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LIMIT TRANSITIONSFOR BC TYPE
MULTIVARIABLE ORTHOGONAL POLYNOMIALS

JASPER V. STOKMAN AND TOM H. KOORNWINDER

ABSTRACT. Limit transitions will be derived between the five parameter family
of Askey-Wilson polynomials, the four parameter family of big g-Jacobi polynomials
and the three parameter family of little g-Jacobi polynomials in n variables associated
with root system BC. These limit transitions generalize the known hierarchy structure
between these families in the one variable case. Furthermore it will be proved that
these three families are g-analogues of the three parameter family of BC type Jacobi
polynomials in n variables. The limit transitions will be derived by taking limits of
g-difference operators which have these polynomials as eigenfunctions.

1. Introduction. Recently, afiveparameter family of BC,-type Askey-Wilson poly-
nomials and a four resp. three parameter family of BC,-type big and little g-Jacobi
polynomials were introduced (cf. [K1] and [S1]), and full orthogonality was established
in both cases with the help of specific second order g-difference operators.

In the one variable case (BC;), limit transitions are known from the Askey-Wilson
polynomialsto the big resp. little g-Jacobi polynomials, aswell asalimit transition from
big g-Jacobi polynomials to little g-Jacobi polynomials. These limit transitions show
how the three families fit into the hierarchy of the Askey-Wilson scheme. Furthermore,
the one variable Askey-Wilson polynomials and the big resp. little g-Jacobi polynomials
are g-analoguesof the classical Jacobi polynomialsin the sensethat the polynomialstend
to the Jacobi polynomialswhen g tendsto 1 (up to apossible dilation and translation).

The main purpose of this paper isto generalizethese limit transitionsto the BC,, case.
Explicit expressions of the polynomials, which immediately yield the limit formulas
in the one variable case, are no longer available for n > 1. Instead, we will derive
limit formulas for the multivariable polynomials from limit formulas for g-difference
operators having these polynomials as eigenfunctions and from limit formulas for the
corresponding eigenvalues. Crucial for the proof of the limit formulas is (2.2), which
expressesthe polynomials in terms of the operators and the eigenvalues.

Macdonald introduced in [M1, Section 4] techniquesto construct multivariable poly-
nomials, and to prove full orthogonality of these polynomials. In Section 2 we will
describe these techniques in a slightly more general setting. In this setting, the tech-
nigues can immediately be applied in the case of BC,, type Askey-Wilson polynomials
and the BC,, typebig resp. little g-Jacobi polynomials. We will introduce thesethree fam-
iliesin Section 3, aswell asthethree parameter family of generalized Jacobi polynomials
(cf. [V]). Generalized Jacobi polynomials are related with BC,, type Heckman-Opdam
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polynomials by a suitable change of variables. In Section 4 we give for each family
a selfadjoint, triangular operator. In each case, we compare the eigenvalues which are
related in the natural BC,, type partial order. In Section 5 we will prove limit transitions
from BC, type Askey-Wilson polynomials to BC, type big and little g-Jacobi polyno-
mials and a limit transition from BC,, type big g-Jacobi polynomials to BC, type little
g-Jacobi polynomialsfor parameter valueswhich satisfy certain specific conditions. The
results of Section 4 give then an explicit subset of the parameter domain for which these
conditions are satisfied. We will provethat the BC,, type Askey-Wilson polynomialsand
the BC,, type big and little g-Jacobi polynomials are g-analogues of generalized Jacobi
polynomials (with a possible dilation and translation in the variables). In Section 6 we
will discuss possible extensions to the whole parameter domain of the limit transitions
from BC, type Askey-Wilson polynomialsto BC, type big resp. little g-Jacobi polyno-
mials and the limit transition from BC,, type big g-Jacobi polynomialsto BC,, typelittle
g-Jacobi polynomials. Furthermore, we make some additional remarks about the limits
g T 1 of the big and little g-Jacobi polynomials.

NOTATIONS AND CONVENTIONS. Throughout this paper N = {1,2....} will be the
natural numbers and N will denote the set of natural numbers together with 0. The
convention will be used that TI¢, & = 1if k < I, k.| € N. If there is no confusion
possible, the dependenceon the parametersa, b, ¢, d, g, t will be omitted inthe formulas.
The concept of selfadjoint operator will only be used in the formal sense: a hermitian
linear operator with respect to an inner product on a vector space.

2. Techniques for proving full orthogonality. The next propositions summarize
in essence the method introduced by Macdonald in [M1] to construct his polynomials
for general root systems and to prove full orthogonality of these polynomials. For
convenience, we will give proofs of the propositions.

We start with a proposition concerning triangular operators.

ProOPOSITION 2.1. Supposethereisgiven alinear spaceV over C with alinear basis
{e\/X €1} for V, | some index set and there is given a partial order < on | such that
I(A) = {u € 1/p < A} isfinite for all A € I. Supposethat D:V — V is a triangular
linear operator with respect to the given basisand partial order, i.e.

2.1 Dey,=> cy .80 YAEL

<X
for certainc, , € C. Define
D—- Cl. 1
2.2) Q = (H 7”)53
< Cax — Cup

for XA € | satisfyingc, , # ¢, for all ¢ < A. ThenQ, €V satisfies
(@ Q) =e,+>,<) k&, for certaink, , € C;

(b) DQ, =c¢,,Qs.

