ON THE DYNAMICS OF THE LINEAR ACTION OF $S L(n, Z)$.

Grant Cairns and Anthony Nielsen

Abstract

Using Moore's ergodicity theorem, S.G. Dani and S. Raghavan proved that the linear action of $S L(n, \mathbb{Z})$ on \mathbb{R}^{n} is topologically ($n-1$)-transitive; that is, topologically transitive on the Cartesian product of $n-1$ copies of \mathbb{R}^{n}. In this paper, we give a more direct proof, using the prime number theorem. Further, using the congruence subgroup theorem, we generalise the result to arbitrary finite index subgroups of $S L(n, \mathbb{Z})$.

1. Introduction

Recall that a continuous action of an abstract group G on a topological space X is topologically transitive if for all non-empty open sets $U, V \subseteq X$, there exists $g \in G$ such that $g(U) \cap V \neq \emptyset$. (By continuous action we mean that for each group element g, the corresponding map $g: X \rightarrow X$ is a homeomorphism). For many spaces (for example, second countable Baire spaces), this is equivalent to the existence of a dense orbit. For a natural number k, the action is said to be topologically k-transitive if the induced action of G on the k-fold Cartesian product X^{k} is topologically transitive. So topologically 1 -transitive $=$ topologically transitive, and topologically i-transitive \Rightarrow topologically j-transitive for all $j<i$. Topological 2-transitivity is also called weak topological mixing.

The linear action of $S L(n, \mathbb{Z})$ on \mathbb{R}^{n} in not topologically n-transitive, since the determinant is an invariant function on $\left(\mathbb{R}^{n}\right)^{n}$. S. G. Dani and S. Raghavan proved the following:

THEOREM. ([2]) For all $n \geqslant 2$, the linear action of $S L(n, \mathbb{Z})$ on \mathbb{R}^{n} is topologically ($n-1$)-transitive.

Underlying the Dani-Raghavan result is Moore's ergodicity theorem. The object of this paper is to give an alternate, more direct proof of the Dani-Raghavan theorem, and to generalise it as follows:

Theorem. For all $n \geqslant 2$, the linear action on \mathbb{R}^{n} of every finite index subgroup of $S L(n, \mathbb{Z})$ is topologically $(n-1)$-transitive.

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/05 \$A2.00+0.00.

Our proof uses the prime number theorem modulo m (see Section 2) and the congruence subgroup theorem; recall that the principal congruence subgroups of $S L(n, \mathbb{Z})$ are the kernels of the natural homomorphisms $S L(n, \mathbb{Z}) \rightarrow S L\left(n, \mathbb{Z}_{m}\right)$, and a congruence subgroup is a subgroup which contains a principal congruence subgroup. The congruence subgroup theorem ($[1,6]$) says that for $n>2$, every finite index subgroup of $S L(n, \mathbb{Z})$ is a congruence subgroup. The main point in our proof is as follows.

Lemma 1. For all $n \geqslant 2$, the linear action of every principal congruence subgroup of $S L(n, \mathbb{Z})$ on \mathbb{R}^{n} is topologically $(n-1)$-transitive.

The orbits on \mathbb{Z}^{n} of the principal congruence subgroups are examined in Section 3 and Lemma 1 is established in Section 4. Lemma 1, together with the congruence subgroup theorem, establishes the theorem for all $n>2$. The proof of the theorem is concluded in Section 5, where we show that the action of every finite index subgroup of $S L(2, \mathbb{Z})$ is topologically transitive.

We assume throughout the paper that $n \geqslant 2$. We use the same symbol ρ for each of the canonical projections $\mathbb{Z}^{\boldsymbol{i}} \rightarrow \mathbb{Z}_{\mathbf{m}}^{\boldsymbol{i}}$ and for the natural homomorphism $S L(n, \mathbb{Z})$ $\rightarrow S L\left(n, \mathbb{Z}_{m}\right)$. We use I_{n} for the $n \times n$ identity matrix in both $S L(n, \mathbb{Z})$ and $S L\left(n, \mathbb{Z}_{m}\right)$.

