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ON THE DYNAMICS OF THE LINEAR ACTION OF SL{n, Z).

GRANT CAIRNS AND ANTHONY NIELSEN

Using Moore's ergodicity theorem, S.G. Dani and S. Raghavan proved that the linear
action of SL(n,Z) on Rn is topologically (n — l)-transitive; that is, topologically
transitive on the Cartesian product of n — 1 copies of K". In this paper, we give a
more direct proof, using the prime number theorem. Further, using the congruence
subgroup theorem, we generalise the result to arbitrary finite index subgroups of
SL(n,Z).

1. INTRODUCTION

Recall that a continuous action of an abstract group G on a topological space X
is topologically transitive if for all non-empty open sets U, V C X, there exists g € G
such that g(U) n V / 0. (By continuous action we mean that for each group element g,
the corresponding map g : X -¥ X is a homeomorphism). For many spaces (for exam-
ple, second countable Baire spaces), this is equivalent to the existence of a dense orbit.
For a natural number k, the action is said to be topologically k-transitive if the induced
action of G on the fc-fold Cartesian product Xk is topologically transitive. So topologi-
cally 1-transitive = topologically transitive, and topologically i-transitive => topologically
j-transitive for all j < i. Topological 2-transitivity is also called weak topological mixing.

The linear action of SL(n, Z) on Rn in not topologically n-transitive, since the
determinant is an invariant function on (K")n. S. G. Dani and S. Raghavan proved the
following:

THEOREM. ([2]) For all n ^ 2, the linear action ofSL(n, Z) on R" is topologically
(n — l)-transitive.

Underlying the Dani-Raghavan result is Moore's ergodicity theorem. The object of
this paper is to give an alternate, more direct proof of the Dani-Raghavan theorem, and
to generalise it as follows:

THEOREM. For all n ^ 2, tie linear action on Kn of every finite index subgroup of
SL(n, Z) is topologically (n — l)-transitive.
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Our proof uses the prime number theorem modulo m (see Section 2) and the con-
gruence subgroup theorem; recall that the principal congruence subgroups of SL(n, Z)
are the kernels of the natural homomorphisms SL{n,7L) -* SL(n,Zm), and a congruence
subgroup is a subgroup which contains a principal congruence subgroup. The congruence
subgroup theorem ([1, 6]) says that for n > 2, every finite index subgroup of SL(n, Z) is
a congruence subgroup. The main point in our proof is as follows.

LEMMA 1. For all n > 2, the iinear action of every principal congruence subgroup
of SL(n, Z) on Rn is topologically (n - 1)-transitive.

The orbits on Z" of the principal congruence subgroups are examined in Section
3 and Lemma 1 is established in Section 4. Lemma 1, together with the congruence
subgroup theorem, establishes the theorem for all n > 2. The proof of the theorem is
concluded in Section 5, where we show that the action of every finite index subgroup of
SL(2,Z) is topologically transitive.

We assume throughout the paper that n ^ 2. We use the same symbol p for
each of the canonical projections Zl —> Z^ and for the natural homomorphism SL(n, Z)
—¥ SL(n, ZTO). We use In for the nx n identity matrix in both SL(n, Z) and SL(n, Zm).

2. A LITTLE NUMBER THEORY

Recall that the set of numbers of the form q/p, where p and q are prime, is dense in
the positive reals; this was proved by Sierpiriski in [7, p. 155] and Hobby and Silberger
in [3]. In the Math Review of [3], Mendes France gave the following simple proof: it is a
well known consequence of the prime number theorem that as k goes to infinity, the /c-th
prime pk is approximately /clogA;; more precisely, lim pk/(k\ogk) — 1. Thus for x > 0,
one has

1 = lim ,, , ,, = hm
[k\ l [k\

lim , , , , , = hm \ ,
fc~»oo [kx\ log [kx\ k-too kx log kx

and so

,. P|*xJ ,. P[kx\ ,. P\_kx\ .. P|fciJ
x — lim , , , = lim — *—?——- = lim L J = lim - L - - ,

*-><» klogkx k-Kx k log x + k log k fc->oo k log k * -K» p*

where [y\ denotes the integer part of y.
We shall require an extension of Sierpiriski's result. First recall the following result

which was established by de la Vallee-Poussin (see for example [5]). For an integer m ^ 2,
let nm(x, a) denote the number of primes ^ x which are congruent to a modulo m.