These two properties characterize Q, uniquely.
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PrROOF. Fix A € | suchthat c, , # c,, for al p < A. Thetriangularity property of
D shows that Q, satisfies property (8). Let V), C V be the finite dimensional subspace
spanned by {e,/u < A}. Then D maps V, into itself. Denote D, for the restriction of
D to V,. There exists a total order < on I(\) suchthat u < v if u < v (definey < v
if #(u) < #(v) for p,v € 1(\) and extend < to a total order on I(\)). This implies,
together with (2.1), that

det(¢1d—D,) = JI (€ — Cu)-
<X
HenceIl,<\(D — ¢,,,.) = 0onV, by the theorem of Cayley and Hamilton. In particular,
[I,<x(D — ¢, )& = 0,50 DQy = ¢, ,Qy. Theroot ¢, , of the characteristic polyno-
mial det(¢ 1d—D,) has multiplicity one, hence D, has a one dimensional eigenspace
corresponding to eigenvaluec, . So (a) and (b) characterize Q, uniquely. ]

Adding to the property that D is triangular the property that D is selfadjoint with
respect to some inner product, gives

PROPOSITION 2.2. Keep the notations and assumptions of proposition 2.1. Suppose
furthermorethat thereisgiven aninner product (-, -) onV, suchthat D is selfadjoint with
respectto (- . -). Definea new basis{P, /A € 1} of V by the following two conditions:

(1) P, =g, +3,<) d, e, for someconstantsd, ,,
(2) (Py,e,) =0for p <A
Then we have
(a) DP, =c, P, VA el
(b) P, =Q, for A €| satisfying ¢y » # c,.,, for all g < A.
(©) (Py.Pu)=0if X <porp<AorifA#pandc,, 7#C.,.

ProOOF. (a) Fix A € I. Using the triangularity of D and the explicit form of P,, we
have that

DP, =cy, e+ > g.€,

<A

for certain g, € C. Furthermore we havefor all < A that

(DP,.e,) = (P,.De,) = > ¢, (Py.&,)=0.

v<p

If ¢y, # Othenit followsimmediately that DP) /¢, , satisfies the defining conditions of
P,. If Ca = 0, then
<DP)\ DP)\> = Z m(DP)\ eu> = O,
<X

so then DP, =0=c),P,.

(b) It followsfrom (a) that c, , € R. Hencewe have, again by (a), that (Q,.P,) =0
for al p < A. Thus Q, satisfies condition (2). Q, satisfies also condition (1) according
to Proposition 2.1, hence Q,, = P,.
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(c) Casepu < Aresp. u > X isimmediate from the definitions, while the case u # A
andc, , # ¢, followsfrom

(2.3) (€ — Cuu)(Ps.Py) =0

which is a consequence of the selfadjointness of D and (a). ]

In the applications of these propositions, the operators and inner products usually
depend on real or complex parameters, and continuity resp. rationality arguments in
these parameters are sometimes needed. The following two propositions deal with the
dependenceof P, on an arbitrary parameter set. We will use the same notations asin the
first two propositions but we assumethat theinner product, and the selfadjoint, triangular
operator depend on a parameter s € J, with J an arbitrary topological space. Hence, for
fixed s € J, we denote (- . -)s for the inner product on V, Ds for the selfadjoint (w.r.t.
(-,-)s) triangular (w.r.t. {e,/p € |}) operator, ¢, ,,(s) (1 < X) for the coefficientsin the
expansion of Dse, W.r.t. the basis {e, /i € 1}, Py(s) (A € 1) for the new basis defined
with respect to (- . -)s, and d ,(S) (© < X) for the coefficients in the expansion of P, (s)
with respect to the basis {e, /n € 1}.

PROPOSITION 2.3. Supposethat for all A. ;. € |, the functionss— (e, €,)s:J — C
are continuous. Then:

(@) Thefunctionss— d, ,(s):J — C are continuousfor all X, p € 1.

(b) Supposethat theset {s € J/c, (s) # ¢,...(9)} isdensein J for all A # 1. Then

(24) (Py(9):Pu(9)s=0 VseJifu#A
PrROOF. Letv < X. Wehave

0=(Px(9).&)s=(er.8)s+ Z/\ dyu(9)(€1 & )s.
n<

For fixed A € | thisgivesfor every s € J aninhomogeneoussystem of linear equationsin
dy () (» < ). Sincethee,’sarelinearly independent, wehavethat det((e,, €,)s),..<) 7
0 for al s € J. Hence the system has a unique solution for every s € J, and Cramer’s
rule together with the continuity assumption on (e,, e,)s impliesthat the solution d, ,,(s)
(1 < A) dependscontinuously on s.

(b) Part (&) impliesthat (P, (s), P,(s))s dependscontinuously on's, so (b) followsdirectly
from Proposition 2.2(c). ]

Let us fix some notations and conventions about rational functions. Let ts., ..., be
independent (complex) variables. Let C[t] bethe C-algebraof polynomialsinty,..., t,
and C(t) thefield of rational functionsinty, ..., tm over C. For each h € C(t), define the

domain of h by '
dom(h) := {t® € C™/3p. q € C[t] such that h = p/qand q(t°) # 0}.

dom(h) C C™ is open and dense, and h defines a continuous function from dom(h) to C
by specialization.
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DEFINITION 2.4. Let J C C™ open, or J C R™ open. Consider R™ as subset of C™
in the usual manner. A function f:J — C is said to have a rational extension if there
existsarational functionf € C(t) suchthat f and f coincide as functions on J N dom(f).
Clearly, if f exists, theniit is unique, and it will be called the rational extension of .

PROPOSITION 2.5. Let J bean open subset of R™ or an open subset of C™. Assumethat
the functions s — c, ,(s): J — C have rational extensions¢, , for all < \. Suppose
that €, » 7 €, asrational functionsif i < A. Define a dense open set dom, C C™ by

dom, := {s€ W, /€ () # C.u(9) Vie < A},

with
W, = (] dom(, ).

n<vr<i

Then

(@ Thefunctions s — d, ,(s):J — C have rational extensions am for all p < A.
The domain of am containsthe set dom, .

