ON THE *C*-PROJECTIVITY OF IDEALS IN BANACH ALGEBRAS[†]

by L. I. PUGACH

(Received 25 January, 1996)

The notion of projective Banach module was defined by Helemskii in [1]—the paper which properly founded the homological theory of Banach algebras. The same author introduced the definition of the (relatively) flat Banach module in [2]. Recently M. C. White [3] modified both of those definitions, introducing so called C-projective and C-flat Banach modules.

For a given constant C > 0 the Banach module X over a Banach algebra A, (abbreviated below as "module"), is called C-projective [3] if for arbitrary modules Y, Z and morphism $\phi: X \to Z$, epimorphism $\sigma: Y \to Z$, and bounded linear operator $j: Z \to Y$ such that $\sigma_i = 1$, there exists a morphism $\psi: Z \to Y$ such that $\sigma \psi = \phi$ and $\|\psi\| \le C \|\phi\| \|i\|$. As well as [1], the paper [3] gives us the more useful equivalent definition of C-projectivity. Namely, a module X is C-projective if and only if the morphism of external multiplication $\pi: A \otimes X \to X$, defined by the formula $\pi(a \otimes x) = ax$, has a right inverse morphism ρ such that $\|\rho\| < C$. Here the symbol $\hat{\otimes}$ denotes the projective tensor product of Banach spaces [4]. If $\|\rho\| = C$ and there is no right inverse with a norm smaller than C, then it is natural to say that X is exactly C-projective. In this paper we give answers to two questions that (directly or not) were put in [3]. First, for arbitrary C > 1, we give an example of an exactly C-projective Banach A-module. (Moreover, it is a maximal ideal in a uniform algebra A.) Note that C-projectivity is impossible for C < 1 and for C = 1 there exist trivial examples: consider for example any maximal ideal in the disc-algebra, corresponding to an inner point of the disc. Second, we shall show that C-projectivity does not possess the same "continuity property" as C-flatness [3]: that is, there exists a module (again a maximal ideal in the uniform algebra) that is $(C + \epsilon)$ -projective for all $\epsilon > 0$ but not C-projective.

As usual, we denote by A(E) the uniform algebra of functions that are continuous on the given compact subset $E \subset C$ and analytic in its interior.

EXAMPLE 1. Consider the compact subset $K = D \cup E$ of $\mathbb{C} \times \mathbb{R}$, where $D = \{(z, 0) : |z| \le 1\}$ is the closed disc and $E = \{(z, t) : |C|^{-1} \le |z| \le 1, 0 < t \le 1\}$ is the cylindric annulus. (We denote by E_t its section, where t is constant.) Consider the uniform algebra

$$A = \{ f \in C(K), f(z, 0) \in A(D), f(z, t) \in A(E_t) \text{ for } t \in (0, 1] \}$$

PROPOSITION 1. For the maximal ideal $M \subset A$, corresponding to the point O = (0, 0), (1) M is a C-projective Banach A-module,

(2) M is not k-projective Banach A-module for any k < C.

Proof. (1) Consider two functions: $h \in M$ such that h(z, t) = z for $(z, t) \in K$ and f(z, t) = 1/z for $(z, t) \in K \setminus O$. Note that ||h|| = 1 and, for each $m \in M$, fm is defined on $K \setminus O$ and we extend the definition to K by continuity. We have $||fm|| \le C ||m||$, because $||f|| \le C$ on

[†]This work was partially supported by ISF (Soros foundation) grant M95300 and Russian RFFI grant 93-01-00156.

Glasgow Math. J. 40 (1998) 143-145.

L. I. PUGACH

 E_t and multiplication by z preserves the uniform norm in A(D). Now define the morphism $\rho: M \to A \otimes M$ by the formula $\rho(m) - mf \otimes h$. Obviously $\pi(\rho(m)) = mfh = m$ and $\|\rho(m)\| = \|mf\| \|h\| \le C \|m\|$. Hence part (1) is proved.

(2) Assume the contrary; then for the epimorphism $\omega : A \to \mathbb{C}$ of evaluation at the point O (which has a right inverse operator j given by the natural injection) and morphism $\phi : M \to \mathbb{C}$ given by the formula $\phi(f) = \frac{\partial f}{\partial z}(O)$ there exists a morphism $\psi : M \to A$ such that $\omega \psi = \phi$ and $\|\psi\| \le k \|\phi\| \|j\| = k$. But each morphism $\psi : M \to A$ is a multiplication by some function $g \in C(K \setminus O)$. See, for example, the standard argument in [5]. Since $\|gm\| \le k \|m\|$ we can conclude that $|g| \le k$ on each annulus E_t . Since $\omega \psi = \phi$ it is evident that $g = \frac{1}{z} + a$ on $D \setminus O$, where $a \in A(D)$. By continuity $|\frac{1}{z} + a| \le k$ on E_0 and hence on the circle $T = \{(z, 0) : |z| = 1/C\}$. Therefore $|1 + az| = |gz| \le k|z| = k/C < 1$ on T. This contradicts the maximum modulus principle, and so M is an exactly C-projective A-module.

