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ABSTRACT Teaching political methodology classes typically requires a set of technical,
instructor-led lectures on sophisticated statistical concepts (such as probability modeling,
inference, and proper interpretation), followed by chances for students to iteratively adjust
methodological specifications, parameters, and data sets so they can understand how each
combination affects the results. Iteration is essential to learning complicated concepts, but
until now has required simultaneousmastery of a statistical programming language (such as
R), whichmakes learning both harder. TeachingR the semester beforewouldmakemethods
classes easier but also delay research experiences and demotivate our students eager to begin
substantive research. We address both problems through a new type of interactive teaching
tool that lets students iterate while learning the big conceptual picture and all its separate
parts, without having to simultaneously become programmers. We make this tool available
for use in classes now (via one click in a web browser) and as an example of a new type of
more friendly methods instruction for students and instructors alike.

Most new doctoral students in political science
have long since branched off from math and
physics and are excited to be able to focus on
their substantive interests in government and
politics. Yet, upon arrival, many are surprised

to learn that their first class will be in quantitative political
methodology and they now need to master a series of highly
sophisticated technical concepts, such as the mathematical and
statistical theories of uncertainty and inference. Because “deferral
of gratification” pretty much defines the graduate school experi-
ence, most dutifully go along. But then they arrive in class,
expecting to be taught these abstract concepts and are told that

they must simultaneously learn the practical details of a statistical
programming language—so that they can learn (and implement)
these abstract concepts, to begin to study what they came to
graduate school for in the first place.

Abstract statistical theory and practical programming tasks
(including, e.g., understanding how maximum likelihood differs
from probability theory and fixing that obscure bug in your code
on line 57) are, of course, both essential to a career as an empirical
political scientist. Statistical theory is the inferential foundation
for social science research, whereas programming enables stu-
dents to learn by iterating between concept, statistical specifica-
tion, data, and results and later on to automate data wrangling
and analysis. Although learning these two topics sequentially
would be easier and more efficient, it can delay getting to
substantively oriented research and thus be demotivating to
some. So instructors often teach both while also trying to give
students the big picture of how research is justified, designed,
and implemented all at the same time, often finding creative
ways of using this material to motivate them (Williams 2022).
Judging from the dramatic changes in the literature over the last
several decades, teachers of political methodology have suc-
ceeded spectacularly well in motivating students and making
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them better political scientists, but even with the best pedagog-
ical strategies our classes do sometimes have the same problems
as origami taught during swimming lessons.

In this article, we propose a new approach to teaching political
methodology that enables students to learn from iterating in this
way following a lecture on difficult conceptual issues, without
having to simultaneously learn programming (and thus with
minimal distracting “clutter”; Bailey 2019). We seek to encourage
that this approach be taken as new teaching innovations are
developed in the future. We describe our ideas in principle in this
article and also provide an example that shows how it works in
practice via software we developed called “2K1-in-Silico: An Inter-
active Non-Textbook,” which is available by clicking on
2K1.iq.harvard.edu (no downloads or installations required).
Alternatively, you can download the app from our repository
github.com/iqss-research/2k1-in-silico and install and use it off-
line or try it in RStudio as a transition to learning to program. This
is fully functioning software that we have extensively field tested
in class after the instructor gives their usual full lecture on each
part (thus helping to “teach students to teach themselves”;
Schleutker 2022), but we offer it here primarily as an example of
the kind of innovations in teaching and learning that future
instructors might consider developing. Our software covers some
of the most commonly taught difficult topics in political method-
ology classes, but obviously only a small subset of what could be
taught. To bring our approach to other topics, we have made our
software open source so that other instructors can extend our

software or follow the design principles described below and build
new technologies from scratch.