(b) The functions P, (s) and the equation DsP, (s) = ¢ (S)P () remain meaningful
and valid, by continuation of rational functions, for s € dom,.

() Supposethat €, # €,, asrational functions for A, € I, p # A, and that
s+— (ey.e,)s:J — Ciscontinuous for all A\, € 1. Then (P,(s). P,(s))s = O for all
seJif A # pu.

Proor. (&) Letx, , (0 <v < \) beindependent variables. Proposition 2.2(b) gives
that there are polynomiasp, , € C[{x,,,},<,<,] such that

pA.u({CI/,ﬂ(S)}ﬂSVS/\) ) e
"

(25) Pk(s) =et Z (HV<)\(C)\_)\(S) - Q/.I/(S))

<
for s € J such that ¢, 5(s) # C,.,.(9) for al v < A. Hence for al u < A, the rational
functiond, , given by
7 = px\-/l({év-ﬂ}pivék)
2.6 dy, = =—=————==—"=
(26) M L@ —Cw)

isarational extension of d, ,: J — C, and the domain of aM contains dom,,.
(b) isclear.
(c) followsfrom Proposition 2.3(b). ]

REMARK 2.6. Note that the polynomials p, ,, in (2.5) and (2.6) are completely deter-
mined by the partially ordered set (1. <). They do not depend on the choice of the inner
product (- . -)s or on the choice of the basis vectors e,. Furthermore, the polynomial p; ,,
can be chosen homogeneous of total degree#{v € | /v < A}.

REMARK 2.7. For the limit transitions from BC, type Askey-Wilson polynomials to
BC, type big resp. little g-Jacobi polynomials we will apply these propositions for J
being an open subset of R. In this case, note that if a continuous function f: J — C has
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arational extensionf, then J c dom(f). Thisimplies that if we have al the assumptions
of Proposition 2.5 with m = 1, then the rational expression d, ,(s) (see (2.6)) coincides
with the function d, ,(s) forall se Jand all 1 < A.

3. Families of BC, type orthogonal polynomials. In this section, we fix aq €
(0, 1). Let P* be the partitions of length < n, so

(3.1) P = {A= (1. An)/ AL > - > A >0},

Define a partial order on P* in the following way: p, A € P* then
(3.2 H‘S)‘@ZMJ—SZ)‘J i=1....n

ReEMARK 3.1. Choosefor the root system R = R" U (—R") of type BC,, the positive
roots R* by

(33 R'={e}Ll,U{e £ glignU {26}y,

with {g}[L; the standard orthonormal basis for R", then P* coincides with the set of
dominant weights,and A > p for A, u € P iff A — u isasum of positiveroots (cf. [K1]).

Let A = C[xy..... Xn] be the C-algebra of polynomials in the independent indeter-
minatesxy, . .. Xandlet A= C[x, ..., x:1] be the algebra of Laurent polynomiasin

Xisonns X». The Weyl group S corresponding to the root system of type A,_1 isisomor-

phic to the permutation group of {1.....n}, so it actsin an obvious way on Nj. This
induces an action of S on A. The algebra of symmetric polynomials, denoted AS, is the
subalgebraof A consisting of S-invariant polynomialsin the variables s, . . . , X,.

The Weyl group W corresponding to the root system of type BC,, isisomorphic to the
semidirect product of (Z /2Z)" and S. It actsin an obviousway on Z". Thisinduces an
action of W on A. Denote A for the subalgebraof A consisting of W-invariant Laurent
polynomialsinthevariablesx;, ..., Xn-

Since Card(Sn N P*) = 1 for all n € NJ, we have that the symmetric monomial

functions {m, /A € P*} defined by

m(x) = > x*,

HESA

with x* = x;* ... xtin, form a C-basis for AS. Similarly, the monomials {m, /A € P*}
defined by
m) = > x

peEWA

form a C-basisfor AV, since Card(Wz N P*) = 1 foral z € Z".
Letu,v € R, u < v. Define the Jackson (g-)integral of f over [u, V] by

[ 100dex = [ F09dex— [£09 dox.

[ 109 dgx = (1~ @) 3 F(uefwel
! k=0
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provided that the infinite sums converge absolutely. If f is continuous on [u, v], then
. v Y
(3.4) lim /u f(X) dox = /u f(x) dx,

with dx the L ebesgue measure. The g-shifted factorial is defined by

B (T ¢ 5
(U, q)V L (qvu; q)ooq

(U 6)oo 2= [1(1 — uc).
k=0

for u.v € C suchthat g'u # g for al k € No. If v € No, then thisyields
v—1 K
(U = k1_10(1 — ug).

which we will use as a definition of (u; q), for arbitrary v € Ng, u € C. Denote

r
(Us oo U Q)y = ]_{(Uj: Av-
i
and denote ( )
Ugy.nns Ur+1 _ & U, ... 5 U1, Ok
r+19r Vi..... v 4 kZ::o (Vs -5 Vi, O Ok

for the g-hypergeometric series.

We now first define the BC-type Askey-Wilson polynomials (cf. [K1]). Define the
weight function 6(x; a, b, ¢, d; g, t) by
(3.5) O(X1s v v X)) =8 (Xge .. x0T 0L,

n (?; q) (%, XX )
3.6 55 (%) = i Voo 2K 2 A Vo
(36) ) .g (@i, b, €3, A%5 Qoo 1<ieci<n (DXL, 16045 @)oo

Assume that |al, |b|, |c|, |d| < 1, and that if a, b, c,d are complex, then they appear in
conjugate pairs. Assume also that the pairwise products of a, b, ¢, d are not equal to 1.
Denote Vaw for the set of parameters (a, b, ¢, d) which satisfy these conditions. Denote
du:=du; - - - du, and €' := (€', ... .€%). Supposet € (0. 1), then

(3.7) (fQawes= [ [ f(€)9EsEYdu f.ge A"

is ahermitian inner product on AW,

DEFINITION 3.2. Let(a, b, c,d) € Vaw andt € (0. 1). The Askey-Wilson polynomials
{PiW(x;a,b.c.d;q.t)/ A € P*} are defined by the following two conditions:

(1) PV = My +5,cnep WO, certain dW(t) € C

(2 If p < Xandp € P, then (PAW(t). M, )aw, = 0.
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For the one variable case, there is no t-dependence, and explicit expressions of the
Askey-Wilson polynomials {PAV(x; a, b. c. d; @) /m € No} are given by

(ab. ac, ad; Q)m g™ g™ tabed, ax, ax !

