ON THE THEOREM OF WÓJCIK by A. ROTKIEWICZ

Dedicated to the memory of my friend Jan Wójcik (1936–1994)

(Received 13 October, 1994)

In the paper [3] the following lemma was proved.

LEMMA. Let a, b and c be positive integers such that a and bc are relatively prime. Then there are infinitely many primes p in the arithmetic progression ax + b (x = 0, 1, 2, ...) such that

$$p \mid (2^{(p-1)/c} - 1).$$

In 1982 Jan Wójcik proved [10] a similar result about the so called Lehmer numbers. Lehmer numbers can be defined as follows:

$$P_n(\alpha,\beta) = \begin{cases} (\alpha^n - \beta^n)/(\alpha - \beta) & \text{if } n \text{ is odd,} \\ (\alpha^n - \beta^n)/(\alpha^2 - \beta^2) & \text{if } n \text{ is even,} \end{cases}$$

where α, β roots of the trinomial $z^2 - \sqrt{L} z + M$, its discriminant is D = L - 4M and L > 0 and M are rational integers. We can assume without any essential loss of generality that (L, M) = 1.

Put for the moment $P'_n = P_n(\alpha, \beta)$. Lehmer numbers can be also defined as follows

$$P'_{1} = P'_{2} = 1,$$

$$P'_{n} = \begin{cases} LP'_{n-1} - MP'_{n-2} & \text{if } n \text{ is odd,} \\ P'_{n-1} - MP'_{n-2} & \text{if } n \text{ is even.} \end{cases}$$

In 1982 Jan Wójcik [10] proved the following

THEOREM W. If α , β defined above are different from zero and α/β is not a root of unity then there exists a positive integer k_0 such that for every positive integer k divisible by k_0 and for all positive integers a and b, where (a,b) = 1 and $b \equiv 1 \pmod{(a,k)}$, there exist infinitely many primes satisfying the conditions

$$p \equiv b \pmod{a}, \qquad p \equiv 1 \pmod{k}, \qquad p \mid P_{(p-1)/k}(\alpha, \beta). \tag{1}$$

REMARK. For any α, β in Theorem W, the constant $k_0 = k_0(\alpha, \beta)$ may be given explicitly [11]. For example, for the Fibonacci sequence, $k_0 = 20$.

Here we shall prove a similar result for composite numbers. Let

$$V_n = \begin{cases} (\alpha^n + \beta^n)/(\alpha + \beta) & \text{if } n \text{ is odd,} \\ (\alpha^n + \beta^n) & \text{if } n \text{ is even,} \end{cases}$$

denote the *n*th term of the associated Lehmer recurring sequence. The associated Lehmer sequence V_k can be defined as follows: $V_0 = 2$, $V_1 = 1$, and for $n \ge 2$

$$V_n = \begin{cases} LV_{n-1} - MV_{n-2} & \text{for } n \text{ even,} \\ V_{n-1} - MV_{n-2} & \text{for } n \text{ odd.} \end{cases}$$

Glasgow Math. J. 38 (1996) 157-162.

A. ROTKIEWICZ

An odd composite number n is a strong Lehmer pseudoprime with parameters L, M (or for the bases α and β) if (n, DL) = 1 and with $n - (DL/n) = d \cdot 2^s$, d odd, where (DL/n)is the Jacobi symbol, we have either

(i)
$$P_d \equiv 0 \pmod{n}$$
, or

(ii)
$$V_{d,2^r} \equiv 0 \pmod{n}$$
, for some r with $0 \le r < s$.

Every odd prime *n* satisfies (i) or (ii) provided (n, DL) = 1 (cf. [6]).

In 1994 I proved [6] the following

THEOREM T. If α , β defined above are different from zero and α/β is not a root of unity (that is $\langle L, M \rangle \neq \langle 1, 1 \rangle$, $\langle 2, 1 \rangle$, $\langle 3, 1 \rangle$) then every arithmetical progression ax + b(x = 0, 1, 2, ...), where a, b are relatively prime positive integers, contains an infinite number of odd strong Lehmer pseudoprimes for the bases α and β .

