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Abstract

We consider the following problem arising in agricultural statistics. Suppose that a large
number of plants are set out on a regular grid, which may be triangular, square or hexagonal,
and that among these plants, half are to be given one and half the other of two possible treat-
ments. For the sake of statistical balance, we require also that, if one plant in every k plants
has i of its immediate neighbours receiving the same treatment as itself, then k is constant over
all possible values of i. For square and triangular grids, there exist balanced arrays of finite
period in each direction, but for the hexagonal grid, we show that no such balanced array can
exist. Several related questions are discussed.

1980 Mathematics subject classification (Amer. Math. Soc.): 05 B 30, 05 B 45, 62 K 99.

1. Introduction

We continue in this paper our earlier work (Street and Macdonald (1979),
Macdonald and Street (1979)) concerning the following problem. Plants grown in
large numbers for commercial purposes are usually set out on a regular grid,,
triangular, square or hexagonal. In order to space them for optimal yield, it is
necessary to study the way they behave when competing with each other for light.

Consider the experimental arrangements in a greenhouse. Over each plant there
is a lamp; half the plants are to have their lamps on and half off. The intensity of
light falling on any particular plant is determined firstly by whether its own lamp
is on and secondly by the number of its immediate neighbours whose lamps are on.
(We may ignore more distant lamps to within a reasonable approximation.)

For example, in the hexagonal grid, each plant has six immediate neighbours.
Thus each plant can lie at the centre of any of 2% = 64 possible neighbourhoods,

479

https://doi.org/10.1017/51446788700012623 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700012623

480 Sheila Oates-Williams and Anne Penfold Street 21

00

Q
90,
0
Oc!

Rv
090
S
(S04

,e
gce
262
8ce

=

420

S

0=

&)
20
osol

00

55

=

O
O
(=)
)

o
ool
G
o)

Gy
EEE
oo Rk
CRES

™
m
By

&

©,
O
oS

7{ .

FIGURE 1. The equivalence classes of the neighbourhoods of 0.

TABLE 1

" The distribution of the neighbourhoods of 0
into equivalence classes

Number of members
of class

—t

6

6 XY +6Xyy+3xyy =15
6x8,+12x8;+2x8; = 20
6Xey+6xeg+3xe =15
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[31 Balanced binary arrays 481

and these 64 neighbourhoods fall into seven equivalence classes, depending on
how many of the neighbouring plants have their lamps in the same state as the
central lamp.

Suppose that 0 denotes a plant whose lamp is on, and 1 a plant whose lamp is off.
Figure 1 shows representatives of the seven equivalence classes of neighbourhoods
of 0; note that three of the seven classes split up naturally into three subclasses
each. Table 1 shows the number of members of each class and subclass. We always
label the configuration according to the number of neighbours which match the
central element; thus 1 is in the « configuration when surrounded by 1s.

For the sake of statistical balance, the array is required to consist of equal
numbers of Os and 1s and, further, to have equal numbers of each symbol in each
configuration. Hence on average, of every fourteen symbols in the array, we should
have seven Os and seven 1s, and of the seven symbols of each type, one should be in
each of the o, B, ¥, 8, ¢, { and 5 configurations.

Previously we constructed periodic balanced arrays for the square and tri-
angular grids respectively, and showed that these arrays could satisfy various
additional conditions which simplified their applications. By contrast for the
hexagonal grid, we show in Section 2 that no such periodic balanced array can
exist. However, there do exist binary hexagonal arrays with various interesting
properties and in Section 3 we discuss some of these arrays. Some unsolved
problems are listed in Section 4.

2. The non-existence result

Our main result is the following
THEOREM. For the hexagonal grid, no periodic balanced binary array can exist.

Proor. We proceed by a counting argument, showing that it is impossible to fit
enough {s and #s into the array. Since the proof depends strongly on the geometry
of the grid, we use numerous diagrams and for clarity we let white and dotted
hexagons correspond to Os and 1s respectively throughout.

By definition, a white hexagon cannot border another white hexagon in the 7
configuration. From Figure 1, we see that a white hexagon in the « or % configura-
tion cannot border a dotted 5 nor a white nor dotted {. However, a white B can
border a dotted { or a dotted %, though never a white ¢, and so on. Hence with
each white hexagon in an array, we may associate a vector (a, b, ¢) of non-negative
integer components, such that a, b and ¢ are the number of white Zs, dotted {s and

dotted s respectively, bordered by the original white hexagon.
16
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We say that the vector (a;,b,,¢,) covers the vector (ay,b,,c,) if and only if
ay>ay, by>b, and ¢ > c,. Then for each configuration of a white hexagon, we
must have a covering family of vectors, that is, vectors which can be associated with
the given configuration and such that any vector associated with the configuration
is covered by at least one vector of the family. Table 2 shows the covering vectors
for each configuration of the white hexagons and Figure 2 shows the associated
neighbourhoods.