Wy, . —
(38) Pﬁ\.] (X, a, b, C, d, q) - am(quade; q)m4 3 ab. ac. ad 10,9

Usually the Askey-Wilson polynomials are written as function of X*—zfl and normalized
differently (cf. [AW]).

For the BC,-type big g-Jacobi polynomials, we define an inner product on AS as
follows (cf. [S1]). Let ¢,d > 0, and

ae (;-gé) be (;—Sé)

ora=czb=—dzwithze C\ R. Denote Vg for the set of parameters (a. b, c. d) which
gagisfy these conditions. Fix some (a. b, c.d) € V§. Define (-, -)3>¢¢ for t € (0.1) on
A° by:

(3.9) (f.Q)es = ;)<f, oisr f.geAS,
Z

with (f. g); .8 given by the following multidimensional Jackson integral:

c txXq tx_1 0 at %41 Ot X1 N
oot oo Lo g o e oy 1000w (6 1) dx,
Jx1=0 Jx=0 J%=0 Jxp=—dt"It Jx=—dt") J¥p=—d

with dgX := dgXn - - - dgX1 and weight function w;(x; a. b, ¢, d; g, t) given by

oo (T _(@%/C =0 /di Q) )
(3.10) ey =d (.131 (gax; /¢, —abx; /d; q)oo) A9.
witht =g and
N = A(X)(KB_M (03 a),
(3.11) X j<k1<1m§n | 2 (ql‘T:—;; a), -

A(X) = TIij(x — %) the Vandermonde determinant, and with df = df(c. d) a positive
constant given by

1—7y, 1. _d
312) d = 1@ Vo Dorms -y = emoiony,
( ) ) lgkgmgn |ym(| (95" Yimk; A)2r—1 Yo c g
k<j
DEFINITION 3.3. Let (a.b.c.d) € Vg and t € (0. 1). The big g-Jacobi polynomials
{PB(:;a.b,c.d;g.t)/\ € P"} aredefined by the following two conditions: A € P*, then:
(1) PB() = my + Z,cnperr d, (M, for somed® (1) € C,
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(2) (PB(t),m,)g: = 0if u < A, p € P*.

For the one variable case, there is no t-dependence, and explicit expressions for the
big g-Jacobi polynomials {PE(x; a, b. c. d; d) /m € No} are given by (cf. [AA2])

g™ g™!ab, gxa/c.
ga.—qgad/c

(92; 9)m(—0ad,/ c; m
(g™ *ab; Q)m(a/c)™
Usually the big g-Jacobi polynomials are normalized such that the explicit expressionis
given by only the 3¢, part of (3.13).

The little g-Jacobi polynomials are defined as follows (cf. [S1]): Let 0 < a < é and
b< % and denote V! for the set of parameters (a. b) which satisfy these conditions. Fix
some (a. b) € /. Definefor t € (0, 1) ahermitian inner product (- . >|_ nat ON AS by

(3.13) P2(x;a, b, c. d;q) =

392

(3.14) (.o = /10 /tx0 . /X:x“o )TV dgx g € AS
with weight function v(x; a, b; g, t) given by

(3.15) v(x;t) = (]f[l ((qxl q);’o )A,,(X). (@a=q*%t=q)
(3.16) A, (X) = AKX) 1§i1;[j§n |xi|27‘1(q1‘7 ) ,q)2 L

DEFINITION 3.4. Let (a.b) € V! and t € (0.1). The little g-Jacobi polynomials
{PL(-;a.b;q.t) /A € P*} are defined by the following two conditions: A € P*, then:

(D) P =my +Ycrpep ds, (hm, for someds ,(t) € C,

2) (P(t),m, )L =0if <\, p € P

For the one variable case, there is no t-dependence, and explicit expressions for the
little g-Jacobi polynomials {PL(x; a, b, c. d; g) /m € No} are given by (cf. [AA1L]):

—)"qE)(ga; m , [q~™ g™ ab

(3.17) PL(x a b;q) := (@@, g 2 qa

100X

Usually the little g-Jacobi polynomials are normalized such that the explicit expression
isgiven by only the 2¢1 part of (3.17).

Finally, we define two families of ‘classical’ BC,, type orthogonal polynomials. Let
o, 3 > —1andT > 0. Denote V; for the set of parameters («, 8, 7) which satisfies these
conditions. Define an hermitian inner product (-, -)$:” on AS by

_1

a [3

.../X:.:Of(x)@VJ(X; a,B;n)dx f.ge AS

with vy(x; . 3;7) = (Hi“:l(l — %)) A7

DEFINITION 3.5. Let (o, 8,7) € Vj. The generalized Jacobi polynomials
{P{(%; ., 3;7) /A € P*} are defined by the following two conditions:
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D) Pl(ee B;7) = My + e &, (o, 85 7)m, for somed; (o, 3;7) € C.
@ (Pi(e.8;7).m,)5Y = 0if p < .