PRIME NUMBER THEOREM MODULO m. For all m ^ 2, if a and m are re/a-

tively prime, then
7rm(x,a)logx 1

hm = ——r
x->oo X ¥>(m)

where ip is the Euler totient function.
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Fix relatively prime integers m ^ 2 and o. Let p(k,a) denote the fc-th prime that
is congruent to a modulo m. Setting x = p(k,a) (so irm(x, a) = k), the Prime Number
Theorem Modulo m gives

. . . f{m)k\ogp(k,a)
(1) nm ——r = 1.

*-><» p(k, a)

Therefore

loglogp(fc, a)- logp(fc,a)
0 = hm

,. logfc .
= hm 75—r - 1.

fc-»oo logp(K, a)

logp(K, a)

Hence, using (1) again,

(2) lim 5^4 =
v ' fc-»oofclogA;
Let y > 0. Imitating Mendes France's argument, equation (2) gives

(m)ky log fcy

and so

P([ky\,a)
ip(m)k\ogk + (p(m)klogykMx

To draw the conclusion that we shall require later, we need some notation. For each

i = 1 , . . . , n — 1, let Xi be the set of points (x\,..., xn) € Z" such that:

1. Xi is congruent to 1 modulo m,

2. Zj is congruent to 0 modulo m for all j ^ i,

3. Xi and x;+i are relatively prime.

LEMMA 2 . For each i = 1 , . . . , n — 1, the set of points of the form (x, y)/s, where

s 6 N, i , i / £ Xj, is dense in K2n.

P R O O F : Let z\, zi be nonzero reals. Set wx = zi,W2 — Z2/m, and for i = 1, 2 set

1 -p([—kwi\, - l ) ; otherwise.

Arguing as above,
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and so

Here a^* is congruent to 1 modulo m, and ma2,jt is congruent to 0 modulo m. Moreover,
provided \wi\ and 1^1 are distinct, aijfc and ma-i^ are relatively prime. Thus, it is
not difficult to see that since the denominator < (̂m)A;logA; is independent of zi,z2, the
required result holds in the case n = 2. The result for arbitrary n then follows easily. D

3. T H E ORBITS O F T H E PRINCIPAL CONGRUENCE SUBGROUPS

We remark that, although we won't use this fact, it is not difficult to show that
the greatest common divisor function is a complete invariant for the linear action of
SL(n, Z) on Z". The description of the orbits of the principal congruence subgroups
require more work; we limit ourselves here to giving a result that we need for the proof
of the theorem (see [4, Chapter 17] for more details). Let m be a natural number and
consider the natural homomorphism p : SL(n, Z) -» SL(n, Zm). Let Gn,m denote the
principal congruence subgroup kerp. Put S\ = SL(n, Z) and for each 2 ^ k < n — 1, let
Sk be the subgroup of SL(n, Z) of elements having the block form

where C € SL(n-k+l, Z) and B is arbitrary. For each 1 ^ k ^ n - 1 , let Gk = SkC\Gn>m-
Let { e i , . . . , en} be the usual basis for Zn .

LEMMA 3 . Let m ^ 2 and let 1 ̂  i ^ n - 1. If x = (xu ..., xn) € Xu then there

exists A £ d such that Ax = e^

PROOF: First consider the case n = 2, with i = 1. We have gcd(x) = 1 and
px = (1,0). Let

' a b

where axt + &r2 = 1- In SL(2, Z m ) , pC has the form I I where 0 ^ b ^ m - 1. So

satisfies p(BC') = h- Denote BO by C(I l t I2); it belongs to Gi and takes x to e\, as

required.

