ON THE DYNAMICS OF THE LINEAR ACTION OF SL(n, Z).

GRANT CAIRNS AND ANTHONY NIELSEN

Using Moore's ergodicity theorem, S.G. Dani and S. Raghavan proved that the linear action of $SL(n,\mathbb{Z})$ on \mathbb{R}^n is topologically (n-1)-transitive; that is, topologically transitive on the Cartesian product of n-1 copies of \mathbb{R}^n . In this paper, we give a more direct proof, using the prime number theorem. Further, using the congruence subgroup theorem, we generalise the result to arbitrary finite index subgroups of $SL(n,\mathbb{Z})$.

1. INTRODUCTION

Recall that a continuous action of an abstract group G on a topological space X is topologically transitive if for all non-empty open sets $U, V \subseteq X$, there exists $g \in G$ such that $g(U) \cap V \neq \emptyset$. (By continuous action we mean that for each group element g, the corresponding map $g: X \to X$ is a homeomorphism). For many spaces (for example, second countable Baire spaces), this is equivalent to the existence of a dense orbit. For a natural number k, the action is said to be topologically k-transitive if the induced action of G on the k-fold Cartesian product X^k is topologically transitive. So topologically 1-transitive = topologically transitive, and topologically *i*-transitive \Rightarrow topologically *j*-transitive for all j < i. Topological 2-transitivity is also called weak topological mixing.

The linear action of $SL(n,\mathbb{Z})$ on \mathbb{R}^n in not topologically *n*-transitive, since the determinant is an invariant function on $(\mathbb{R}^n)^n$. S. G. Dani and S. Raghavan proved the following:

THEOREM. ([2]) For all $n \ge 2$, the linear action of $SL(n, \mathbb{Z})$ on \mathbb{R}^n is topologically (n-1)-transitive.

Underlying the Dani-Raghavan result is Moore's ergodicity theorem. The object of this paper is to give an alternate, more direct proof of the Dani-Raghavan theorem, and to generalise it as follows:

THEOREM. For all $n \ge 2$, the linear action on \mathbb{R}^n of every finite index subgroup of $SL(n,\mathbb{Z})$ is topologically (n-1)-transitive.

359

Received 25th August, 2004

We thank Pierre de la Harpe for his valuable comments and useful references.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/05 \$A2.00+0.00.

. INTEISEIT

Our proof uses the prime number theorem modulo m (see Section 2) and the congruence subgroup theorem; recall that the *principal congruence subgroups* of $SL(n,\mathbb{Z})$ are the kernels of the natural homomorphisms $SL(n,\mathbb{Z}) \to SL(n,\mathbb{Z}_m)$, and a congruence subgroup is a subgroup which contains a principal congruence subgroup. The congruence subgroup theorem ([1, 6]) says that for n > 2, every finite index subgroup of $SL(n,\mathbb{Z})$ is a congruence subgroup. The main point in our proof is as follows.

LEMMA 1. For all $n \ge 2$, the linear action of every principal congruence subgroup of $SL(n, \mathbb{Z})$ on \mathbb{R}^n is topologically (n-1)-transitive.

The orbits on \mathbb{Z}^n of the principal congruence subgroups are examined in Section 3 and Lemma 1 is established in Section 4. Lemma 1, together with the congruence subgroup theorem, establishes the theorem for all n > 2. The proof of the theorem is concluded in Section 5, where we show that the action of every finite index subgroup of $SL(2,\mathbb{Z})$ is topologically transitive.

We assume throughout the paper that $n \ge 2$. We use the same symbol ρ for each of the canonical projections $\mathbb{Z}^i \to \mathbb{Z}^i_m$ and for the natural homomorphism $SL(n,\mathbb{Z}) \to SL(n,\mathbb{Z}_m)$. We use I_n for the $n \times n$ identity matrix in both $SL(n,\mathbb{Z})$ and $SL(n,\mathbb{Z}_m)$.

