_{n-1}^{\prime}-M P_{n-2}^{\prime} & \text { if } n \text { is even } .\end{cases}
\end{gathered}
$$

In 1982 Jan Wójcik [10] proved the following
Theorem W. If α, β defined above are different from zero and α / β is not a root of unity then there exists a positive integer k_{0} such that for every positive integer k divisible by k_{0} and for all positive integers a and b, where $(a, b)=1$ and $b \equiv 1(\bmod (a, k))$, there exist infinitely many primes satisfying the conditions

$$
\begin{equation*}
p \equiv b(\bmod a), \quad p \equiv 1(\bmod k), \quad p \mid P_{(p-1) / k}(\alpha, \beta) . \tag{1}
\end{equation*}
$$

Remark. For any α, β in Theorem W , the constant $k_{0}=k_{0}(\alpha, \beta)$ may be given explicitly [11]. For example, for the Fibonacci sequence, $k_{0}=20$.

Here we shall prove a similar result for composite numbers. Let

$$
V_{n}= \begin{cases}\left(\alpha^{n}+\beta^{n}\right) /(\alpha+\beta) & \text { if } n \text { is odd } \\ \left(\alpha^{n}+\beta^{n}\right) & \text { if } n \text { is even }\end{cases}
$$

denote the nth term of the associated Lehmer recurring sequence. The associated Lehmer sequence V_{k} can be defined as follows: $V_{0}=2, V_{1}=1$, and for $n \geq 2$

$$
V_{n}= \begin{cases}L V_{n-1}-M V_{n-2} & \text { for } n \text { even }, \\ V_{n-1}-M V_{n-2} & \text { for } n \text { odd }\end{cases}
$$

Glasgow Math. J. 38 (1996) 157-162.

A. ROTKIEWICZ

An odd composite number n is a strong Lehmer pseudoprime with parameters L, M (or for the bases α and β) if $(n, D L)=1$ and with $n-(D L / n)=d .2^{s}, d$ odd, where $(D L / n)$ is the Jacobi symbol, we have either

$$
\begin{equation*}
P_{d} \equiv 0(\bmod n), \quad \text { or } \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
V_{d .2^{r}} \equiv 0(\bmod n), \quad \text { for some } r \text { with } 0 \leq r<s \tag{ii}
\end{equation*}
$$

Every odd prime n satisfies (i) or (ii) provided ($n, D L$) $=1$ (cf. [6]).
In 1994 I proved [6] the following
Theorem T. If α, β defined above are different from zero and α / β is not a root of unity (that is $\langle L, M\rangle \neq\langle 1,1\rangle,\langle 2,1\rangle,\langle 3,1\rangle)$ then every arithmetical progression ax $+b(x=$ $0,1,2, \ldots)$, where a, b are relatively prime positive integers, contains an infinite number of odd strong Lehmer pseudoprimes for the bases α and β.

In 1982 I proved [5] this theorem only in the case $D=(\alpha-\beta)^{2}>0$. We shall introduce the following

Definition. Let $P_{n}(\alpha, \beta)$ denote the nth Lehmer number. An odd composite n is a k th order strong Lehmer pseudoprime for the bases α and β if $(n, D L)=1$ and, with $n-(D L / n) \equiv 0(\bmod k), d=\frac{1}{k}(n-(D L / n)),(d, k)=1$, we have

$$
\begin{equation*}
P_{d}(\alpha, \beta) \equiv 0(\bmod n) \tag{2}
\end{equation*}
$$

For $k=2^{s}$ we get a strong Lehmer pseudoprime satisfying (i), for the bases α and β.
Now we shall prove the following
Theorem W_{1}. Let $P_{n}(\alpha, \beta)$ denote the nth Lehmer number. If α / β is not a root of unity then there exists a positive integer k_{0} such that for every positive integer k divisible by k_{0} and for all positive integers a and b, where $(a, b)=1$ and $b \equiv 1+k\left(\bmod k^{2}\right)$, in every arithmetical progression $a x+b(x=0,1,2, \ldots)$ there exist infinitely many kth order strong Lehmer pseudoprimes for the bases α and β.