The 2K1-in-Silco app is named after the class for which it was
originally designed, Government 2001, taught by Gary King. This
is the first class in theHarvardUniversity political science doctoral
sequence, and almost all graduate students in the department take
it, along with students from related disciplines, professional
schools, and nearby universities. The 2K1-in-Silico app can be used
on its own or by taking Government 2001 in residence at Harvard or
online (through the Harvard Extension School). Most of the mate-
rials for this class are also freely available to students and instructors
elsewhere for use in their own classes. This includes all the lecture
videos, the slides used in the lectures, the syllabus, the readings, and
more; see the class website at j.mp/G2001. The lecture videos can be
watched on your own on YouTube at bit.ly/gov2001v or with others
through Perusall.com, a platform that allows students to help each
other by annotating the videos and readings together and through
other types of motivating interactions. Instructors teaching their
own classes or groups of studentswatching togethermay create their
own free Perusall class account by registering at https://app.perusall.
com/accounts/register, creating a course, and entering in “copy code”
PCDKPTWZ39, which pulls in all these videos automatically.

APPROACHES TO TEACHING AND LEARNING

We seek to enable political methodology instructors to follow the
approach to teaching and learning that they have long espoused.

This approach is described in the “Ideal Approach” panel in
Figure 1. We begin (as shown at the left of the top panel) with a
carefully designed lecture on one of the many difficult topics in
statistical theory or other sophisticated concepts in political meth-
odology. For example, consider a class on maximum likelihood
analysis covering the likelihood axiom, likelihood functions, how
probability and likelihood differ, optimization, estimation, and
properties of maximum likelihood estimators. (A more advanced
class may even teach the general idea of extremum orM-estimators
or connect maximum likelihood to related methods like nonlinear
least squares or the generalized method of moments.)

Those of us who teach difficult topics like these learn a
tremendous amount by giving lectures, but no student under-
stands all the information transmitted solely by listening. To
learn, students must iterate—they must use the knowledge in
practice, try the concepts, and see how it all works. Thus, after
lecture, we give the students problem sets, usually accompanied
by sections and teaching assistants, where they can iterate by
studying statistical theory from lecture, adjusting parameters
and data, seeing how the results change, and going back to see
how that corresponds to what they expect from the statistical
theory (see the second item in the top panel of the figure). After
considerable effort iterating, successful students will have incor-
porated the knowledge that was transmitted in lecture into their
long-term understanding, and they can go on to the next topic,
probably in lecture the next week (see third item in the top
panel).

The goal of this approach to teaching is almost universal in
politicalmethodology classes, but the problemof requiring students
to learn to program in the middle of iteration is something we all
trip over while trying to implement. To see this, consider the
problem set that might be assigned after a class on maximum
likelihood, consisting of a problem that can be solved with maxi-
mum likelihood estimation, perhaps using real replication data
from a recent or prominent article. Students will be tasked with
using this technique to develop an estimator, calculate estimates
and standard errors, and perhaps confidence intervals or quantities
on a scale of substantive interest rather than easy optimization.

The problem is that to realize the pedagogical value of this
idealized approach, students have to be asked to learn the relevant
programming tools, as most will be conducting numerical opti-
mization for the first time.We illustrate this in the second panel of
Figure 1, with the distracting but essential programming parts
added in red. For example, in R, they may learn the use of the
function in order to maximize a log-likelihood. Given the chal-
lenges of numerical optimization, this will probably also require
understanding of error handling and related tools. If this comes
relatively early in a class, this will also require a discussion of the
role of functions in R and the (often unintuitive) idea of a function
as a first-class object that can be passed to other functions.

Anecdotally, teaching assistants spend more than half of their
office hours on questions relating to the programming-specific
aspects of the class. And frequently students who come into the

To learn, students must iterate—they must use the knowledge in practice, try the concepts,
and see how it all works.
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class with programming experience spend considerable time help-
ing the teaching staff by tutoring their classmates. In fact, most
complaints about political methodology classes across instructors
we have talked with centers around programming in classes that
are not primarily about programming.

Of course, the learning objectives are logically sequential: First
learn the programming, and then learn the methodology. But as
student and instructor time is finite, these goals frequently end up
competing. Even in the best case, when students have enough time
to first learn the programming and then return to the statistics
afterwards, the logical flow of the lesson is interrupted. After
spending hours on debugging code that breaks when a Hessian
is non-invertible, students often lose sight of the big picture: how
maximum likelihood estimation does or doesn’t correspond to
inverting a matrix, and when it is a useful tool for political
scientists—especially since students may not have a complete
understanding of that big picture until they’ve done some hands-
on learning themselves. Spending so much time on technical
minutiae while struggling to comprehend highly sophisticated
theoretical concepts can be demotivating, if not demoralizing.