In the one variable case, the Jacobi polynomials {P},(x; o, 3)/m € No} are indepen-
dent of 7, and are explicitly given by

(3.18) P‘,]n(X; a,f) = (=)™ + Dim {—m., m+a+p3+1

S T om X
(M+o+B+D)n° * a+1 ’
with

2F1

(a)n(b)n
U ERE

the hypergeometric function and
@n=a@+l)---(a+n—1) (neN)

the Pochhammer symbol, (a)p := 1. Usualy the Jacobi polynomials are written as
functions of 1 — 2x and normalized differently (cf. [EM], Section 10.8).

The generalized Jacobi polynomialsare closely related to the Heckman-Opdam poly-
nomials of type BC,,. The BC,, type Heckman-Opdam polynomials are defined asfollows
(cf. [HQ], [H1]). We will use the notation introduced in Remark 3.1. Denote (-, -) for
the standard hermitian inner product on C", so (e, ) = é;j. A multiplicity function
k is a function k: R — C such that k, = ky, for dl o € R, w € W. k = (Ky)aer
is completely determined by ki := Ke,, ko 1= Keg+e, and k3 := ko, SO We will some-
times denote k = (ki, ko, k3). Let Vyo be the set of parameters (ky, ko, k3) such that
ki +ks > —%. ks > —% and ko > 0. Define ahermitian inner product on AW for k € Vo

by

21 21
(o= [ - [ TEaEN8E:K)d8 f.ge A,
with €’ = (€%, . ... €%) and weight function

50K = [ (2" —eH=ye

aeR

= c(k)f[l(sinz(ej/Z))k1+k3( 02(6;/2)) T1 |Sin(61/2) — Sin(0m/ 2)[2
=

I<m
with c(K) = 4ntka2k)ynn-Dk;

DEFINITION 3.6. Let k € Vuo. The BC, type Heckman-Opdam polynomials
{PO(x; k) /A € P*} are defined by the following two conditions:

(1) PO(K) = fiy, + cpuep dYQ(K)M, for some diO(k) € C,

(2) (PFO(K), M, )k =0if p < A

Note that
my (sin?(0/2)) = (—4) Py (€%) + 3" by, M, (")

n<X
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for certain constants b, ,,. A calculation shows then that the defining conditions for Pi
(Definition 3.5) witha = ky+ks— 3. 3 = ks— 3 and r = k becomethe defining conditions
for PYO(k) (Definition 3.6) under the change of variablesx; := sin?(6;/2) (i = 1,...,n),

up to the constant (—4)*|. So the relation between Heckman-Opdam polynomials of type
BC, and the generalized Jacobi polynomialsis given by

(319 PO K = (4IPS0 2k ks — 5k — 5 k)

for X € P*, with sin?(8/2) := (sin?(61/2), ... .sin?(6n/2)).

In the one variable case, we have the following limit transitions: m € N, then

’ e(cd)z\"
L”?)( o )
P cqbate/ o ket~ el @/0) —catbie/ )
e(cd)?
(3.20) =PB(x;a b, c,d;q)

for (a.b.c.d) € V3,

(3.21) Iim(%)mPﬁW(ﬂ: eqib. e 'ql, —q, —qia q) = PL(x; a. b; 0)
e—0 q§

for (a,b) € V! and

(3.22) lim PS(x; b.a. 1,d; q) = P(x a. b; q)

for (a. b) € V{ (cf. [K2],[K3] and [S1]). Thesethree limit transitionsinducethe hierarchy
structure between these three families of orthogonal polynomials within the Askey-
Wilson scheme. For the limit g tends to 1, we have the following limits in the one
variable case:

w9 g ey g J(1+C2_C(X+X1). )
(3.23) IATTP{; (x,c. s ,d,q)—k,an (1—d)(1—02/d)’a'ﬂ

fora,>—landc,d#0,d# 1, @ # dwith ked := (@2 /Dym

DBy o o = (L Moy (€ X,
(324 limPh(xg .¢’.c.d;q) = (—(c+ ) Pm(c+d,a.ﬁ> m e No
fora,f > —1andc.d > 0, and
(3.25) I(QTTPE(X:q“,qB;q)=P3n(x;oc.6) m e No

for a, f > —1. Theselimit transitions follow immediately from the explicit expressions
for the one variable orthogonal polynomials ((3.8), (3.13), (3.17) and (3.18)). We will
generalize these limit transitions to the BC,, case.
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4. Selfadjoint, triangular operator sand their eigenvalues. Inthissection,fixqg €
(0, 1). For each family of BC;, type polynomials defined in Section 3, we will introduce
aselfadjoint, triangular operator. By application of the propostions of Section 2, we can
concludethat the polynomialsarejoint eigenfunctionsof the operator. Proposition 2.3(b)
gives an aternative description of the polynomialsfor a subset of the parameter domain.
This turns out to be crucia for the proofs of the limit transitions. In each case, we will
investigate this subset of the parameter domain more carefully at the end of the section
by comparing eigenvalues of the operators which are related by the partial order.

We start with defining the selfadjoint, triangular operatorsin each case.

Define a second order g-difference operator D%, by

(4.1) (Dawf)(¥) = i;(lﬁﬁw(x)('rqﬁ — ) + SN (Tyaif — f)(X))
for f € AW, with
(4.2) (Tqif)) = F(Xe, .o X1 OXis Xivts oo - Xn)5

the g-shift in the i-th component, and functions y/"(x;a,b.c,d;q.t) and
oW (x;a,b. c,d;g.t) given by

_ (1 —aq)(d —bx)(T — o)1 — dx) (1 — txx)(1 — txixi )
(43) v09:= 11— 0d) 0@ g -

(4.9) g ) = ot o).
We have (cf. [K1], Lemmab5.2):

ProOPOSITION 4.1. Let A € P*. For arbitrary a,b,c,d.t € C, there exist constants
chw(a b, c,d;q.t) € C (u < X) depending polynomially on a, b, ¢, d, t and rationally on
g, such that