For each positive integer n we denote by $\phi_{n}(\alpha, \beta)=\bar{\phi}_{n}(L, M)$ the nth cyclotomic polynomial

$$
\bar{\phi}_{n}(L, M)=\phi_{n}(\alpha, \beta)=\prod_{(m, n)=1}\left(\alpha-\zeta_{n}^{m} \beta\right),
$$

where ζ_{n} is a primitive nth root of unity and the product is over the $\varphi(n)$ integers m with $1 \leq m \leq n$ and $(m, n)=1$.

It will be convenient to write

$$
\phi(\alpha, \beta ; n)=\phi_{n}(\alpha, \beta)
$$

It is easy to see that $\phi(\alpha, \beta ; n)>1$ for $D=L-4 M>0, n>2$. A prime factor p of $P_{n}=P_{n}(\alpha, \beta)$ is called a primitive factor of P_{n} if $p \mid P_{n}$ but $p \nmid D L P_{3} \ldots P_{n-1}$.

Assume that $M \neq 0, D=L-4 M \neq 0,\langle L, M\rangle \neq\langle 1,1\rangle,\langle 2,1\rangle,\langle 3,1\rangle$; (i.e. β / α is not a root of unity).

The following results are well known.

Lemma 1. (Lehmer [2]). Let $n \neq 2^{\gamma}, 3.2^{\gamma}$. Denote by $r=r(n)$ the largest prime factor of n. If $r \nmid \phi(\alpha, \beta ; n)$, then every prime p dividing $\phi(\alpha, \beta ; n)$ is a primitive prime divisor of P_{n}.

Every primitive prime divisor p of P_{n} is $\equiv(D L / p)(\bmod p)$. If $r \mid \phi(\alpha, \beta ; n), r^{l} \| n$ (which is to say $r^{\prime} \mid n$ but $r^{\prime+1} \nmid n$) then $r \| \phi(\alpha, \beta ; n)$ and r is a primitive prime divisor of $P_{n / r .}$.

Lemma 2. The number P_{n} for $n>12, D>0$ has a primitive prime divisor (see Durst [1], Ward [9]). If $D<0$ and β / α is not a root of unity, then, for $n>n_{0}(\alpha, \beta), P_{n}$ has a primitive prime divisor. The number $n_{0}(\alpha, \beta)$ can be effectively computed (Schinzel [7]); $n_{0}=n_{0}(\alpha, \beta)=e^{452} \cdot 4^{67}$ (Stewart [8]). We have $|\phi(\alpha, \beta ; n)|>1$ for $n>n_{0}$ ([7], [8]).

Lemma 3. (Rotkiewicz [4, Lemma 5]). Let

$$
\psi\left(p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}\right)=2 p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}\left(p_{1}^{2}-1\right)\left(p_{2}^{2}-1\right) \ldots\left(p_{k}^{2}-1\right)
$$

If q is a prime such that $q^{2} \| n$ and a is a natural number such that $a \psi(a) \mid(q-1)$, then $\phi(\alpha, \beta ; n) \equiv 1(\bmod a)$.

Proof of Theorem W_{1}. It is sufficient to show that there exists one k th order strong Lehmer pseudoprime for the bases α and β of the form $a x+b$. To see this just notice that we then have such pseudoprimes of the shape $a d x+b$ for every natural d with $(d, b)=1$ and we may choose d as large as we wish. We may also suppose without loss of generality that b is odd and that $4 D L \mid a$, since if b_{1} is prime of the form $k^{2} a t+b$, then every term of the progression $k^{2} a t+b_{1}(t=1,2, \ldots)$ is $\equiv b(\bmod a)$, its difference is $k^{2} a$ and $\left(k^{2} a, b_{1}\right)=1$.

Let $D L k_{0} \mid k$ where k_{0} is an integer from the theorem of Wócik. We have $b_{1}=k^{2} a t+b \equiv 1+k\left(\bmod k^{2}\right)$. Now let $p_{1}, p_{2}, p_{3}, p_{4}$ be different primes such that $\left(p_{1} p_{2} p_{3} p_{4}, a k\right)=1$ and let q be a prime number such that

$$
\begin{equation*}
c \psi(c) \mid q-1, \quad c=k^{2} a p_{1} p_{2} p_{3} p_{4} \tag{3}
\end{equation*}
$$