For n > 2, consider the matrix

c-C'-'ct , °
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C takes (x i , . . . ,x n ) to (xx,... ,Zi- i , l , 0 ,Xi + 2 , . . . , x n ) . Let F = (fjk) be the nxn matrix
with

j - X j ; k =i,j ^i,i + l

I 0; otherwise,

and let £ = /„ + F and ,4 = £C. Clearly, E G Gi, so A G G*. And by construction,
Ax = ei. D

4. PROOF OF LEMMA 1

Consider nonempty open sets Ui, Vi, i G { 1 , . . . , n— 1} in R". By Lemma 2, the open
set U\ x Vi C K2n contains a point of the form (ii, j/i)/si, where Si G N and i i , j/i G Xi.
So by Lemma 3, there are A\,B\ G G\ with AjXi = Sij/i = e\. That is,

d / s , G (Ax^) n (BiVi).

Next, by Lemma 2, pick {x2,V2)/s2 € Aif/2 x B1V2 so that s2 G N and x2,2/2 G X2-
Applying Lemma 3 again, there are A2,B2 G G2 with

e2/s2 G (A2AiU2) n (B2BiV2).

Continue until we have

en-i/Sn-! G (i4B_i . . . A2AiUn-l) PI (5B_i . . . BiBiVn-J.

Since Aj, Bj G Gj for all j G {1 , . . . ,n — 1}, the Aj and B7 all fix d, for all j > i.
Therefore, for all i G {1 , . . . , n — 1}, we have

d/si G An-i... Ai+l{Ai... A2A1Ui) n B n _ ! . . . Bi+l(Bi... B2BXV$.

Multiplying on the left by Bf1... B~lx we see that DUi D V{ ^ 0 for all i G { 1 , . . . , n -1},
where

D = B^lB2-
x... B-^An-x... A2A, G Gn,m.

Hence the action of Gn,m is (n - l)-transitive.

5. PROOF OF THEOREM FOR n = 2

Let G be a finite index subgroup of 5L(2,Z), and let £/i,£/2 be nonempty open
subsets of R2. We shall show that there exists g EG such that g(Ui) C\U2^%. The idea
is to construct parabolic matrices P\,P2 G G and a point v close to the origin such that
Pi(v) G Ui for each i. Then the matrix g = P2P\l does the job. See Figure 1.

First note that replacing G by its core if necessary, we may assume that G is a
normal subgroup of 5L(2,Z). Second, since G has finite index, there exists a positive
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Figure 1

integer m such that the matrix P =
fl m'
,0 1 ,

belongs to G. Let Lx denote the x-axis in

R2, and for r > 0 and c G R2, let Dr(c) denote the open disc of radius r centred at c. We
shall require the following simple geometric result, which we state without proof:

LEMMA 4 . Let W be an open subset of R2 and suppose that W contains a point
w G Lx. Then there exists e > 0 such that for all z G D£(O)\LX, there exists k € Z for
which Ph{z)eW.

By Lemma 2, there exists a point in U\ of the form (x,y)/s, where s € N and x,y
are relatively prime. Choose a, b E Z such that ax + by = 1 and set

B =

Then B G SL(2,Z) and as G is normal, Ax = B~XPB e G. The matrix Ax is parabolic
and fixes pointwise the line Ly passing through the origin and the point (x,y). Notice
that B(Ui) contains the point (l,0)/s £ LX. Applying Lemma 4 to W — B(Ui), we
obtain an open neighbourhood Vx of 0 such that for all v G V{\Li, there exists k(v) G Z
for which /1J(U)(D) G UX. Similarly, there is a line L2 passing through the origin and
a point in f/2, a matrix A2 G G, and an open neighbourhood V2 of 0 such that for all
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v 6 V2\L2, there exists l{v) € Z for which Al
2

{v)(v) € U2. Let

u £ 2 ) , A f , 2 4

and set u = P\(v) G U\. Choosing g = P2P^X, we have g(u) € U2; so ^(f/i) n C/2 ^ 0, as
required.
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