2. A Little number theory

Recall that the set of numbers of the form q / p, where p and q are prime, is dense in the positive reals; this was proved by Sierpiński in [7, p. 155] and Hobby and Silberger in [3]. In the Math Review of [3], Mendès France gave the following simple proof: it is a well known consequence of the prime number theorem that as k goes to infinity, the k-th prime p_{k} is approximately $k \log k$; more precisely, $\lim _{k \rightarrow \infty} p_{k} /(k \log k)=1$. Thus for $x>0$, one has

$$
1=\lim _{k \rightarrow \infty} \frac{p_{\lfloor k x\rfloor}}{\lfloor k x\rfloor \log \lfloor k x\rfloor}=\lim _{k \rightarrow \infty} \frac{p_{\lfloor k x\rfloor}}{k x \log k x},
$$

and so

$$
x=\lim _{k \rightarrow \infty} \frac{p_{\lfloor k x\rfloor}}{k \log k x}=\lim _{k \rightarrow \infty} \frac{p_{\lfloor k x\rfloor}}{k \log x+k \log k}=\lim _{k \rightarrow \infty} \frac{p_{\lfloor k x\rfloor}}{k \log k}=\lim _{k \rightarrow \infty} \frac{p_{\lfloor k x\rfloor}}{p_{k}},
$$

where $\lfloor y\rfloor$ denotes the integer part of y.
We shall require an extension of Sierpinski's result. First recall the following result which was established by de la Vallée-Poussin (see for example [5]). For an integer $m \geqslant 2$, let $\pi_{m}(x, a)$ denote the number of primes $\leqslant x$ which are congruent to a modulo m.

Prime Number Theorem Modulo m. For all $m \geqslant 2$, if a and m are relatively prime, then

$$
\lim _{x \rightarrow \infty} \frac{\pi_{m}(x, a) \log x}{x}=\frac{1}{\varphi(m)}
$$

where φ is the Euler totient function.

Fix relatively prime integers $m \geqslant 2$ and a. Let $p(k, a)$ denote the k-th prime that is congruent to a modulo m. Setting $x=p(k, a)$ (so $\pi_{m}(x, a)=k$), the Prime Number Theorem Modulo m gives

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\varphi(m) k \log p(k, a)}{p(k, a)}=1 . \tag{1}
\end{equation*}
$$

Therefore

$$
\begin{aligned}
0 & =\lim _{k \rightarrow \infty} \frac{\log \varphi(m)+\log k+\log \log p(k, a)-\log p(k, a)}{\log p(k, a)} \\
& =\lim _{k \rightarrow \infty} \frac{\log k}{\log p(k, a)}-1 .
\end{aligned}
$$

Hence, using (1) again,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{p(k, a)}{k \log k}=\varphi(m) . \tag{2}
\end{equation*}
$$

Let $y>0$. Imitating Mendès France's argument, equation (2) gives

$$
1=\lim _{k \rightarrow \infty} \frac{p(\lfloor k y\rfloor, a)}{\varphi(m) k y \log k y}
$$

and so

$$
\begin{aligned}
y & =\lim _{k \rightarrow \infty} \frac{p(\lfloor k y\rfloor, a)}{\varphi(m) k \log k+\varphi(m) k \log y} \\
& =\lim _{k \rightarrow \infty} \frac{p(\lfloor k y\rfloor, a)}{\varphi(m) k \log k} .
\end{aligned}
$$

To draw the conclusion that we shall require later, we need some notation. For each $i=1, \ldots, n-1$, let X_{i} be the set of points $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}$ such that:

1. x_{i} is congruent to 1 modulo m,
2. x_{j} is congruent to 0 modulo m for all $j \neq i$,
3. x_{i} and x_{i+1} are relatively prime.

Lemma 2. For each $i=1, \ldots, n-1$, the set of points of the form $(x, y) / s$, where $s \in \mathbb{N}, x, y \in X_{i}$, is dense in $\mathbb{R}^{2 n}$.