Let m be a positive integer such that

$$
\begin{align*}
& m \equiv b\left(\bmod a k^{2}\right) \tag{4}\\
& m \equiv 1+p_{1} p_{2} p_{3} p_{4} q^{2}\left(\bmod p_{1}^{2} p_{2}^{2} p_{3}^{2} p_{4}^{2} q^{3}\right)
\end{align*}
$$

Such positive m exists by the Chinese Remainder Theorem. From (4) and $b \equiv 1+$ $k\left(\bmod k^{2}\right)$, it follows that

$$
\left(m, a k^{2} p_{1}^{2} p_{2}^{2} p_{3}^{2} p_{4}^{2} q^{3}\right)=1
$$

Since $m \equiv b \equiv 1+k\left(\bmod k^{2}\right) \quad$ we have $m \equiv 1(\bmod k)$. Thus also $m \equiv$ $1\left(\bmod \left(k^{2} a p_{1}^{2} p_{2}^{2} p_{3}^{2} p_{4}^{2} q^{2}, k\right)\right)$ and by, Theorem W , there exist infinitely many primes p in the arithmetical progression $k^{2} a p_{1}^{2} p_{2}^{2} p_{3}^{2} p_{4}^{2} q^{3} x+m(x=1,2, \ldots)$ for which

$$
P_{(p-1) / k}(\alpha, \beta) \equiv 0(\bmod p)
$$

Let p be one of them. From $4 D L k_{0} \mid k, m \equiv 1(\bmod k)$ it follows that $m \equiv 1(\bmod 4 D L)$, hence $(D L / m)=1$ and also $(D L / p)=1$. We have that $(p-1) / k \equiv(m-1) / k \equiv 1(\bmod k)$, hence $((p-1) / k, k)=1$.

Let \bar{r} denote the greatest prime factor of $p-1$. It is easy to see that one of numbers
$\phi\left(\alpha, \beta ;(p-1) / k p_{i}\right)$ for $i=1,2,3,4$ can be divisible by \bar{r} and only one can be divisible by p. Without loss of generality we can assume that $p \nmid \phi\left(\alpha, \beta ;(p-1) / k p_{i}\right)$ and $\bar{r} \nmid \phi\left(\alpha, \beta ;(p-1) / k p_{i}\right)$ for $i=1,2$.

Let $m_{i}=\phi\left(\alpha, \beta ; \frac{p-1}{k p_{i}}\right)$ for $i=1,2$. Now we shall prove that if $m_{1}>0$ or $m_{2}>0$ then $p m_{1}$ or $p m_{2}$ is our required pseudoprime and if $m_{1}<0$ and $m_{2}<0$ then $p m_{1} m_{2}$ is our required pseudoprime. First we shall consider the case when $m_{1}>0$ or $m_{2}>0$.

Suppose for example that $m_{1}>0$. Let $s_{1}=\frac{p-1}{k p_{1}}$. By Lemma 1 every prime factor t of m_{1} is congruent to $(D L / t)\left(\bmod s_{1}\right)$. Since $m_{1}>0$, by Lemma $2, m_{1}$ is a positive integer greater than 1 . So

$$
\begin{equation*}
m_{1} \equiv\left(D L / m_{1}\right)\left(\bmod s_{1}\right) \tag{5}
\end{equation*}
$$

Certainly $q^{2} \| s_{1}=(p-1) / k p_{1}$. So from $a \psi(a)|(q-1), 4 D L| a$, by Lemma 3 we have $m_{1} \equiv 1(\bmod 4 D L)$. So $\left(D L / m_{1}\right)=1$ and from (5) it follows that

$$
\begin{equation*}
m_{1} \equiv 1\left(\bmod s_{1}\right), \quad s_{1}=\frac{p-1}{k p_{1}} \tag{6}
\end{equation*}
$$

Further, from $q^{2} \| s_{1}, k p_{1} \psi\left(k p_{1}\right) \mid(p-1)$, by Lemma 3 we have

$$
\begin{equation*}
m_{1} \equiv 1\left(\bmod k p_{1}\right) \tag{7}
\end{equation*}
$$

Since $p \equiv 1+k\left(\bmod k^{2}\right)$ and $p \equiv 1+p_{1} p_{2} p_{3} p_{4} q^{2}\left(\bmod p_{1}^{2}\right)$, we have $\left(s_{1}, k p_{1}\right)=1$. Thus from (6) and (7) we get

$$
\begin{equation*}
m_{1} \equiv 1(\bmod (p-1)) \tag{8}
\end{equation*}
$$

and $n_{1}=p m_{1} \equiv 1(\bmod (p-1)) ;$ hence

$$
\begin{equation*}
\left(n_{1}-1\right) / k \equiv 0(\bmod (p-1) / k) \tag{9}
\end{equation*}
$$