Instructors have addressed this problem in creative ways, such
as by providing students with replication code that acts as a
starting point for their own solutions. But, as many frustrated
students of our classes will attest, running replication code can be
a formidable technical challenge, especially if you do not know
precisely what the code is doing.

With our suggested direction (and with 2K1-in-Silico as an
example), iteration can be much closer to the top panel in the
figure. Instead of first asking students to learn R, functions,
optimization routines, and write a computer program, we can
instead ask a series of discussion-style questions that can be
answered with deep study using the 2k1 tool. How can we
guess the bias of a coin from observing related flips? What

does event count data look like when the underlying data
generation process is Poisson-shaped? How does increasing
the number of observations increase the curvature of the
maximum likelihood surface, and thus reduce the width of
confidence intervals? How does the quadratic approximation
to the log-likelihood work in practice with different data sets
and modeling specifications?

The concepts political methodologists teach are some of the
most highly sophisticated ideas they will find in graduate school.
But we teach how to do research and the point of graduate school
is to learn research, and so they cannot be skipped. By enabling
students to put aside programming, to switch from the bottom to
the top panel of Figure 1, students should be much better able to
learn, understand, and incorporate the knowledge transmitted
during lecture.

The new approach we recommend is thus not so new: It is the
idealized approach we all try to use. The novelty we are suggesting
is using modern technology to try to remove the distractions (the
red from the bottom panel of Figure 1) to enable instructors to do
what they had intended all along, a topic to which we now turn.

INTERCONNECTED CONTENT

Unlike connections that can often be found among substantive
political science research topics, many parts of quantitative political
methodology classes are closer to a singular whole and so best
studied together. The difficulty is that any digestible, single class- or
assignment-sized, piece of this whole is insufficient to convey the
big picture. So we march forward, teach each part, and all the while
ask students to trust us that the big picture, and fuller understand-
ing, will come into focus over the semester. Because each part is best
understood only after understanding all the other parts, students
typically refer to material learned earlier or sometimes repeat the
class or take different classes covering the same material.

Figure 1

Approaches to Teaching and Learning
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2K1-in-Silico covers three interrelated topics that together
form the centerpiece of much social science statistical modeling
and analysis:

1. Data generation processes, using probability models;
2. Inference, using likelihood models (King 1998); and
3. Quantities of interest, using statistical simulation (see King,

Tomz, andWittenberg 2000 and Clarify software for R or Stata;
see GaryKing.org/clarify).

Learning each of these sophisticated concepts is made much
easier when iterating by adjusting parameters, model specifica-
tions, and data sets and watching whether the way that the results
change are compatible with your understanding of the statistical
theory.

Probability enables us to randomly generate data from an
assumed mathematical model (e.g., drawing a set of heads and
tails from the model of a fair coin flip), whereas the goal of
inference is the reverse: learning about features of a given model
(such as whether the coin is fair) from a set of observed data (e.g.,
an observed string of heads and tails from 100 flips of a coin).
Quantities of interest are calculated from statistical inferences,
based on real data; numerous types of quantities can be computed,
such as expected values, predicted values, and probabilities, for use
in forecasts, descriptive and counterfactual estimation, or for other
purposes. Probability, inference, and quantities of interest are

mostly useful to political scientists with far more sophisticated
models than coin flips, of course, allowing for explanatory variables
and many possible different dependence structures, distributions,
sample spaces, and mathematical formalisms. 2K1-in-Silico pres-
ently includes 18 differentmodels, such as linear-normal regression,
Poisson and negative binomial count models, exponential duration
models, and binary and ordered probit and logit models. (Our
software is open source, so anyone can add models if they wish,
with some programming of course!)

Understanding one historical period or substantive topic
studied by political scientists is usually helpful in studying
another, but many topics in political methodology are muchmore
interrelated. The likelihood theory of inference is defined with
probability densities. Computing quantities of interest can be
done by simulation or analytic means to learn about the results of
likelihood estimation or features of a probability distribution
constructed from theory without data. Probability can be studied
without the other two topics, but empirical political scientists
have little interest in made-up models (or the data they can

generate) without any necessary connection to the world we wish
to study.