Dawifm = > C'm’(t)mu-
<A
The leading term ¢} (a, b, ¢, d; g, t) will be denoted by &"(a, b, c. d; g, t) and is given
by
n . .
(4.5) a" := > (g tabedt™ 7Ny — 1) + 17 Hg N — 1)).
i1

Thenature of the dependenceof c’j"X ona,b, ¢, d, t, gfollowsby inspection of the proof
of Lemma5.2in [K1]. In [K1] it is also proved that D35 is selfadjoint with respect
to(-. )i\?\fc’]‘.’t if (a, b, c,d) € Vaw andt € (0, 1), and that (fh,, M, )aw, iS continuousin t
fort € (0,1), for al A.u € P*. If (a,b,c.d) € C*withabed ¢ {1.q71.q2% ...} then
we have af"(t) = &,"/(t) as polynomialsin tif and only if A = 1. So application of the
propositionsin Section 2 showsthat PA™ (t) is an eigenfunction of Daw,: With eigenvalue
a\(t) for al t € (0. 1), and it gives full orthogonality of the polynomials.
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For the big g-Jacobi case, we define a second order g-difference operator Dg’b*_f‘d by
replacing in the expression of Daw (formula (4.1)), v by B and ¢/ by ¢F with

vB(x;a, b, c,d;q.t) given by

n— d —tx
Tma o )

and ¢B(x; a, b, c, d; g.t) given by
Brox c d Xi — X
o = (l - Z) (l+ Z) Il#li pa—

For the little g-Jacobi case, define DY, := D31, so denote

Yr(xa,b;g,t) ;= yB(x; b, a 1, 0;q.t),
Fca b;a.t) = ¢P(x b,a 1,0;q,t).
We have (cf. [S1]):

PrROPOSITION 4.2. Let \ € P*.

(1) For arbitrary a,b,c,d,t € C, there exist constants c?_ﬂ(a., b,c.d;g,t) € C
(1 < \) depending polynomially on a, b, c. d. t and Laurent polynomially on g, such that
DB-tm)\ = Z CE,;[(t)mﬂ'
<A

The leading term ¢, (a. b. ¢. d; g, t) is independent of ¢ and d and will be denoted by
a¥t(a b; g, 1). & isgiven by

(4.6) &t = i(qath“—J—l(qN — D+t g - 1)).

=1

(2) For arbitrary a,b,t € C, there exist constants c';_“(aﬂ b;g,t) € C (1 < N)
depending polynomially on a, b, t and Laurent polynomially on g, such that

DLy = > ¢, (Hm,.
<A

We havec} | (a. b; g.t) = a*(a, b; g. t).

Clearly part (2) of the proposition is adirect consequence of part (1), sinceit isclear
that

@7 ¢ .@bat=c, (b.aloaqt). p<i

The Laurent polynomial dependence of c§ . and ct .. On g was not explicitly stated in
[S1] but follows by inspection of the proof of Proposition 4.2 in [S1].
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In [S1] it is also proved that D3¢ is selfadjoint with respect to (-.-)g2>¢¢ if

(ab.c.d) € V§ and t € (0.1), and it is proved that Dﬁz.t is selfadjoint with respect
to <'.~>ﬁ27t if (ab) € Vl@andt € (0,1). Furthermore, (my,m,)g; and (my,m, )i
depend continuously on t for t € (0.1) for al A.p € P*. If (a.b) € C? such that
ab ¢ {q72.q7%....} then we havethat &*"(t) = aB!(t) as polynomialsin tif and only if
1 = A. So we can apply the propositions of Section 2. This givesthat P(t) resp. PL(t) is
an eigenfunction of Dg; resp. D, ; with eigenvalue aE‘L(t) foralt € (0, 1), and it proves
full orthogonality in the big resp. little g-Jacobi case.

For the generalized Jacobi polynomials, denote 9; := & Define a second order
differential operator D§’ by

n
DsY = 2(0@ —1xa2+ (@+a+B)x — (@ +1)9
J:
(4.9) +2r(% — 1)x,-A(x)*1(ajA)(x)aj).
We will use the notations and definitions of Remark 3.1, and we denote (-, -) for the
standard inner product on C", so (e, §) = 6; ;. Define p(c, 3,7) € C" by
1 n
(4.9) pla, B.7) = 5 Y(a+B+1+2n—i))e.
i=1
We have the following proposition
ProPOSITION 4.3. Fix A € P*. For arbitrary o, 3,7 € C there exist constants
Cf\.“(oc. B;7) € C (1 < A) depending polynomially on «, 3 and 7, such that

— J
Dym, = Z C)\.umll’
<A

Theleading termc] | («. 3; 7) will be denoted by aj (e, 3; 7). a) is given by
(4.10) ay(a, 3;7) = (A A+ 2p(a, 3,7)).

PrROOF. This can be proved by a straightforward calculation (compare with [V],
p. 817). "

Furthermore, we havethat DS is selfadjoint with respectto (- . -)5 for all (. 8.7) €
V; (compare with [V], p. 816, Theorem 4.3. Be aware of the fact that the change
of variables x; = cos(6;) in the proof of Theorem 4.3 in [V] should be replaced by

X; = €03(26;)). Thefirst part of Proposition 2.2 gives that
(4.11) DS P (e, Bi7) = & (cr. 83 1)PR (cx. ;)

foral A € P*and(«, 8,7) € V;. Full orthogonality of thegeneralized Jacobi polynomials
can not be proved with the help of the single selfadjoint, triangular operator D;. Full
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orthogonality can be established by proving the existence of a commutative algebra
consisting of selfadjoint, triangular differential operators generated by n independent
differential operators. Then for fixed («, 3,7) € Vj and fixed A\, u € P* with A # p,
one can aways find a differential operator in this commutative algebra such that its
eigenvalue for P} (a. 3;7) is different from its eigenvalue for P, (a. 3; 7). With the help
of this operator, it follows that (P («, 3; 7). p;(O(.ﬂ;T»if =0 (see[H1], [HO] and [H],
in these papersit is done for Jacobi polynomials associated with arbitrary root systems).

