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In the paper [3] the following lemma was proved.

LEMMA. Let a,b and c be positive integers such that a and be are relatively prime.
Then there are infinitely many primes p in the arithmetic progression ax + b (x =
0,1,2,. ..)such that

/ ? | (2 ( p - 1 ) / c - l ) .

In 1982 Jan Wojcik proved [10] a similar result about the so called Lehmer numbers.
Lehmer numbers can be defined as follows:

if« is odd,
\(a" - Pn)/(a2 - /32) if n is even,

where a,/3 roots of the trinomial z2-VJLz+Af, its discriminant is D = L-4M and
L > 0 and M are rational integers. We can assume without any essential loss of generality
that (L, M) = 1.

Put for the moment P'n = Pn(a, )3). Lehmer numbers can be also defined as follows

(LP'n-,-MP'n-2 if n is odd,

" l p ; A f P ; 2 if n is even.

Pi o ^
n{a'P) \(a" Pn)/(a2 - /32)

In 1982 Jan Wojcik [10] proved the following

THEOREM W. If a, f3 defined above are different from zero and a I/3 is not a root of
unity then there exists a positive integer k0 such that for every positive integer k divisible by
k0 and for all positive integers a and b, where (a, b) = 1 and b = l(mod(a, k)), there exist
infinitely many primes satisfying the conditions

p = b(mo<ia), p = l(modk), p\Plp.m(a,p). (1)

REMARK. For any a,/3 in Theorem W, the constant ko = ko(a,p) may be given
explicitly [11]. For example, for the Fibonacci sequence, k0 = 20.

Here we shall prove a similar result for composite numbers. Let

{(a" + /3")/(a + /3) if n is odd,
(an + pn) if/iiseven,

denote the nth term of the associated Lehmer recurring sequence. The associated
Lehmer sequence Vk can be defined as follows: Vo = 2, V: = 1, and for n s 2

_i - A/Vn_2 for n even,

_j — MVn_2 for n odd.
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An odd composite number n is a strong Lehmer pseudoprime with parameters L, M (or
for the bases a and /3) if (n,DL) = 1 and with n - (DL/n) = d.2s,d odd, where (DL/n)
is the Jacobi symbol, we have either

(i) Pd = 0(modn), or

(ii) Vd.2r = 0(modn), for some r with O^r<s.

Every odd prime n satisfies (i) or (ii) provided (n, DL) = 1 (cf. [6]).
In 1994 I proved [6] the following

THEOREM T. / / a, /3 defined above are different from zero and a//3 is not a root of
unity (that is (L, M) ¥= (1,1), (2,1), (3> 1)) then every arithmetical progression ax + b(x =
0,1,2,. . .) , where a, b are relatively prime positive integers, contains an infinite number of
odd strong Lehmer pseudoprimes for the bases a and /3.

In 1982 I proved [5] this theorem only in the case D = ( a - / 3 ) 2 > 0 . We shall
introduce the following

DEFINITION. Let Pn(a,/3) denote the nth Lehmer number. An odd composite n is a
kth order strong Lehmer pseudoprime for the bases a and /3 if (n,DL) = 1 and, with

n - (DL/n)» 0(mod k),d = -(n- (DL/n)), (d, k) = 1, we have
K

). (2)

For k = 2s we get a strong Lehmer pseudoprime satisfying (i), for the bases a and /3.

Now we shall prove the following

THEOREM WJ. Let Pn(a,(3) denote the nth Lehmer number. If a/j3 is not a root of
unity then there exists a positive integer k0 such that for every positive integer k divisible by
k0 and for all positive integers a and b, where (a, b) = 1 and b = 1 + /:(mod k2), in every
arithmetical progression ax + b (x = 0,1,2,...) there exist infinitely many kth order strong
Lehmer pseudoprimes for the bases a and /3.

For each positive integer n we denote by $n(a,/3) = 4>n(L,M) the nth cyclotomic
polynomial

where £„ is a primitive nth root of unity and the product is over the <p(n) integers m with
1 < m ^ n and (m, n) = 1.