DESIGN PRINCIPLES

We suggest building tools for substantively oriented political scien-
tists, and we built 2K1-in-Silico, by following four design principles.

First, the main idea is to provide the big picture while enabling
students to zoom in and see any details they wish, with nothing
omitted, and then zooming back out to understand the context.

One of the reasons learning programming is valuable is because it
enables us to get a feel for complicated statistical and mathemat-
ical objects (such as statistical models) too complicated to fit
entirely in one human’s working memory, usually by repeatedly
running a program, changing its inputs, and seeing what happens
to the outputs. We allow users to gain this intuition in 2K1-
in-Silico by simple dropdown boxes and slider bars, and watching
numerical results and graphics change dynamically and instantly,
without any programming.

Second, the documentation for most statistical software pack-
ages does not include complete, mathematically precise descrip-
tions of themethods and algorithms implemented, leaving instead
only citations to the original scholarly source (sometimes with
half-baked equations written in text, like DEPENDENT = alpha +
beta1*INDEPENDENT, which usually conveys what is going on
only to those who already know). For software users, however,

determining whether the method implemented is identical to that
in the textbook can then sometimes be difficult. In fact, anyone
who writes computer code to implement a method knows that
they typically do differ and for good reasons.

For one example, numerical optimization that involves a
parameter that can only be positive, say a variance σ2, can crash
the program if it guesses zero or a negative value on the way to
the optimum. Thus, a convenient numerical optimization trick is
to reparameterize by defining σ2 =eγ, and estimating γ. This is
convenient because γ can take on any finite value, and so we can
optimize the function without constraints and without anything
crashing, estimate γ, and then exponentiate the result. This
works well also because ebγ is the same maximum likelihood
estimate as if we had optimized the function directly. That’s
great but, in fact, the standard errors and full posterior distribu-
tion do change with this reparameterization and so replication,
and complete understanding, requires knowing how the soft-
ware is written. Thus, in 2K1-in-Silico, every time a user chooses
a model, the full and precise mathematical formulation of the

The main idea is to provide the big picture while enabling students to zoom in and see any
details they wish, with nothing omitted, and then zooming back out to understand the
context.

The difficulty is that any digestible, single class- or assignment-sized, piece of this whole is
insufficient to convey the big picture.
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Figure 2

Mock Screen of the 2K1 App

Note: Graphics have been moved to fit a static image.
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model implemented in the software automatically appears on the
page (LATEX formatted).

Third, to make this tool work as well as possible without
instructor intervention, we add next to every object on every page
an i symbol, enabling the user to request more information.
Clicking on any one of those symbols provides the needed infor-
mation about an equation, dropdown box, statistical model,
parameter, covariate, numerical result, dataset, or graphic. The
information is presented in a little popup box without causing the
user to lose context. In addition to all the i symbols, there’s a
button to ask for a tutorial that will take you on a guided tour of
the whole app if desired, which is designed for themost basic users
without interfering with those with more advanced skills.

Finally, the program even tries to convey what numerical
optimization algorithms do by letting the user guess at parameter
values and see what the result looks like in terms of the distance
from the maximum likelihood or what the uncertainty estimates
look like. At every stage, the data are always available and on the
screen, including data that could be generated by a probability
model or to be used in making a statistical inference of some kind.

WHAT IT DOES

Almost by definition, we cannot use the static presentation format
of a paper to fully conveywhat our interactive tool does, and so feel
free to go to 2K1.iq.harvard.edu and read along in order to see it in
action as we explain it. In the app, you will find an overview page
with three tabs across the top, corresponding to (1) data genera-
tion processes, (2) model inferences, and (3) quantities of infer-
ence, intended to be used in this order. You can start with “tutorial
mode” or instead skip that and see if the app is as intuitive enough
without it, as intended. Either way, for any feature not immedi-
ately understandable, merely click on the corresponding i to get
an in-context, detailed explanation.

Begin by clicking on the data generation process (DGP) tab,
and choosing a DGP to explore from the wide variety of examples
listed. These include linear, normal, lognormal, Bernoulli, logit,
probit, exponential, ordered logit and probit, and others. The
mathematical form of the chosen probability model will instantly
appear, along with slider bars for the user to set, indicating the
parameter values and number of observations. This is followed by
a dataset drawn from the model along with graphic visualizations
in a variety of useful formats that automatically change depending
on the type of data and model. All options, including the choice of
the model, come with defaults, so you do not even need to make
any choices if you prefer; however, you will gain intuition if you
adjust the inputs and get a feel for how they and themodel control
the outputs.