EXAMPLE 2. Consider the compact subset $K = D \cup (\bigcup_{n>C+1} E_n)$ of $\mathbf{C} \times \mathbf{R}$, where D is the same disc and $E_n = \{(z, \frac{1}{n}) : \frac{1}{C} - \frac{1}{n} \le |z| \le 1 + \frac{1}{n}\}$ is the closed annulus. Then

$$A = \left\{ f \in C(K) : f(z,0) \in A(D), f\left(z,\frac{1}{n}\right) \in A(E_n), f\left(\frac{1}{C},\frac{1}{n}\right) = f\left(\frac{1}{C},0\right), \forall n > C+1 \right\}$$

is a uniform algebra. Let M be the maximal ideal, corresponding to the point O = (0, 0).

PROPOSITION 2. For the maximal ideal $M \subset A$, corresponding to the point O = (0, 0), (1) M is a $(C + \epsilon)$ -projective Banach A-module for all $\epsilon > 0$, (2) M is not a C-projective Banach A-module.

Proof. (1) Fix n > C + 1 and let two functions $h \in M$ and $f \in C(K \setminus O)$ be defined by h(z, t) = 1 on E_k , $(C < k \le n - 1)$, but h(z, t) = z on E_k , $(k \ge n)$, and f(z, t) = 1 on E_k , $(C < k \le n - 1)$, but $f(z, t) = \frac{1}{z}$ on E_k , $(k \ge n)$ and on $D \setminus O$. Note that $||h|| = 1 + \frac{1}{n}$ and, for each $m \in M$, we have $||fm|| \le nC/(n - C)||m||$, because $|f| \le nC/(n - C)$ on E_n and the multiplication by z preserves the uniform norm in A(D). Now define the morphism $\rho : M \to A \otimes M$ by the formula $\rho(m) = mf \otimes h$. Obviously $\pi(m) = mfh = m$ and $\|\rho(m)\| = \|fm\| \|h\| \le nC/(n - C)\|m\|(1 + \frac{1}{n}) = C[1 + (C + 1)/(n - C)]\|m\|$. Since n is arbitrarily large part (1) is proved.

(2) Repeating the argument from Proposition 1 we obtain a function $g \in C(K \setminus O)$ such that $|g| \leq C$ on each annulus E_n and $g = \frac{1}{z} + a$ on $D \setminus O$, where $a \in A(D)$. As the inner circles T_n of E_n tend to the circle T of radius $\frac{1}{C}$ from D, by continuity we obtain $|g| \leq C$ on T. Hence $|1 + za| = |gz| \leq C$. $\frac{1}{C} = 1$ on T. Using the maximum modulus principle we conclude that $a \equiv 0$. Thus $g \equiv \frac{1}{z}$ on D and so $g(\frac{1}{C}, 0) \equiv C$; also by definition of the algebra $A, g(\frac{1}{C}, \frac{1}{n}) = C$, for all n. Applying the maximum modulus principle to each annulus E_n , we conclude that $g \equiv C$ on E_n . By continuity $g \equiv C$ on T giving a contradiction.

Note that both examples represent so-called non-idempotent maximal ideals; (that is $M \neq \overline{M^2}$). We know almost nothing about the exact estimates of C-projectivity in the idempotent case. If we analyse Helemskii's original proof of the projectivity of the algebra of convergent sequences c_0 (and the algebra l_1 of summable sequences) one can see that both these algebras are 1-projective [1]. The author can generalize this result to the algebra C(K), where X is a semi-discrete compact set. Let X be a compact set; denote by X' the set of its

IDEALS IN BANACH ALGEBRAS

accumulation points and $X^{(n+1)} = X^{(n)'}$ $(n \in \mathbb{N})$. If $X^{(n)}$ is empty for some $n \in \mathbb{N}$, we say X is a *semidiscrete compact set*. As for the algebra C[0; 1] we can only see from [1] that the maximal ideals in it are 2-projective, but the constant 2 seems not to be the best possible.

ACKNOWLEDGEMENT. The author is grateful to Dr. M. C. White for useful discussions.

REFERENCES

1. A. Ya. Helemskii, On the homological dimension of normed modulus over Banach algebras, *Math. USSR-Sb.* 10:3 (1970), 399-412. (Originally published in *Mat. Sb.* 81 (1970), 430-444.)

2. A. Ya. Helemskii, A certain class of flat Banach modules and its applications, Vest. Mosk. Univ. ser. mat. mekh. 27:1 (1972), 29-36.

3. M. C. White, Injective modules over the uniform algebras, Proc. London Math. Soc., (3) 73 (1996), 155-184.

4. A. Grothendieck, Produits tensorielles topologiques et espaces nucléaires, Mem. Amer. Math. Soc., No. 166 (1955).

5. L. I. Pugach, Projective and flat ideals of function algebras and their relation to analytic structure, *Mat. Zametki* 31, #2 (1982), 223-228. (Transl. in *Math. Notes*, 31:1, 2 (1982), 114-117.)

School of Mathematics and Statistics University of Newcastle Upon Tyne Newcastle Upon Tyne, NE1 7RU England