Proof: Let z_{1}, z_{2} be nonzero reals. Set $w_{1}=z_{1}, w_{2}=z_{2} / m$, and for $i=1,2$ set

$$
a_{i, k}= \begin{cases}p\left(\left\lfloor k w_{i}\right\rfloor, 1\right) ; & \text { if } w_{i} \geqslant 0 \\ -p\left(\left\lfloor-k w_{i}\right\rfloor,-1\right) ; & \text { otherwise }\end{cases}
$$

Arguing as above,

$$
\left(w_{1}, w_{2}\right)=\lim _{k \rightarrow \infty} \frac{1}{\varphi(m) k \log k}\left(a_{1, k}, a_{2, k}\right),
$$

and so

$$
\left(z_{1}, z_{2}\right)=\lim _{k \rightarrow \infty} \frac{1}{\varphi(m) k \log k}\left(a_{1, k}, m a_{2, k}\right)
$$

Here $a_{1, k}$ is congruent to 1 modulo m, and $m a_{2, k}$ is congruent to 0 modulo m. Moreover, provided $\left|w_{1}\right|$ and $\left|w_{2}\right|$ are distinct, $a_{1, k}$ and $m a_{2, k}$ are relatively prime. Thus, it is not difficult to see that since the denominator $\varphi(m) k \log k$ is independent of z_{1}, z_{2}, the required result holds in the case $n=2$. The result for arbitrary n then follows easily. \square

3. The orbits of the principal congruence subgroups

We remark that, although we won't use this fact, it is not difficult to show that the greatest common divisor function is a complete invariant for the linear action of $S L(n, \mathbb{Z})$ on \mathbb{Z}^{n}. The description of the orbits of the principal congruence subgroups require more work; we limit ourselves here to giving a result that we need for the proof of the theorem (see [4, Chapter 17] for more details). Let m be a natural number and consider the natural homomorphism $\rho: S L(n, \mathbb{Z}) \rightarrow S L\left(n, \mathbb{Z}_{m}\right)$. Let $G_{n, m}$ denote the principal congruence subgroup ker ρ. Put $S_{1}=S L(n, \mathbb{Z})$ and for each $2 \leqslant k \leqslant n-1$, let S_{k} be the subgroup of $S L(n, \mathbb{Z})$ of elements having the block form

$$
A=\left(\begin{array}{cc}
I_{k-1} & B \\
0 & C
\end{array}\right)
$$

where $C \in S L(n-k+1, \mathbb{Z})$ and B is arbitrary. For each $1 \leqslant k \leqslant n-1$, let $G_{k}=S_{k} \cap G_{n, m}$. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be the usual basis for \mathbb{Z}^{n}.

Lemma 3. Let $m \geqslant 2$ and let $1 \leqslant i \leqslant n-1$. If $x=\left(x_{1}, \ldots, x_{n}\right) \in X_{i}$, then there exists $A \in G_{i}$ such that $A x=e_{i}$.

Proof: First consider the case $n=2$, with $i=1$. We have $\operatorname{gcd}(x)=1$ and $\rho x=(1,0)$. Let

$$
C^{\prime}=\left(\begin{array}{cc}
a & b \\
-x_{2} & x_{1}
\end{array}\right)
$$

where $a x_{1}+b x_{2}=1$. In $S L\left(2, \mathbb{Z}_{m}\right), \rho C^{\prime}$ has the form $\left(\begin{array}{ll}1 & \widehat{b} \\ 0 & 1\end{array}\right)$ where $0 \leqslant \widehat{b} \leqslant m-1$. So

$$
B=\left(\begin{array}{cc}
1 & -\widehat{b} \\
0 & 1
\end{array}\right) \in S L(2, \mathbb{Z})
$$

satisfies $\rho\left(B C^{\prime}\right)=I_{2}$. Denote $B C^{\prime}$ by $C_{\left(x_{1}, x_{2}\right)}$; it belongs to G_{1} and takes x to e_{1}, as required.