In 1982 I proved [5] this theorem only in the case $D = (\alpha - \beta)^2 > 0$. We shall introduce the following

DEFINITION. Let $P_n(\alpha, \beta)$ denote the *n*th Lehmer number. An odd composite *n* is a *k*th order strong Lehmer pseudoprime for the bases α and β if (n, DL) = 1 and, with $n - (DL/n) \equiv 0 \pmod{k}, d = \frac{1}{k} (n - (DL/n)), (d, k) = 1$, we have

 $P_d(\alpha,\beta) \equiv 0 \pmod{n}.$ (2)

For $k = 2^s$ we get a strong Lehmer pseudoprime satisfying (i), for the bases α and β .

Now we shall prove the following

THEOREM W₁. Let $P_n(\alpha, \beta)$ denote the nth Lehmer number. If α/β is not a root of unity then there exists a positive integer k_0 such that for every positive integer k divisible by k_0 and for all positive integers a and b, where (a, b) = 1 and $b \equiv 1 + k \pmod{k^2}$, in every arithmetical progression ax + b (x = 0, 1, 2, ...) there exist infinitely many kth order strong Lehmer pseudoprimes for the bases α and β .

For each positive integer *n* we denote by $\phi_n(\alpha, \beta) = \overline{\phi}_n(L, M)$ the *n*th cyclotomic polynomial

$$\bar{\phi}_n(L,M) = \phi_n(\alpha,\beta) = \prod_{(m,n)=1} (\alpha - \zeta_n^m \beta),$$

where ζ_n is a primitive *n*th root of unity and the product is over the $\varphi(n)$ integers *m* with $1 \le m \le n$ and (m, n) = 1.

It will be convenient to write

$$\phi(\alpha,\beta;n)=\phi_n(\alpha,\beta).$$

It is easy to see that $\phi(\alpha, \beta; n) > 1$ for D = L - 4M > 0, n > 2. A prime factor p of $P_n = P_n(\alpha, \beta)$ is called a primitive factor of P_n if $p \mid P_n$ but $p \nmid DLP_3 \dots P_{n-1}$.

Assume that $M \neq 0$, $D = L - 4M \neq 0$, $(L, M) \neq (1, 1)$, (2, 1), (3, 1); (i.e. β/α is not a root of unity).

The following results are well known.

LEMMA 1. (Lehmer [2]). Let $n \neq 2^{\gamma}, 3 \cdot 2^{\gamma}$. Denote by r = r(n) the largest prime factor of n. If $r \nmid \phi(\alpha, \beta; n)$, then every prime p dividing $\phi(\alpha, \beta; n)$ is a primitive prime divisor of P_n .

Every primitive prime divisor p of P_n is $\equiv (DL/p) \pmod{p}$. If $r \mid \phi(\alpha, \beta; n), r^l \mid n$ (which is to say $r^l \mid n$ but $r^{l+1} \nmid n$) then $r \mid \mid \phi(\alpha, \beta; n)$ and r is a primitive prime divisor of $P_{n/r^{l}}$.

LEMMA 2. The number P_n for n > 12, D > 0 has a primitive prime divisor (see Durst [1], Ward [9]). If D < 0 and β/α is not a root of unity, then, for $n > n_0(\alpha, \beta)$, P_n has a primitive prime divisor. The number $n_0(\alpha, \beta)$ can be effectively computed (Schinzel [7]); $n_0 = n_0(\alpha, \beta) = e^{452} \cdot 4^{67}$ (Stewart [8]). We have $|\phi(\alpha, \beta; n)| > 1$ for $n > n_0$ ([7], [8]).

LEMMA 3. (Rotkiewicz [4, Lemma 5]). Let

$$\psi(p_1^{\alpha_1}p_2^{\alpha_2}\dots p_k^{\alpha_k})=2p_1^{\alpha_1}p_2^{\alpha_2}\dots p_k^{\alpha_k}(p_1^2-1)(p_2^2-1)\dots (p_k^2-1).$$

If q is a prime such that $q^2 || n$ and a is a natural number such that $a\psi(a) | (q-1)$, then $\phi(\alpha, \beta; n) \equiv 1 \pmod{a}$.