2. A LITTLE NUMBER THEORY

Recall that the set of numbers of the form q/p, where p and q are prime, is dense in the positive reals; this was proved by Sierpiński in [7, p. 155] and Hobby and Silberger in [3]. In the Math Review of [3], Mendès France gave the following simple proof: it is a well known consequence of the prime number theorem that as k goes to infinity, the k-th prime p_k is approximately $k \log k$; more precisely, $\lim_{k \to \infty} p_k/(k \log k) = 1$. Thus for x > 0, one has

$$1 = \lim_{k \to \infty} \frac{p_{\lfloor kx \rfloor}}{\lfloor kx \rfloor \log \lfloor kx \rfloor} = \lim_{k \to \infty} \frac{p_{\lfloor kx \rfloor}}{kx \log kx},$$

and so

$$x = \lim_{k \to \infty} \frac{p_{\lfloor kx \rfloor}}{k \log kx} = \lim_{k \to \infty} \frac{p_{\lfloor kx \rfloor}}{k \log x + k \log k} = \lim_{k \to \infty} \frac{p_{\lfloor kx \rfloor}}{k \log k} = \lim_{k \to \infty} \frac{p_{\lfloor kx \rfloor}}{p_k},$$

where $\lfloor y \rfloor$ denotes the integer part of y.

We shall require an extension of Sierpiński's result. First recall the following result which was established by de la Vallée-Poussin (see for example [5]). For an integer $m \ge 2$, let $\pi_m(x, a)$ denote the number of primes $\le x$ which are congruent to a modulo m.

PRIME NUMBER THEOREM MODULO m. For all $m \ge 2$, if a and m are relatively prime, then

$$\lim_{x\to\infty}\frac{\pi_m(x,a)\log x}{x}=\frac{1}{\varphi(m)}$$

where φ is the Euler totient function.

Fix relatively prime integers $m \ge 2$ and a. Let p(k, a) denote the k-th prime that is congruent to a modulo m. Setting x = p(k, a) (so $\pi_m(x, a) = k$), the Prime Number Theorem Modulo m gives

(1)
$$\lim_{k \to \infty} \frac{\varphi(m)k \log p(k,a)}{p(k,a)} = 1$$

Therefore

$$0 = \lim_{k \to \infty} \frac{\log \varphi(m) + \log k + \log \log p(k, a) - \log p(k, a)}{\log p(k, a)}$$
$$= \lim_{k \to \infty} \frac{\log k}{\log p(k, a)} - 1.$$

Hence, using (1) again,

(2)
$$\lim_{k\to\infty}\frac{p(k,a)}{k\log k}=\varphi(m).$$

Let y > 0. Imitating Mendès France's argument, equation (2) gives

$$1 = \lim_{k \to \infty} \frac{p(\lfloor ky \rfloor, a)}{\varphi(m) ky \log ky}$$

and so

$$y = \lim_{k \to \infty} \frac{p(\lfloor ky \rfloor, a)}{\varphi(m)k \log k + \varphi(m)k \log y}$$
$$= \lim_{k \to \infty} \frac{p(\lfloor ky \rfloor, a)}{\varphi(m)k \log k}.$$

To draw the conclusion that we shall require later, we need some notation. For each i = 1, ..., n-1, let X_i be the set of points $(x_1, ..., x_n) \in \mathbb{Z}^n$ such that:

- 1. x_i is congruent to 1 modulo m,
- 2. x_j is congruent to 0 modulo m for all $j \neq i$,
- 3. x_i and x_{i+1} are relatively prime.

LEMMA 2. For each i = 1, ..., n - 1, the set of points of the form (x, y)/s, where $s \in \mathbb{N}$, $x, y \in X_i$, is dense in \mathbb{R}^{2n} .

PROOF: Let z_1, z_2 be nonzero reals. Set $w_1 = z_1, w_2 = z_2/m$, and for i = 1, 2 set

$$a_{i,k} = \begin{cases} p(\lfloor kw_i \rfloor, 1); & \text{if } w_i \ge 0\\ -p(\lfloor -kw_i \rfloor, -1); & \text{otherwise} \end{cases}$$

Arguing as above,

$$(w_1, w_2) = \lim_{k \to \infty} \frac{1}{\varphi(m)k \log k} (a_{1,k}, a_{2,k}),$$

and so

$$(z_1, z_2) = \lim_{k \to \infty} \frac{1}{\varphi(m)k \log k} (a_{1,k}, ma_{2,k}).$$

Here $a_{1,k}$ is congruent to 1 modulo m, and $ma_{2,k}$ is congruent to 0 modulo m. Moreover, provided $|w_1|$ and $|w_2|$ are distinct, $a_{1,k}$ and $ma_{2,k}$ are relatively prime. Thus, it is not difficult to see that since the denominator $\varphi(m)k \log k$ is independent of z_1, z_2 , the required result holds in the case n = 2. The result for arbitrary n then follows easily.