TaABLE 2

Covering families of vectors and sums of their components

Bordering  Bordering  Bordering
White hexagon @ white {s b dotted {s c dotted s a+b+¢

o 0 0 0 0
B 0 0 1 1
0 1 0 1
7 0 2 0 2
Ve 1 2 0 3
0 0 2 2
0 1 1 2
s 0 2 0 2
0 1 1 2
0 0 2 2
s 0 2 0 2
8, 0 3 0 3
0 2 1 3
1 2 0 3
8, 0 0 3 3
0 1 2 3
3 0 0 3
1 2 1 4
1 3 0 4
& 0 2 0 2
&y 2 0 0 2
1 2 0 3
0 3 0 3
0 2 1 3
&3 0 4 0 4
1 2 0 3
2 0 0 2
4 0 2 0 2
1 0 0 1
7 0 0 0 o -

Suppose that a periodic balanced binary array does in fact exist. Then it con-
tains a block of 14n hexagons, 7n white and 7n dotted, with n of each colour in each
configuration, that is, a balanced block for some integer n. From Table 2, we see
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that a white hexagon may border at most three dotted »s, at most three white s,
at most four dotted s and a total of at most four of these three types of hexagons.
Let k;, k; and /; denote the number of white hexagons in the balanced block which
border ¢ dotted s, i white {s and i dotted s, respectively. Similarly let m; denote
the number which border a total of i dotted {s, white {s and dotted ns. Now each
dotted ¢ has five of its six edges adjacent to white hexagons and from Table 2 we
see that kg = kg = 0, so that

H ky+2ky+3ky+4k, = 5n.
Similarly, counting edges of the white {s, we have

() ky+2ky+3k; = n;
for the dotted %s, we have

(3) L+2[,+3],=6n

and for all of them together

) my+2my+3my+4my = 12n.

Suppose that of the n white hexagons in each configuration in the balanced
block, we have nA &5 contributing to m,, that is nA &s of type (0,4,0), nu 88
contributing to m,, that is of types (1,2,1) or (1,3,0), and nv y,s contributing to
my, that is of type (1,2,0), where 0< A, p,v< 1.

Notice (see Figure 2) that each white &, of type (0,4,0) has its two white neigh-
bours in configurations y, or 83, and, moreover, the white neighbours of distinct
£gs of this type are distinct. The y,s are of type (0, 2, 0) (covered by (1,2,0)) and the
s of type (0,2,1) (covered by (1,2,1)), (0,3,0) (covered by (1,3,0)) or (0,2,0)
(covered by either). In particular, the y,s contribute to no /;, and the 8;s at most
to /,. Let there be n), such y,s and n); such 8, so that

(5 A+, =2

Also each §; contributing to m, is of type (1,2,1) or (1,3,0) and contributes at
most to /, and each y, contributing to my is of type (1,2,0) and contributes to no /;.

Now consider the white hexagons bordering the dotted 5s. A contribution to /4
could arise only from ;s not contributing to m,, nor bordering &s of type (0,4, 0).
A contribution to /, could arise only from y,s or y,s not contributing to mj;, nor
bordering &8 of type (0,4,0) (or, of course, from the 8s just mentioned, but this
would decrease the total contribution). Finally, a contribution to /; can then arise
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FIGURE 2. Configurations of white hexagons associated with covering families of vectors.
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(3,0,0)

(0,1,2)

Figure 2 (cont.)
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from Bs, from &,s and from §;s contributing to m, or bordering e,s of type (0,4, 0).
Hence from (3)

6n = I, 42,431,
< nl14+ g+ ) +(1 = N)]+21(1 = A, —v) +3n(1 — X, — )
= n[7=2(A 4 A,) = A=2v—2p]
= n[7—(5A+2v+2p)]
by (5), so that
(6) 520+ 2v+2u<l.

We deal similarly with equation (4). Contributions to m, come from the nA s
and the np 8,5 only. Contributions to mg can come from the remaining &s and 8s
and from the nv y,s. Contributions to m, can come from the {s and the remaining
ys, and to m, from the Bs. (Again we could, for instance, have a { contributing
only to my, but this would decrease the total contribution.) Hence by (4),

12n = my+2m,+3my+4m,
< n+2n[1+(1-v)]+3n[1 =D+ (1 -p)+vI+4n(A+p)
=n(1l+A+u+v)
< 1gn

by (6), which is a contradiction.
So no such periodic balanced binary array can exist.