Proof of Theorem W_1 . It is sufficient to show that there exists one kth order strong Lehmer pseudoprime for the bases α and β of the form ax + b. To see this just notice that we then have such pseudoprimes of the shape adx + b for every natural d with (d, b) = 1 and we may choose d as large as we wish. We may also suppose without loss of generality that b is odd and that $4DL \mid a$, since if b_1 is prime of the form $k^2at + b$, then every term of the progression $k^2at + b_1$ (t = 1, 2, ...) is $\equiv b \pmod{a}$, its difference is k^2a and $(k^2a, b_1) = 1$.

Let $DLk_0 | k$ where k_0 is an integer from the theorem of Wójcik. We have $b_1 = k^2 a t + b \equiv 1 + k \pmod{k^2}$. Now let p_1, p_2, p_3, p_4 be different primes such that $(p_1 p_2 p_3 p_4, ak) = 1$ and let q be a prime number such that

$$c\psi(c) \mid q-1, \qquad c = k^2 a p_1 p_2 p_3 p_4.$$
 (3)

Let m be a positive integer such that

$$m \equiv b \pmod{ak^2},$$

$$m \equiv 1 + p_1 p_2 p_3 p_4 q^2 \pmod{p_1^2 p_2^2 p_3^2 p_4^2 q^3}.$$
(4)

Such positive *m* exists by the Chinese Remainder Theorem. From (4) and $b \equiv 1 + k \pmod{k^2}$, it follows that

$$(m, ak^2p_1^2p_2^2p_3^2p_4^2q^3) = 1.$$

Since $m \equiv b \equiv 1 + k \pmod{k^2}$ we have $m \equiv 1 \pmod{k}$. Thus also $m \equiv 1 \pmod{k^2 a p_1^2 p_2^2 p_3^2 p_4^2 q^2}$, k)) and by, Theorem W, there exist infinitely many primes p in the arithmetical progression $k^2 a p_1^2 p_2^2 p_3^2 p_4^2 q^3 x + m(x = 1, 2, ...)$ for which

$$P_{(p-1)/k}(\alpha,\beta) \equiv 0 \pmod{p}.$$

Let p be one of them. From $4DLk_0 | k$, $m \equiv 1 \pmod{k}$ it follows that $m \equiv 1 \pmod{4DL}$, hence (DL/m) = 1 and also (DL/p) = 1. We have that $(p-1)/k \equiv (m-1)/k \equiv 1 \pmod{k}$, hence ((p-1)/k, k) = 1.

Let \bar{r} denote the greatest prime factor of p-1. It is easy to see that one of numbers

A. ROTKIEWICZ

 $\phi(\alpha, \beta; (p-1)/kp_i)$ for i = 1, 2, 3, 4 can be divisible by \bar{r} and only one can be divisible by p. Without loss of generality we can assume that $p \nmid \phi(\alpha, \beta; (p-1)/kp_i)$ and $\bar{r} \nmid \phi(\alpha, \beta; (p-1)/kp_i)$ for i = 1, 2.

Let $m_i = \phi\left(\alpha, \beta; \frac{p-1}{kp_i}\right)$ for i = 1, 2. Now we shall prove that if $m_1 > 0$ or $m_2 > 0$ then pm_1 or pm_2 is our required pseudoprime and if $m_1 < 0$ and $m_2 < 0$ then pm_1m_2 is our

 pm_1 or pm_2 is our required pseudoprime and it $m_1 < 0$ and $m_2 < 0$ then pm_1m_2 is our required pseudoprime. First we shall consider the case when $m_1 > 0$ or $m_2 > 0$.