3. The orbits of the principal congruence subgroups

We remark that, although we won't use this fact, it is not difficult to show that the greatest common divisor function is a complete invariant for the linear action of $SL(n,\mathbb{Z})$ on \mathbb{Z}^n . The description of the orbits of the principal congruence subgroups require more work; we limit ourselves here to giving a result that we need for the proof of the theorem (see [4, Chapter 17] for more details). Let m be a natural number and consider the natural homomorphism $\rho : SL(n,\mathbb{Z}) \to SL(n,\mathbb{Z}_m)$. Let $G_{n,m}$ denote the principal congruence subgroup ker ρ . Put $S_1 = SL(n,\mathbb{Z})$ and for each $2 \leq k \leq n-1$, let S_k be the subgroup of $SL(n,\mathbb{Z})$ of elements having the block form

$$A = \begin{pmatrix} I_{k-1} & B \\ 0 & C \end{pmatrix}$$

where $C \in SL(n-k+1,\mathbb{Z})$ and B is arbitrary. For each $1 \leq k \leq n-1$, let $G_k = S_k \cap G_{n,m}$. Let $\{e_1, \ldots, e_n\}$ be the usual basis for \mathbb{Z}^n .

LEMMA 3. Let $m \ge 2$ and let $1 \le i \le n-1$. If $x = (x_1, \ldots, x_n) \in X_i$, then there exists $A \in G_i$ such that $Ax = e_i$.

PROOF: First consider the case n = 2, with i = 1. We have gcd(x) = 1 and $\rho x = (1, 0)$. Let

$$C' = \begin{pmatrix} a & b \\ -x_2 & x_1 \end{pmatrix}$$

where $ax_1 + bx_2 = 1$. In $SL(2, \mathbb{Z}_m)$, $\rho C'$ has the form $\begin{pmatrix} 1 & \widehat{b} \\ 0 & 1 \end{pmatrix}$ where $0 \leq \widehat{b} \leq m - 1$. So

$$B = \begin{pmatrix} 1 & -\widehat{b} \\ 0 & 1 \end{pmatrix} \in SL(2, \mathbb{Z})$$

satisfies $\rho(BC') = I_2$. Denote BC' by $C_{(x_1,x_2)}$; it belongs to G_1 and takes x to e_1 , as required.

For n > 2, consider the matrix

$$C = \begin{pmatrix} I_{i-1} & 0 \\ & C_{(x_i, x_{i+1})} \\ 0 & & I_{n-i-1} \end{pmatrix} \in G_i.$$

C takes (x_1, \ldots, x_n) to $(x_1, \ldots, x_{i-1}, 1, 0, x_{i+2}, \ldots, x_n)$. Let $F = (f_{jk})$ be the $n \times n$ matrix with

$$f_{jk} = \begin{cases} -x_j; & k = i, j \neq i, i+1 \\ 0; & \text{otherwise,} \end{cases}$$

and let $E = I_n + F$ and A = EC. Clearly, $E \in G_i$, so $A \in G_i$. And by construction, $Ax = e_i$.

4. PROOF OF LEMMA 1

Consider nonempty open sets $U_i, V_i, i \in \{1, ..., n-1\}$ in \mathbb{R}^n . By Lemma 2, the open set $U_1 \times V_1 \subseteq \mathbb{R}^{2n}$ contains a point of the form $(x_1, y_1)/s_1$, where $s_1 \in \mathbb{N}$ and $x_1, y_1 \in X_1$. So by Lemma 3, there are $A_1, B_1 \in G_1$ with $A_1x_1 = B_1y_1 = e_1$. That is,

 $e_1/s_1 \in (A_1U_1) \cap (B_1V_1).$

Next, by Lemma 2, pick $(x_2, y_2)/s_2 \in A_1U_2 \times B_1V_2$ so that $s_2 \in \mathbb{N}$ and $x_2, y_2 \in X_2$. Applying Lemma 3 again, there are $A_2, B_2 \in G_2$ with

$$e_2/s_2 \in (A_2A_1U_2) \cap (B_2B_1V_2).$$

Continue until we have

$$e_{n-1}/s_{n-1} \in (A_{n-1} \dots A_2 A_1 U_{n-1}) \cap (B_{n-1} \dots B_2 B_1 V_{n-1}).$$

Since $A_j, B_j \in G_j$ for all $j \in \{1, ..., n-1\}$, the A_j and B_j all fix e_i , for all j > i. Therefore, for all $i \in \{1, ..., n-1\}$, we have

$$e_i/s_i \in A_{n-1} \ldots A_{i+1}(A_i \ldots A_2 A_1 U_i) \cap B_{n-1} \ldots B_{i+1}(B_i \ldots B_2 B_1 V_i).$$

Multiplying on the left by $B_1^{-1} \dots B_{n-1}^{-1}$ we see that $DU_i \cap V_i \neq \emptyset$ for all $i \in \{1, \dots, n-1\}$, where

$$D = B_1^{-1} B_2^{-1} \dots B_{n-1}^{-1} A_{n-1} \dots A_2 A_1 \in G_{n,m}.$$

Hence the action of $G_{n,m}$ is (n-1)-transitive.