For $n>2$, consider the matrix

$$
C=\left(\begin{array}{ccc}
I_{i-1} & & 0 \\
& C_{\left(x_{i}, x_{i+1}\right)} & \\
0 & & I_{n-i-1}
\end{array}\right) \in G_{i}
$$

C takes $\left(x_{1}, \ldots, x_{n}\right)$ to $\left(x_{1}, \ldots, x_{i-1}, 1,0, x_{i+2}, \ldots, x_{n}\right)$. Let $F=\left(f_{j k}\right)$ be the $n \times n$ matrix with

$$
f_{j k}= \begin{cases}-x_{j} ; & k=i, j \neq i, i+1 \\ 0 ; & \text { otherwise }\end{cases}
$$

and let $E=I_{n}+F$ and $A=E C$. Clearly, $E \in G_{i}$, so $A \in G_{i}$. And by construction, $A x=e_{i}$.

4. Proof of Lemma 1

Consider nonempty open sets $U_{i}, V_{i}, i \in\{1, \ldots, n-1\}$ in \mathbb{R}^{n}. By Lemma 2 , the open set $U_{1} \times V_{1} \subseteq \mathbb{R}^{2 n}$ contains a point of the form $\left(x_{1}, y_{1}\right) / s_{1}$, where $s_{1} \in \mathbb{N}$ and $x_{1}, y_{1} \in X_{1}$. So by Lemma 3, there are $A_{1}, B_{1} \in G_{1}$ with $A_{1} x_{1}=B_{1} y_{1}=e_{1}$. That is,

$$
e_{1} / s_{1} \in\left(A_{1} U_{1}\right) \cap\left(B_{1} V_{1}\right) .
$$

Next, by Lemma 2, pick $\left(x_{2}, y_{2}\right) / s_{2} \in A_{1} U_{2} \times B_{1} V_{2}$ so that $s_{2} \in \mathbb{N}$ and $x_{2}, y_{2} \in X_{2}$. Applying Lemma 3 again, there are $A_{2}, B_{2} \in G_{2}$ with

$$
e_{2} / s_{2} \in\left(A_{2} A_{1} U_{2}\right) \cap\left(B_{2} B_{1} V_{2}\right) .
$$

Continue until we have

$$
e_{n-1} / s_{n-1} \in\left(A_{n-1} \ldots A_{2} A_{1} U_{n-1}\right) \cap\left(B_{n-1} \ldots B_{2} B_{1} V_{n-1}\right)
$$

Since $A_{j}, B_{j} \in G_{j}$ for all $j \in\{1, \ldots, n-1\}$, the A_{j} and B_{j} all fix e_{i}, for all $j>i$. Therefore, for all $i \in\{1, \ldots, n-1\}$, we have

$$
e_{i} / s_{i} \in A_{n-1} \ldots A_{i+1}\left(A_{i} \ldots A_{2} A_{1} U_{i}\right) \cap B_{n-1} \ldots B_{i+1}\left(B_{i} \ldots B_{2} B_{1} V_{i}\right) .
$$

Multiplying on the left by $B_{1}^{-1} \ldots B_{n-1}^{-1}$ we see that $D U_{i} \cap V_{i} \neq \emptyset$ for all $i \in\{1, \ldots, n-1\}$, where

$$
D=B_{1}^{-1} B_{2}^{-1} \ldots B_{n-1}^{-1} A_{n-1} \ldots A_{2} A_{1} \in G_{n, m} .
$$

Hence the action of $G_{n, m}$ is ($n-1$)-transitive.

5. Proof of theorem for $n=2$

Let G be a finite index subgroup of $S L(2, \mathbb{Z})$, and let U_{1}, U_{2} be nonempty open subsets of \mathbb{R}^{2}. We shall show that there exists $g \in G$ such that $g\left(U_{1}\right) \cap U_{2} \neq \emptyset$. The idea is to construct parabolic matrices $P_{1}, P_{2} \in G$ and a point v close to the origin such that $P_{i}(v) \in U_{i}$ for each i. Then the matrix $g=P_{2} P_{1}^{-1}$ does the job. See Figure 1 .