Suppose for example that $m_1 > 0$. Let $s_1 = \frac{p-1}{kp_1}$. By Lemma 1 every prime factor t of m_1 is congruent to $(DL/t) \pmod{s_1}$. Since $m_1 > 0$, by Lemma 2, m_1 is a positive integer greater than 1. So

$$m_1 \equiv (DL/m_1) \pmod{s_1}.$$
 (5)

Certainly $q^2 || s_1 = (p-1)/kp_1$. So from $a\psi(a) | (q-1)$, 4DL | a, by Lemma 3 we have $m_1 \equiv 1 \pmod{4DL}$. So $(DL/m_1) = 1$ and from (5) it follows that

$$m_1 \equiv 1 \pmod{s_1}, \qquad s_1 = \frac{p-1}{kp_1}.$$
 (6)

Further, from $q^2 || s_1, kp_1 \psi(kp_1) | (p-1)$, by Lemma 3 we have

$$m_1 \equiv 1 \pmod{kp_1}. \tag{7}$$

Since $p \equiv 1 + k \pmod{k^2}$ and $p \equiv 1 + p_1 p_2 p_3 p_4 q^2 \pmod{p_1^2}$, we have $(s_1, kp_1) = 1$. Thus from (6) and (7) we get

$$m_1 \equiv 1 \pmod{(p-1)},$$
 (8)

and $n_1 = pm_1 \equiv 1 \pmod{(p-1)}$; hence

$$(n_1 - 1)/k \equiv 0 \pmod{(p - 1)/k}.$$
 (9)

From $k^2 \psi(k^2) | (q-1), q^2 | (p-1)/k$, by Lemma 3 we get

$$m_1 \equiv 1 \pmod{k^2}; \tag{10}$$

hence $n_1 = pm_1 \equiv (1 + k)1 \equiv 1 + k \pmod{k^2}$ and

$$((n_1 - 1)/k, k) = 1.$$
 (11)

Further, $(DL/n_1) = (DL/pm_1) = (DL/p)(DL/m_1) = 1.1 = 1$. Thus from (9) and (11) we get

$$m_1 = \phi(\alpha, \beta; (p-1)/kp_1) | P_{(p-1)/k} | P_{(n_1-1)/k} = P_{(n_1 - (DL/n_1))/k},$$
(12)

where $((n_1 - (DL/n_1))/k, k) = 1, P_i = P_i(\alpha, \beta)$. Also

$$p \mid P_{(p-1)/k} \mid P_{(n_1 - (DL/n_1))/k}.$$
(13)

Since $(p_1, m_1) = 1$, by (12) and (13) we have

$$n_1 = pm_1 \mid P_{(n_1 - (DL/n_1))/k}$$

160

Since $m_1 \equiv 1 \pmod{a}$ we have

$$n_1 = pm_1 \equiv b \cdot 1 \equiv b \pmod{a} \tag{14}$$

161

as required.

If the both numbers m_1 and m_2 are negative their product m_{12} is positive and

$$m_{12} \equiv (DL/m_{12}) (\text{mod}(p-1)/kp_1p_2), \tag{15}$$

where $m_{12} = m_1 m_2$, $m_i = \phi(\alpha, \beta; (p-1)/kp_i$ for i = 1, 2. Indeed, let $m_{12} = q_1^{\alpha_1} q_2^{\alpha_2} \dots q_i^{\alpha_i}$. By Lemma 1 we have

$$q_i^{\alpha_i} \equiv (DL/q_i)^{\alpha_i} (\operatorname{mod}(p-1)/kp_1p_2).$$

Thus

$$m_{12} \equiv (DL/q_1)^{\alpha_1} (DL/q_2)^{\alpha_2} \dots (DL/q_l)^{\alpha_l} \equiv (DL/q_1^{\alpha_1}) (DL/q_2^{\alpha_2}) \dots (DL/q_l^{\alpha_l})$$

$$\equiv (DL/m_{12}) (\operatorname{mod}(p-1)/kp_1p_2).$$

Certainly $q^2 || (p-1)/kp_1p_2$ and $a\psi(a) | q-1$ and by Lemma 3, $m_1 \equiv 1 \pmod{a}$ for i = 1, 2; hence we have $m_{12} \equiv 1 \pmod{a}$.