We finish this section with comparing the eigenvalues related by the partial order <
on P*. We use the notation introduced in Remark 3.1. Denote Q* := No- span{R*} for
the positive cone of the root lattice. The set Sof simple roots for R* is given by

(4.12) S:={e —gu}l U{en.

For r € Q*, there exist unique ks(r) € No(s € S such that r = Y ssks(r)s. Define the
height of r € Q* by ht(r) := Yssks(r). Denote R* for the set of positive roots of the
forme and g — g (i <j).

PrOPOSITION 4.4. Let . A € P*, with u < X. Then we can walk from x to A while
staying within P* by successively adding an element of R*.

PROOF. Itissufficientto provethat for arbitrary . < A, thereexistsar € R* such that
p+ao € P and p + o < )\, because induction with respect to ht(\ — p) will then give
the desired result. So fix pu, A € P*, suchthat i < \. Write

n—1
A== (8 — 6+1) + Can,
i=1

with ¢; € No. So we havethat \q — px = cc — g fork=2,..., nand \; — pu1 = Cy.
Furthermore we have that
i
Z()\j_ﬂj)zci i=1..., n.
71

Let{cp,..., Cq-1} (p < g) beastring suchthat ¢; > Oforj =p,.... g — 1 and such that

Cp-1=0(rp=1)andcg=0(rg=n+1). Then up-1 > Ap-1 > A\p > pp (0Orp=1
and )\p > ﬂp) Ejnd/,l/q > )\q Z Aq+l Z Hag+1 (Orq: I’l+1,~0rq: n and Hq > )\q)&)
a=6,— € € R doesthejobforg<n+1,anda =g, € R forqg=n+1. .

REMARK 4.5. It is not always possible, if A > p, to go within P* from p to A
by successively adding a simple root. For example, take 4 = (0,0) (n = 2) or p =

(s .- pn) With g =--+ = pp (n > 3).
Thefollowing proposition extendsthe result in ([vD], Lemmab.1) to alarger param-
eter set.

PROPOSITION 4.6. Fix A, u € P* with . < X. Then
a"(a.b,c.d;q.t) < &¥(a.b.c.d;q.t).
for all a, b, c,d,t € C satisfying abcd € [—q, 1) andt € (0. 1).
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PrOOF. According to Proposition 4.4, thereexistsasequence X = A, D A0 =
pinP*suchthat A(-D — X0 e R fori=1,.... j. Since

i
AW AW _ AW AW
ay —a, =) (A —a&n)
i=1

it will be sufficient to prove the proposition for i < A with A — u € R*.

CAsE (1). Suppose A — i = g for somei € {1,....n}, so \j =y forj # i and
Ai=pi+1> 1 Then

a(a,b.c.d;q.t) — &V(a. b,c,d; g, t) = (—q 2abedt*™ g + g )(L — )t T,
so in this case we have that &}"V(a. b. ¢, d; g.t) > &}(a. b.c.d;q.t) for all t € (0. 1) if
abcd < 1.

CASE (2). Suppose A — =g — g forcertainl <i <j < n, 0\ =y +1,
Aj = pj —land A\ = for k Z1,j. A calculation givesthat

a(@b.c.d;a.t) — V(@ b.c.d;g.t) = (1— gt gL — g
x (1 +abedt?™ g,

Sincei < j and ;i > y;, we have that &"V(a, b, c.d; g.t) — &%(a.b.c.d;q.t) > 0 for
alte (0.1)if abed > —q. ]

As an immediate consequence, we have

PROPOSITION 4.7. Fix A, u € P* with p < A,
Then
a®(a b;q.1) < P (a.b;q.1)

for all a.b.t € C satisfyingab € [-q~1,g"?) and t € (0. 1).

Comparing the eigenvalues related by the partial order in the case of generalized
Jacobi polynomials, gives:

PROPOSITION 4.8. Fix A\, u € P* with p < \.
Then
aﬂ(a.ﬂ;T) < a)(a.3;7)

for all (o, 8,7) € V.
PROOF. There exists asequence A = @ @, . A0 =4 in P* such that A(—9 —

AD € R foralli=1.....j (Proposition 4.4). Since

J ] X . .
(A A +20) — (p, p +2p) = ;«A"*”., A +20) — (A0 A0 +2p)),
1=

it is sufficient to prove the proposition for u. A € P* with A — p € R.
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CASE(L). A—pu=g,50)\ =pi+1>1and )\ = pu fork #Zi. Then
A=A +p)=2)—1>1,
and (4.9), together with the definition of V3, implies
(N — 1, 20(0, B, 7)) =+ B+ 1+2(n—i)r > —1.

So (A A+ 2p(a, B, 7)) — (s o+ 2p(e, B, 7)) = (A — p, A + pu + 2p(ex, 3, 7)) > 0.

CasE(2). A—p=g—gforcertanl <i<j<nThenk =pu+1>pj+1=X+2
and A\ = ux for k #i,j. Then we have that

A=A +p) =20\ —X\)—2>2,

and (4.9) implies
(N — 1, 20(ee, 8.7)) = 2(j — i) > 0,

sincet > 0. S0 (A, A + 2p(a, B.7)) — (i, 1 + 2p(c, B, 7)) > 2. "
5. Thelimit transitions. For (a.b) € C?and A € P*, define

(1)  J(ab)={te(0.1)/a @bat) #a (abgt) foralpu <A}

Inthissection, wewill generalizethelimit transitions from Askey-Wilson polynomialsto
big and little g-Jacobi polynomials and a limit transition from big g-Jacobi polynomials
to little g-Jacobi polynomials ((3.20), (3.21) and (3.22)) to the multivariable case (BC;)
for parameter values a. b, ¢, d. t with (a. b, c.d) € Vg resp. (a.b) € V' and t € J,(a, b).
Furthermore, wewill generalize the limit transition from the Askey-Wilson pol ynomials
to the Jacobi polynomials (3.23) and the limit transition from big resp. little g-Jacabi
polynomialsto the Jacobi polynomials ((3.24) resp. (3.25)) to the multivariable case for
the full parameter domain.