To provide a better feel for the app if you have not yet clicked
on the link, see Figure 2 for a snapshot of the app’s inference tab.
Along the top row, you can see the tabs that provide context.
Below that is the dataset the user created on the previous (DGP)
page. Although the data was generated by somemodel of the user’s
choice there, in the real world we do not know the DGP during
inference. Thus, on this page we must choose the assumed distri-
bution for the statistical model, which we can do from the drop-
down box (on the top left, with “Ordered Logit” showing
presently), along with the choice of one or more explanatory
variables to include (with their own dropdown boxes, presently
showing “Normal B” and “Uniform A,” with details about them
documented in the gray i symbol to its right).

As soon as you choose an assumed statistical model, the
mathematical form of the statistical model appears, followed by
the complete mathematical form of the log-likelihood. At the
bottom left, the values of the maximum likelihood estimates and
variance matrix appear, but to get a better feel for the maximiza-
tion process, the slider bars at the top right allow the user to make
a “guesstimate” of the values of each of the parameters (in blue,
corresponding to the values in the math at the left). As the user
adjusts these slider bars, the horizontal bars (in green, correspond-
ing to the color of the word “guesstimate”) in the graph below
show how well they fit the empirical histogram of the data. The
second graph plots the (profile) log-likelihood function for each
parameter (chosen by the dropdown box below it), along with the
best quadratic approximation to the log- likelihood which is used
for calculating the standard errors. The dashed green vertical line
in this second plot shows how close the user’s guesstimate is to the
maximum of the log-likelihood function, and will move as you
adjust the sliders. The last graph on this page, which also instantly
adjusts based on the slider bars, provides predicted values from the
currently chosen model (in this case ordered logit, for each of the
three outcome values that sum to one). If you click on the “Set to
MLE” button under the slider bars, the bars will adjust automati-
cally to themaximum likelihood estimates, and the user will see the
green horizontal bars on the first graph matching the histogram
bars exactly, and all the other graphs adjusting automatically.

The last tab enables you to compute any of a variety of
quantities of interest. If you click on the tab, you will see at the
top the maximum likelihood estimates and variance matrix from
the inference tab. You can choose which quantity interests you and
should be calculated. Given that, the full mathematical details of
the estimation and fundamental uncertainty appear, as these are
needed for simulating quantities of interest. You can also select
values of the explanatory variables via slider bars. From all this
information, 2K1-in-Silico automatically presents a set of colorful
graphics to summarize the quantities you chose to compute, along
with various types of uncertainty estimates.

At any time, you can go back to the main page to see the big
picture, or any of the three tabs.

CONCLUDING REMARKS

In this article, we describe a tool designed to teach a large number
of specific, interrelated topics. We use this tool as an example of
our main goal, to encourage thought about a new approach to
teaching political methodology. Instead of requiring students to
learn topics that happen to be convenient for existing technology,
instructors and designers of teaching and learning tools ought to
be able to modify the technology to meet students where they are
and with what they know. In this way, our students can learn the
sophisticated concepts of political methodology better, be more
motivated, and get up to speed faster. Students will likely still need
to learn programming to do quantitative political science, but they
can learn it when needed during their substantive research. This
“new” approach is designed to use technology to achieve the
idealized objectives of how most of us teach now.

In addition to trying 2K1-in-Silico or assigning it in class by
clicking on 2K1.iq.harvard.edu, we hope readers will help us
extend the tool to a wider variety of models, graphics, methods,
and statistical concepts.We could even add tabs for understanding
data, matching for causal inference, and imputation for missing
data, among others. To do this, you will need to do some
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programming of course, but we use relatively straightforward
R-Shiny technology, as recommended by Metzger (2022). All the
code is open source and freely available at github.com/iqss-
research/2k1-in-silico.

And if the concepts you are trying to convey do not fit in an
extension of our existing tool, we hope our design principles will
be of use in building new tools that can be shared as widely.
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