First note that replacing G by its core if necessary, we may assume that G is a normal subgroup of $S L(2, \mathbb{Z})$. Second, since G has finite index, there exists a positive

Figure 1
integer m such that the matrix $P=\left(\begin{array}{cc}1 & m \\ 0 & 1\end{array}\right)$ belongs to G. Let L_{x} denote the x-axis in \mathbb{R}^{2}, and for $r>0$ and $c \in \mathbb{R}^{2}$, let $D_{r}(c)$ denote the open disc of radius r centred at c. We shall require the following simple geometric result, which we state without proof:

Lemma 4. Let W be an open subset of \mathbb{R}^{2} and suppose that W contains a point $w \in L_{x}$. Then there exists $\varepsilon>0$ such that for all $z \in D_{\varepsilon}(0) \backslash L_{x}$, there exists $k \in \mathbb{Z}$ for which $P^{k}(z) \in W$.

By Lemma 2, there exists a point in U_{1} of the form $(x, y) / s$, where $s \in \mathbb{N}$ and x, y are relatively prime. Choose $a, b \in \mathbb{Z}$ such that $a x+b y=1$ and set

$$
B=\left(\begin{array}{cc}
a & b \\
-y & x
\end{array}\right)
$$

Then $B \in S L(2, \mathbb{Z})$ and as G is normal, $A_{1}=B^{-1} P B \in G$. The matrix A_{1} is parabolic and fixes pointwise the line L_{1} passing through the origin and the point (x, y). Notice that $B\left(U_{1}\right)$ contains the point $(1,0) / s \in L_{x}$. Applying Lemma 4 to $W=B\left(U_{1}\right)$, we obtain an open neighbourhood V_{1} of 0 such that for all $v \in V_{1} \backslash L_{1}$, there exists $k(v) \in \mathbb{Z}$ for which $A_{1}^{k(v)}(v) \in U_{1}$. Similarly, there is a line L_{2} passing through the origin and a point in U_{2}, a matrix $A_{2} \in G$, and an open neighbourhood V_{2} of 0 such that for all
$v \in V_{2} \backslash L_{2}$, there exists $l(v) \in \mathbb{Z}$ for which $A_{2}^{l(v)}(v) \in U_{2}$. Let

$$
v \in V_{1} \cap V_{2} \backslash\left(L_{1} \cup L_{2}\right), P_{1}=A_{1}^{k(v)}, P_{2}=A_{2}^{l(v)}
$$

and set $u=P_{1}(v) \in U_{1}$. Choosing $g=P_{2} P_{1}^{-1}$, we have $g(u) \in U_{2}$; so $g\left(U_{1}\right) \cap U_{2} \neq \emptyset$, as required.

References

[1] H. Bass, M. Lazard and J.-P. Serre, 'Sous-groupes d'indice fini dans SL(n, \mathbf{Z})', Bull. Amer. Math. Soc. 70 (1964), 385-392.
[2] S.G. Dani and S. Raghavan, 'Orbits of Euclidean frames under discrete linear groups', Israel J. Math. 36 (1980), 300-320.
[3] D. Hobby and D.M. Silberger, 'Quotients of primes', Amer. Math. Monthly 100 (1993), 50-52.
[4] J.E. Humphreys, Arithmetic groups, Lecture Notes in Mathematics 789 (Springer-Verlag, Berlin, 1980).
[5] G.J.O. Jameson, The prime number theorem (Cambridge University Press, Cambridge, 2003).
[6] J.M. Mennicke, 'Finite factor groups of the unimodular group', Ann. of Math. (2) 81 (1965), 31-37.
[7] W. Sierpiński, Elementary theory of numbers, Monografie Matematyczne, Tom 42 (Państwowe Wydawnictwo Naukowe, Warsaw, 1964).

[^1]
[^0]: Received 25th August, 2004
 We thank Pierre de la Harpe for his valuable comments and useful references.

[^1]: Department of Mathematics
 La Trobe University
 Melbourne Vic 3086
 Australia
 e-mail: G.Cairns@latrobe.edu.au A.Nielsen@latrobe.edu.au