Figure 3 shows a double-strip pattern, of period 18 along the strip, which
contains, for every 9 hexagons of either colour, one each of «, B, y, { and % and
two each of 8 and e. This array is the closest to being balanced that we have so far

constructed.
repeat

We point out in this connection that each of the balanced tilings we constructed
for the square and triangular grids were associated with uniform tilings of the
plane not made up of edge-to-edge tiles: see Street and Macdonald (1979), Figures
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28 and 30, and Macdonald and Street (1979), Figures 15 and 16. However, none
of the eight such families of tilings can be built up from regular hexagons; see
Griinbaum and Shephard (1977). But we have been unable to use this observation
to simplify the proof of the Theorem.

3. Periodic binary arrays

In the square and triangular grids, the balanced arrays of special interest are
those we called sequential, that is, those which have the same periodic binary
sequence repeated along every row of the array, in every direction. They are
particularly suitable for application and we therefore began to look for sequential
arrays in the hexagonal grid, hoping to find some which, like the non-sequential
array of Figure 3, approached reasonably close to balance.

It is easy to check that no sequential array of period two can exist, so the shortest
possible period is three, with se in Figure 4.

i T ST R

FIGURE 4. Sequential array with sequence 011.

This simple array is of interest for several reasons.

LEMMA 1. For the hexagonal grid, the sequential array of Figure 4 is the only one
in which one of the symbols occurs only in 2-strings.

Proor. Without loss of generality, suppose that 1 occurs only in 2-strings.
Consider the array shown in Figure 5. Since 1 occurs only in 2-strings, we must have
the subsequence 0110. If position 3 is occupied by a 1, then all positions labelled 2
must be occupied by 0s. If X is occupied by a 1, then it is an isolated 1 in the
sequence in the one o’clock direction; hence X is filled by a 0. Similarly, ¥ must
be filled by 0, to avoid an isolated 1 in the sequence in the eleven o’clock direction.
But now the 1 in position 3 is isolated in the horizontal direction and we have a
contradiction. Hence the hexagons immediately above and below the 2-string of 1s
must be occupied by Os, and we are led back to the array of Figure 4.
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LeMMA 2. For the hexagonal grid, no sequential array can exist in which one of the
symbols occurs only in 3-strings.

ProoF. Suppose that such an array did exist, with 1 occurring only in 3-strings
and consider the cases shown in Figure 6. We begin with the array of Figure 6(a)
and consider the symbols in positions X and Y. If both X and Y are occupied by
0s, we have Figure 6(b). All the hexagons labelled 3 must be filled by 1s, all those
labelled 2 by 0s. The row marked with an arrow now contains a 4-string of 1s,
which is impossible.

FIGURE 6.

If X=0and Y =1, we have Figure 6(c). Now all the hexagons labelled 3 are
filled by 1s and those labelled 2 by 0s. This in turn forces hexagons labelled 5 (and
later 7 and 9) to be filled by 1s, and those labelled 4 (and later 6 and 8) by Os,
leading to the marked 4-string of 1s, again a contradiction.

We may now assume that the four hexagons immediately above and below the
3-string of 1s are occupied by 1s, as in Figure 6(d). This forces hexagons labelled
2 (and 4) to be filled by 0s, and those labelled 3 by 1s, giving a forbidden 4-string
as before.
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Lemmas 1 and 2 between them rule out the possibility of a sequential array of

period 4. However, arrays of all odd periods do exist, with sequences 011 ...1;
2n

these, may be regarded as members of a family beginning with the array of Figure 4.

They are shown for » = 2 and 6 in Figures 7(a) and (b) respectively.

(b)
FIGURE 7. Sequential arrays with two-fold symmetry:
(a) sequence 01111; (b) sequence 0111111111111,

For n = 2, the sequence 01111 can easily be shown to give the unique array of
Figure 7(a). For larger values of n, the array is not necessarily determined uniquely
by the sequence as, for example, the array of Figure 8 has the same sequence as
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)

FIGURE 9. Sequential arrays of period f(n) = 4n2—2n+1: (a) six-fold symmetry, period13,n = 2;
(b) six-fold symmetry, period 31, n = 3.
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that of Figure 7(b). Notice also that the array of Figure 7(b) has two-fold sym-
metry, whereas that of Figure 8 has six-fold symmetry, so that the sequence does
not even determine the symmetry properties of the array.

The array of Figure 4 may also be regarded as the smallest member of another
family, several members of which are shown in Figure 9. If the dotted hexagonal
motif of the array has side », then it contains 1+ 3n(r—1) small hexagons; the
entire sequence runs also through the equivalent of the two white triangular motifs,
each of side n, containing between them m(m + 1) small hexagons. Thus the sequence
has period f(n) = 1+ 3n(n—1)+n(n+1) = 4n®—2n+ 1, for each positive integer n,
and for each value of f(n), such a sequential array exists.