Since $4DL \mid a$, we have $m_{12} \equiv 1 \pmod{4DL}$. So $(DL/m_{12}) = 1$ and from (15) we get

$$m_{12} \equiv 1 \pmod{(p-1)/kp_1p_2}.$$
 (16)

From $p_1 p_2 \psi(p_1 p_2) || (q-1), q^2 || (p-1)/k p_1 p_2$, by Lemma 3 we have $m_i \equiv 1 \pmod{p_1 p_2}$ for i = 1, 2; hence

$$m_{12} \equiv 1 \pmod{p_1 p_2}.$$
 (17)

Since $p_1 || (p-1), p_2 || (p-1)$, from (16) and (17) we get

$$m_{12} \equiv 1 \pmod{(p-1)/k}.$$
 (18)

From $k^2\psi(k^2) | (q-1), q^2 || (p-1)/kp_i$, by Lemma 3 we get $m_i \equiv 1 \pmod{k^2}$; hence $m_{12} \equiv m_1 \cdot m_2 \equiv 1 \pmod{k^2}$, $n_{12} \equiv pm_{12} \equiv 1 + k \pmod{k^2}$. Hence $((n_{12} - 1)/k, k) = 1$. Also $(DL/n_{12}) = 1$ (recall that $(DL/m_1) = 1, p \equiv 1 \pmod{4DL}$). By Lemma 2, $m_{12} > 1$ and

$$m_{12} = \phi(\alpha, \beta; (p-1)/kp_1) \cdot \phi(\alpha, \beta; (p-1)/kp_2) | P_{(p-1)/k} | P_{(n_{12}-1)/k} = P_{(n_{12}-(DL/n_{12}))/k}.$$
Also

$$p \mid P_{(p-1)/k} \mid P_{(n_{12}-(DL/n_{12}))/k}$$

and since $(p, m_{12}) = 1$ we have

$$n_{12} = m_{12} p \left[P_{(n_{12} - (DL/n_{12}))/k}, \right]$$

where

$$(n_{12} - (DL/n_{12}))/k, k) = 1$$
 and $n_{12} = pm_{12} \equiv a \cdot 1 \equiv b \pmod{a}$

as required.

REFERENCES

1. L. K. Durst, Exceptional real Lehmer sequences, Pacific J. Math. 9 (1959), 437-441.

2. D. H. Lehmer, An extended theory of Lucas functions, Ann. Math. (2) 31 (1930), 419-448.

3. A. Rotkiewicz, On the prime factors of the number $2^{p-1} - 1$, Glasgow Math. J. 9 (1968), 83-86.

4. A. Rotkiewicz, On the pseudoprimes of the form ax + b with respect to the sequence of Lehmer, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 20 (1972), 349-354.

A. ROTKIEWICZ

5. A. Rotkiewicz, On Euler Lehmer pseudoprimes and strong Lehmer pseudoprimes with parameters L, Q in arithmetic progressions, *Math. Comp.* 39 (1982), 239-247.

6. A. Rotkiewicz, On strong Lehmer pseudoprimes in the case of negative discriminant in arithmetic progression, Acta Arith. 68 (1994), 145-151.

7. A. Schinzel, The intrinsic divisors of Lehmer numbers in the case of negative discriminant, Ark. Math. 4 (1962), 413-416.

8. C. L. Stewart, Primitive divisors of Lucas and Lehmer numbers, Transcendence Theory: Advances and Application (Academic Press, 1977), 79-92.

9. M. Ward, The intrinsic divisors of Lehmer numbers, Ann. Math. (2) 62 (1955), 230-236.

10. J. Wójcik, Contribution to the theory of Kummer extension, Acta Arith. 40 (1982), 155-174.

11. J. Wójcik, On the density of some sets of primes connected with cyclotomic polynomials, Acta Arith. 41 (1982), 117-131.

Institute of Mathematics Polish Academy of Sciences UL. Śniadeckich 8 00-950 Warszawa, Poland

AND

TECHNICAL UNIVERSITY IN BIAŁYSTOK UL. WIEJSKA 45, 15-351 BIAŁYSTOK, POLAND