From $k^{2} \psi\left(k^{2}\right)\left|(q-1), q^{2}\right|(p-1) / k$, by Lemma 3 we get

$$
\begin{equation*}
m_{1} \equiv 1\left(\bmod k^{2}\right) \tag{10}
\end{equation*}
$$

hence $n_{1}=p m_{1} \equiv(1+k) 1 \equiv 1+k\left(\bmod k^{2}\right)$ and

$$
\begin{equation*}
\left(\left(n_{1}-1\right) / k, k\right)=1 . \tag{11}
\end{equation*}
$$

Further, $\left(D L / n_{1}\right)=\left(D L / p m_{1}\right)=(D L / p)\left(D L / m_{1}\right)=1.1=1$. Thus from (9) and (11) we get

$$
\begin{equation*}
m_{1}=\phi\left(\alpha, \beta ;(p-1) / k p_{1}\right)\left|P_{(p-1) / k}\right| P_{\left(n_{1}-1\right) / k}=P_{\left(n_{1}-\left(D L n_{1}\right)\right) / k} \tag{12}
\end{equation*}
$$

where $\left(\left(n_{1}-\left(D L / n_{1}\right)\right) / k, k\right)=1, P_{i}=P_{i}(\alpha, \beta)$.
Also

$$
\begin{equation*}
p\left|P_{(p-1) / k}\right| P_{\left(n_{1}-\left(D L n_{1}\right)\right) / k} \tag{13}
\end{equation*}
$$

Since $\left(p_{1}, m_{1}\right)=1$, by (12) and (13) we have

$$
n_{1}=p m_{1} \mid P_{\left(n_{1}-\left(D L / n_{1}\right)\right) / k}
$$

Since $m_{1} \equiv 1(\bmod a)$ we have

$$
\begin{equation*}
n_{1}=p m_{1} \equiv b \cdot 1 \equiv b(\bmod a) \tag{14}
\end{equation*}
$$

as required.
If the both numbers m_{1} and m_{2} are negative their product m_{12} is positive and

$$
\begin{equation*}
m_{12} \equiv\left(D L / m_{12}\right)\left(\bmod (p-1) / k p_{1} p_{2}\right) \tag{15}
\end{equation*}
$$

where $m_{12}=m_{1} m_{2}, m_{i}=\phi\left(\alpha, \beta ;(p-1) / k p_{i}\right.$ for $i=1,2$.
Indeed, let $m_{12}=q_{1}^{\alpha_{1}} q_{2}^{\alpha_{2}} \ldots q_{l}^{\alpha_{1}}$. By Lemma 1 we have

$$
q_{i}^{\alpha_{i}} \equiv\left(D L / q_{i}\right)^{\alpha_{i}}\left(\bmod (p-1) / k p_{1} p_{2}\right) .
$$

Thus

$$
\begin{aligned}
m_{12} & \equiv\left(D L / q_{1}\right)^{\alpha_{1}}\left(D L / q_{2}\right)^{\alpha_{2}} \ldots\left(D L / q_{l}\right)^{\alpha_{1}} \equiv\left(D L / q_{1}^{\alpha_{1}}\right)\left(D L / q_{2}^{\alpha_{2}}\right) \ldots\left(D L / q_{l}^{\alpha_{1}}\right) \\
& \equiv\left(D L / m_{12}\right)\left(\bmod (p-1) / k p_{1} p_{2}\right)
\end{aligned}
$$

Certainly $q^{2} \|(p-1) / k p_{1} p_{2}$ and $a \psi(a) \mid q-1$ and by Lemma $3, m_{1} \equiv 1(\bmod a)$ for $i=1,2$; hence we have $m_{12} \equiv 1(\bmod a)$.