Another family of sequential arrays with six-fold symmetry are the snowflake
arrays, two of which are shown in Figure 10. If n denotes the number of small
shaded hexagons to the left of the white centre of the snowflake, then each snow-
flake contains 6n(n+1)+1 small hexagons, and by allowing for the 3n(n41)+2
small hexagons lying between the snowflakes, we see that the periods of these
arrays are given by

g(n) =6n(n+1)+1+3n(n+1)+2

=332 +3n+1).

Figure 11 shows a sequential array of cog-wheels, again with six-fold symmetry,
of interest because its sequence contains only isolates and 2-strings of one symbol
(0) and only isolates, 2- and 3-strings of the other (1). The sequence has length 43,
namely

0011001110010010100101001001010010100100111.

Many asymmetric motifs may be arranged to give sequential arrays with six-fold
symmetry. An example of period 91 is shown in Figure 12.

Arrays P and Q of co-prime periods p and g, say, at least one of which has six-
fold symmetry, may be composed to give a new array PQ of period pq. To compose
the arrays, suppose that P has six-fold symmetry and contains non-overlapping
motifs with six-fold symmetry. Choose two colouring schemes (with six-fold
symmetry) for the motifs of P, and colour them in accord with the arrangement of
Q. For example, to compose the arrays P of Figure 9(a) and Q of Figure 4, we
choose the colouring schemes shown in Figure 13 for the motifs of P. We now
colour the motifs of P according to the array Q, that is, ... abbabb ... along each
axis of symmetry of the array P. Figure 14(a) shows the composition in this order,
and Figure 14(b) the composition with P and Q interchanged.

All the arrays discussed so far have had either two-fold or six-fold symmetry.
Consequently their sequences read the same in either direction. But there also
exist arrays with three-fold symmetry for which this is not true, for example, the
arrays in Figure 15, which are derived in an obvious way from those of Figure 9
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Figure 11. Sequential cogwheel array of period 43.

and have the same periods, f(n) = 4n®—2n+1. The sequence of Figure 15(a) is
0010111110111 (another example with only isolates and 2-strings in one symbol)
and for Figure 15(b) is 000101110110111101111 (only 3-strings and isolates in one
symbol).

Figure 16 shows another array with three-fold symmetry, of interest in that,
provided the marked squares are deleted from the pattern, the white and dotted
hexagons form identical motifs. In this particular case, the motif is the symbol of
the Isle of Man, but other motifs are also possible in arrays with this property.

4. Unsolved problems

Besides the question concerning the uniform non-edge-to-edge tilings mentioned
at the end of Section 2, various other unsolved problems remain for the hexagonal
grid.

(1) Does there exist a family of binary arrays, such that if we took the union of
appropriately sized chunks from each array, we would have a balanced collection ?
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FIGURE 12. Sequential array with six-fold symmetry from asymmetric motif.

(@ )
Fi1GURE 13. Colouring schemes for the motifs of P.

(2) Does there exist a binary array which is balanced if certain rows are not
counted, that is, if certain rows are used simply to provide correct neighbourhoods
for the remaining hexagons ?

(3) How closely may a binary array approximate balance or, in other words,
what is the least possible wastage for one plane-filling array?

(4) In each of the above cases where the required array exists, can it be made
sequential ?
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®
FiGure 14. Sequential arrays constructed by composition; (a) period 39, composition PQ;
(b) period 39, composition QP.
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®
FIGURE 15. Sequential arrays with three-fold symmetry and period f(n) = 4n*—2n+1:(a) period
13, n = 2; (b) period 31, n = 3.
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: h L W
= { Y ¥ ¥ A
A X }\ s 0 KA'T{ T

FIGURE 16. Isle-of-Man array.

(5) Does there exist a balanced ternary array? Certainly the sequence
...012012... gives a sequential array, like a tricolour checkerboard.

(6) All the sequential arrays discussed in Section 3 have odd period, and we
conjecture that no sequence of even period exists. If so, then such an array cannot
even have equal proportions of the two symbols. Our only inkling of how to
attack this problem is as follows.

Suppose that in the array of Figure 9(a), we mark corresponding small hexagons
in each hexagonal motif, say the top left hexagon in each. In the horizontal
sequence, we have 1101110110000, with the marked 1 indicated. In the eleven
o’clock direction, the sequence becomes 1101110110000 and in the one o’clock
1101110110000, so that different 1s are marked in each sequence. However, if we
retain these 1s only, and consider the other twelve elements of the sequence to be 0,
we obtain a sequential array, complementary to Figure 8. Could this procedure be
adapted to prove that if a sequential array of even period exists, then one with
sequence 100...0 must exist? This would reduce the problem to dealing with this

2n—1
particular type of sequence.
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Finally, the most important question:
(7) For any of the three grids, how may we characterize an equivalence relation
for which a balanced binary array exists ?
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