5. Proof of theorem for n = 2

Let G be a finite index subgroup of $SL(2,\mathbb{Z})$, and let U_1, U_2 be nonempty open subsets of \mathbb{R}^2 . We shall show that there exists $g \in G$ such that $g(U_1) \cap U_2 \neq \emptyset$. The idea is to construct parabolic matrices $P_1, P_2 \in G$ and a point v close to the origin such that $P_i(v) \in U_i$ for each *i*. Then the matrix $g = P_2 P_1^{-1}$ does the job. See Figure 1.

First note that replacing G by its core if necessary, we may assume that G is a normal subgroup of $SL(2,\mathbb{Z})$. Second, since G has finite index, there exists a positive

L

Figure 1

integer *m* such that the matrix $P = \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}$ belongs to *G*. Let L_x denote the *x*-axis in \mathbb{R}^2 , and for r > 0 and $c \in \mathbb{R}^2$, let $D_r(c)$ denote the open disc of radius *r* centred at *c*. We shall require the following simple geometric result, which we state without proof:

LEMMA 4. Let W be an open subset of \mathbb{R}^2 and suppose that W contains a point $w \in L_x$. Then there exists $\varepsilon > 0$ such that for all $z \in D_{\varepsilon}(0) \setminus L_x$, there exists $k \in \mathbb{Z}$ for which $P^k(z) \in W$.

By Lemma 2, there exists a point in U_1 of the form (x, y)/s, where $s \in \mathbb{N}$ and x, y are relatively prime. Choose $a, b \in \mathbb{Z}$ such that ax + by = 1 and set

$$B = \begin{pmatrix} a & b \\ -y & x \end{pmatrix}$$

Then $B \in SL(2,\mathbb{Z})$ and as G is normal, $A_1 = B^{-1}PB \in G$. The matrix A_1 is parabolic and fixes pointwise the line L_1 passing through the origin and the point (x, y). Notice that $B(U_1)$ contains the point $(1,0)/s \in L_x$. Applying Lemma 4 to $W = B(U_1)$, we obtain an open neighbourhood V_1 of 0 such that for all $v \in V_1 \setminus L_1$, there exists $k(v) \in \mathbb{Z}$ for which $A_1^{k(v)}(v) \in U_1$. Similarly, there is a line L_2 passing through the origin and a point in U_2 , a matrix $A_2 \in G$, and an open neighbourhood V_2 of 0 such that for all $v \in V_2 \setminus L_2$, there exists $l(v) \in \mathbb{Z}$ for which $A_2^{l(v)}(v) \in U_2$. Let

$$v \in V_1 \cap V_2 \setminus (L_1 \cup L_2), P_1 = A_1^{k(v)}, P_2 = A_2^{l(v)}$$

and set $u = P_1(v) \in U_1$. Choosing $g = P_2 P_1^{-1}$, we have $g(u) \in U_2$; so $g(U_1) \cap U_2 \neq \emptyset$, as required.

REFERENCES

- H. Bass, M. Lazard and J.-P. Serre, 'Sous-groupes d'indice fini dans SL(n, Z)', Bull. Amer. Math. Soc. 70 (1964), 385-392.
- [2] S.G. Dani and S. Raghavan, 'Orbits of Euclidean frames under discrete linear groups', Israel J. Math. 36 (1980), 300-320.
- [3] D. Hobby and D.M. Silberger, 'Quotients of primes', Amer. Math. Monthly 100 (1993), 50-52.
- J.E. Humphreys, Arithmetic groups, Lecture Notes in Mathematics 789 (Springer-Verlag, Berlin, 1980).
- [5] G.J.O. Jameson, The prime number theorem (Cambridge University Press, Cambridge, 2003).
- [6] J.M. Mennicke, 'Finite factor groups of the unimodular group', Ann. of Math. (2) 81 (1965), 31-37.
- [7] W. Sierpiński, Elementary theory of numbers, Monografie Matematyczne, Tom 42 (Państwowe Wydawnictwo Naukowe, Warsaw, 1964).

Department of Mathematics La Trobe University Melbourne Vic 3086 Australia e-mail: G.Cairns@latrobe.edu.au A.Nielsen@latrobe.edu.au