Since $4 D L \mid a$, we have $m_{12} \equiv 1(\bmod 4 D L)$. So $\left(D L / m_{12}\right)=1$ and from (15) we get

$$
\begin{equation*}
m_{12} \equiv 1\left(\bmod (p-1) / k p_{1} p_{2}\right) . \tag{16}
\end{equation*}
$$

From $p_{1} p_{2} \psi\left(p_{1} p_{2}\right)\left\|(q-1), q^{2}\right\|(p-1) / k p_{1} p_{2}$, by Lemma 3 we have $m_{i} \equiv 1\left(\bmod p_{1} p_{2}\right)$ for $i=1,2$; hence

$$
\begin{equation*}
m_{12} \equiv 1\left(\bmod p_{1} p_{2}\right) \tag{17}
\end{equation*}
$$

Since $p_{1}\left\|(p-1), p_{2}\right\|(p-1)$, from (16) and (17) we get

$$
\begin{equation*}
m_{12} \equiv 1(\bmod (p-1) / k) \tag{18}
\end{equation*}
$$

From $k^{2} \psi\left(k^{2}\right) \mid(q-1), q^{2} \|(p-1) / k p_{i}$, by Lemma 3 we get $m_{i} \equiv 1\left(\bmod k^{2}\right)$; hence $m_{12}=m_{1} \cdot m_{2} \equiv 1\left(\bmod k^{2}\right), n_{12}=p m_{12} \equiv 1+k\left(\bmod k^{2}\right)$. Hence $\left(\left(n_{12}-1\right) / k, k\right)=1$. Also $\left(D L / n_{12}\right)=1\left(\right.$ recall that $\left.\left(D L / m_{1}\right)=1, p \equiv 1(\bmod 4 D L)\right)$. By Lemma $2, m_{12}>1$ and

$$
m_{12}=\phi\left(\alpha, \beta ;(p-1) / k p_{1}\right) \cdot \phi\left(\alpha, \beta ;(p-1) / k p_{2}\right)\left|P_{(p-1) / k}\right| P_{\left(n_{12}-1\right) / k}=P_{\left(n_{12}-\left(D L / n_{12}\right)\right) / k}
$$

Also

$$
p\left|P_{(p-1) / k}\right| P_{\left(n_{12}-\left(D L / n_{12}\right)\right) / k}
$$

and since $\left(p, m_{12}\right)=1$ we have
where

$$
n_{12}=m_{12} p \mid P_{\left(n_{12}-\left(D L n_{12}\right)\right) / k},
$$

$$
\left.\left(n_{12}-\left(D L / n_{12}\right)\right) / k, k\right)=1 \quad \text { and } \quad n_{12}=p m_{12} \equiv a .1 \equiv b(\bmod a)
$$

as required.

REFERENCES

1. L. K. Durst, Exceptional real Lehmer sequences, Pacific J. Math. 9 (1959), 437-441.
2. D. H. Lehmer, An extended theory of Lucas functions, Ann. Math. (2) 31 (1930), 419-448.
3. A. Rotkiewicz, On the prime factors of the number $2^{p-1}-1$, Glasgow Math. J. 9 (1968), 83-86.
4. A. Rotkiewicz, On the pseudoprimes of the form $a x+b$ with respect to the sequence of Lehmer, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 20 (1972), 349-354.
5. A. Rotkiewicz, On Euler Lehmer pseudoprimes and strong Lehmer pseudoprimes with parameters L, Q in arithmetic progressions, Math. Comp. 39 (1982), 239-247.
6. A. Rotkiewicz, On strong Lehmer pseudoprimes in the case of negative discriminant in arithmetic progression, Acta Arith. 68 (1994), 145-151.
7. A. Schinzel, The intrinsic divisors of Lehmer numbers in the case of negative discriminant, Ark. Math. 4 (1962), 413-416.
8. C. L. Stewart, Primitive divisors of Lucas and Lehmer numbers, Transcendence Theory: Advances and Application (Academic Press, 1977), 79-92.
9. M. Ward, The intrinsic divisors of Lehmer numbers, Ann. Math. (2) 62 (1955), 230-236.
10. J. Wójcik, Contribution to the theory of Kummer extension, Acta Arith. 40 (1982), 155-174.
11. J. Wojcik, On the density of some sets of primes connected with cyclotomic polynomials, Acta Arith. 41 (1982), 117-131.

Institute of Mathematics
Polish Academy of Sciences
UL. Śniadeckich 8
00-950 Warszawa, Poland
AND
Technical University in Bialystok
ul. Wiejska 45, 15-351 Białystok, Poland