It will be convenient to write

It is easy to see that <j)(a,^;n)>\ for D = L-4M>0, n > 2 . A prime factor p of
Pn = Pn(a, /3) is called a primitive factor of Pnifp\ Pn but p \ DLP2... Pn-V

Assume that M * 0, D = L - AM * 0, (L, M) ¥> <1,1), (2,1), (3,1); (i.e. p/a is not a
root of unity).

The following results are well known.
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LEMMA 1. (Lehmer [2]). Let n¥'2y,7>. 2y. Denote by r = r(n) the largest prime factor
of n. If r \ <f>(a, fi;n), then every prime p dividing <f>(a, /3; n) is a primitive prime divisor
OfPn-

Every primitive prime divisor p of Pn is =(DL/p)(mod p). If r | <f>(a,/3\n), r' \\n
(which is to say rl \ n but r/+1 \ n) then r || <f>(a, /3; n) and r is a primitive prime divisor of
Pnlr'-

LEMMA 2. The number Pn for n > 12, D > 0 has a primitive prime divisor (see Durst
[1], Ward [9]). If D <0 and (i/a is not a root of unity, then, for n >nQ(a, (3), Pn has a
primitive prime divisor. The number no(a,p) can be effectively computed (Schinzel [7]);
n0 = no(a, 0) = e4S2. 467 (Stewart [8]). We have \<t>(a,(3; n)\ >lforn>n0 ([7], [8]).

LEMMA 3. (Rotkiewicz [4, Lemma 5]). Let

HPVPZ2• • • Pa
k
k) = ipVPi2• • • PT{P\ -1)(/>2 - 1 ) . . . (PI - 1 ) .

/ / q is a prime such that q2\\n and a is a natural number such that atj/(a) | (q - 1), then

Proof of Theorem W^. It is sufficient to show that there exists one kth order strong
Lehmer pseudoprime for the bases a and )3 of the form ax + b. To see this just notice
that we then have such pseudoprimes of the shape adx + b for every natural d with
(d,b) = \ and we may choose d as large as we wish. We may also suppose without loss of
generality that b is odd and that 4DL \ a, since if b^ is prime of the form k2at + b, then
every term of the progression k2at + ft, (t = 1,2,...) is =b(mod a), its difference is k2a
and {k2a,bx) = \.

Let DLk01 k where k0 is an integer from the theorem of Wojcik. We have
bi = k2at + b = 1 + k(modk2). Now let P\,Pi,Pi,P4 be different primes such that
(PiPzP3P4,ok) = 1 and let q be a prime number such that

af/(c)\q-l, c = k2ap!p2p3pA. (3)

Let m be a positive integer such that

m = b (mod ak2),
(4)

m = 1 + p, p2p3p4q
2(mod p\p\p\plq3)-

Such positive m exists by the Chinese Remainder Theorem. From (4) and 6 = 1 +
&(mod it2), it follows that

(m,ak2p2p\p\pW) = l.

Since m = b = 1 + fc(mod k2) we have m = l(mod k). Thus also m =
l{mod{k2ap\p\p\plq2, k)) and by, Theorem W, there exist infinitely many primes
p in the arithmetical progression k2ap]p2p2p4q2x + m(x = 1,2,...) for which

Let p be one of them. From 4DLk0 \ k, m = l(modk) it follows that
m = l(mod 4DL), hence (DL/m) = l and also (DL/p) = 1. We have that
(p - l)lk = (m- l)lk = l(mod k), hence ((p - l)/k, k) = 1.

Let r denote the greatest prime factor of p - 1. It is easy to see that one of numbers
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<f>(a,l3;(p - l)/kpi) for / = 1,2,3,4 can be divisible by r and only one can be divisible
by p. Without loss of generality we can assume that p \ </>(a,/3;(p - 1 )/&/?,) and
r \ 4>{a,P\{p -\)IkPi) tor i = 1,2-

Let m, = <t>[ a, /3; 1 for i = 1,2. Now we shall prove that if m, >0 or m2 > 0 then
\ kpi I

pm\ or pm2 is our required pseudoprime and if m^ <0 and m 2 < 0 then pm-lm2 is our
required pseudoprime. First we shall consider the case when mx > 0 or m2 > 0.

p-\
Suppose for example that m1 > 0. Let S] = — . By Lemma 1 every prime factor t

kpi
of W] is congruent to (DL/r)(modj]). Since m^ >0, by Lemma 2, mx is a positive integer
greater than 1. So

mx = (DL/wi)(mod s,). (5)
Certainly q2 \\ s-[ = {p - l)lkpx. So from aif/(a) \ (q - 1), ADL \ a, by Lemma 3 we have
mi = l(mod ADL). So (DL/rrii) = 1 and from (5) it follows that

/njsi(modsi) . S i = l • (6)

Further, from q2 \\ su kp:ip(kp}) | (p - 1), by Lemma 3 we have

mi = l(mod kp^). (7)

Since /? = 1 + k(mod k2) and p = 1+Pip2P3P4q2(^odp2), we have (s,, kpt) = 1. Thus
from (6) and (7) we get

m, - l(mod (p - 1)), (8)

and «! = pnii = l(mod(p - 1)); hence

(n,- l ) /* = 0(inod(p-l)/*). (9)

From k24i{k2) \ (q - 1), q1 \ (p - l)/k, by Lemma 3 we get

m, = l(mod A:2); (10)

hence nx = pmi = (1 + k)l = 1 + /c(mod /c2) and

) = \. (11)

Further, (DL/n,) = (DL/pm^) = (DL/pXDL/ni!) = 1.1 = 1. Thus from (9) and (11) we
get

m, = 4>(a, /3; (p - l)lkpx) \ P(p-m \ P^-m = P^-iDUn^/k, (12)

where ((*, - (DL/n^/k, k) = 1, ̂  = /»,(a, /3).
Also

P | P(p-\)lk I Aii-(OL//i,))* (13)

Since (/?,, m,) = 1, by (12) and (13) we have

P(nx-(DLInx))lk-
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Since m, = l(mod a) we have

/i] = pmx = b. 1 = 6(moda) (14)
as required.

If the both numbers mx and m2 are negative their product mn is positive and

m12 ̂  (DL/m12)(mod(p - l)/kPlp2), (15)

where m12 = m,m2, w, = <f>(a,f5;(p - l)//cp, for i = 1,2.
Indeed, let mn = ̂ f'<?2

2... qf. By Lemma 1 we have

qr^(DL/qirimod(p - l)lkp,p2).
Thus

mn - (DL/qir(DL/q2y>... (DL/qiyi = (DL/q?)(DL/q?). .. {DLIq?)

= (DL/mi2)(mod(p - l)/kp^p2).

Certainly <y21| (p - \)lkp^p2 and fliZ'(fl) | q - 1 and by Lemma 3, m, s= l(modfl) for
i = 1,2; hence we have mX2 = l(mod a).

Since 4DL | a, we have m^ = l(mod ADL). So (DL/mi2) = 1 and from (15) we get

m12 = 1 (mod(p - \)lkpxp2). , (16)

From P\P24>{P\Pi) II (9 - 1), q2 II (/> ~ l)/kpip2, by Lemma 3 we have mj = l{mo&pxp2)
for i = 1,2; hence

m12 = l(modp,p2). (17)

Since p, || (p - 1), p2 \\ (p - 1), from (16) and (17) we get

/ni2 = l(mod(p-l)/Jfc). (18)

From k2il/(k2) \ (q - 1), q2 \\ (p - l)/kph by Lemma 3 we get w, = l(mod A:2); hence
m12

 = m, . m2 = l(mod/c2), «12=pm12 = l + /:(mod/:2). Hence ( (« ] 2 - 1)1 k,k) = 1. Also
(DL/nl2) = 1 (recall that (DLImx) = l,p = l(mod 4DL)). By Lemma 2, mu> 1 and

W»12 = 0(a, j3; (p - 1)//Cpi) . </>(a, /3; (p - l)/*p2) | P(P-1)/* | P(nn-m = P(n
Also

P | P(p-\)lk I P(n,2-(DUnu))/k
and since (p,mu) = 1 we have

«1 2 = W12P I P(nu-(DUnu))/ki
where

(«i 2 - (DL/nl2))/k, k) = 1 and n12 =pmx2 = a. 1 = £>(moda)
as required.
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