Denote |A| := XL, A for A € P" and €3 + Cox == (€1 + CXy. . . . C + CoXn) resp.
x L=t g forc,co € Candx = (xq, ... . Xn). The limit transitions are given
by

THEOREM 5.1. Fix A € P*.

(1) Fixq e (0.1). Supposethat (a. b, c.d) € Vg andt € J,(a. b), then

. e(Cd)%)M| q%x 1 111 1 11 1
lim| = PAW( —reqza(d/c)z, e tqz(c/d)z, —e 1qz(d/c)?,
(o) P (e a0l ale/o el /o,
(5.2) —eqzh(c/d)?; q, t) =P8(xa.b.c.d;q.t).

(2) Fixq e (0.1). Supposethat (a.b) € V{'andt € J,(a, b), then

Al 3
(5.3) Iim(il) Pﬁw(q X;eq%b. e 1g2. —q?. —qiaq, t) =P (x;a,b;q.t).
e—0 qz

€
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(3) Fixqg € (0.1). Supposethat (a.b) € V{'andt € J,(a, b), then

(5.4) m P3(x;b.a.1.d;q.t) = P5(x;a. b; g. ).

(4) Let(a.3,7) € Vyandc.d € Csuchthatc,d #0, ¢ #d,d # 1. Then

AW (e AT e N e (1+cz—c(><+x1). )
(5.5) IATTPQ (x,c. — .d,q.q)—lePi (1—d)(1—c2/d)’a'ﬁ'T

C
b red .o ((d=DA-=C/d)
with k&d := (D0C/Dym
(5) Let(a,3.7) € Vyandc,d > 0, then

o DB(ye @ co o) = (1 Mpd [(C— X, .
66 limPoca.o.c.diq.q) = (DM NP (i i),

(6) Supposethat (o, 3,7) € V3, then
(5.7) lim P50 a%.a”;q. ) = PY(x . ;7).

The limits are pointwise limits in the following sense:

Denote P := {\ = (A1,..., An) € Z"/A1 > --- > My} We will see later that the
rescaled A skey-Wilson polynomialson theleft hand side of (5.2) and (5.3) can bewritten
as symmetric Laurent polynomials of the form 3= s d.m, (). All the other functions
occurring in Theorem 5.1 are symmetric polynomials of the form 3°,,cp+ d,m,(x). We
will say that a symmetric (Laurent) polynomial p(s.X) = 3=, d,.(s)m,(x) tends to the
symmetric (Laurent) polynomial p(x) = 3=, .5 d,m,(x) for stending to zero, if for every

fixed (Xq. ..., %) € (C\ {Oh",
Isigg) p(s, X) = p(x).

If P(s) := {u € P/d,(s) # O} is contained in afinite subset J C P for al sin an open
neighbourhood of 0, then lims_op(s,X) = p(x) if and only if lims_od,(s) = d, for al
w € P.

Notethat for thelimit transitions (5.2), (5.3) and (5.5), adefinition of BC,, type Askey-
Wilson polynomialsfor more general parameter valuesis needed. We will introduce this
definition later on.

REMARK 5.2. The first three limit transitions are especialy valid for the parameter
values a, b, ¢, d and t satisfying %1 <ab < q_12 c.d>Oandt € (0,1), in view of
Proposition 4.7. Note that these conditions are independent of \ € P*.

In view of limit transition (5.6) resp. (5.5), we will first look what happens with
the second order differential operator D‘}f under the change of variables x, = T4

; HE—clyi+yY)
(i=1.... n)resp.-:(ltﬁ%(l—l ..... n).
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Under the change of variables x; = c+d ii=1...., ,n) for c +d # 0O, the second order
differential operator D becomes

Dg5: —Z((yJ —O)(y; +d)a7 + (2 + a + B)y; + d(cx + 1) — (3 + 1))

(58) +21(y) — O + DAG) A ).
We have
(5.9) M (C1 + CaYi. . .. - C1 + CoYr) = C5/my (y) + 3 ba(er cm, ()

with by ,(c1. ¢2) a polynomial expressionin c; and c,, of degree |A| — |u| in ¢; and of
degree || in ¢, for ¢p, ¢, € C. Hence

©5/m)( ) = (~c+d) g1 m)w)
C -1 a 3,c.d
(510) +/§)\ A, p,( c+ d) (C+ d)) B,J.m ,lt)(y)
By Proposition 4.3 and by application of (5.9), theleft hand side of (5.10) canberewritten
as
61) &) (—c+d) my)+ Y e foc.dinm, ()

1<

for certain d, (e, 8. ¢, d;7) € C with (c+d)*Id, ,(a. 8, ¢.d;7) € C depending polyno-
mialy on «, 3, ¢, d and 7. By completeinduction with respect to X it follows from (5.10)
and (5.11) that

(5.12) Dg%%m, Z (e B, c.diT)m,

with ¢ (v, 8. ¢, d; 7) depending polynomially on a, 3, 7, ¢, d, and with leading term
cM(oc 3. c.d;7) = al (. 8;7) independent of c and d (a] given by (4.10)).

Note that

AY) LA

V) @8)(y) = kz,y, ™
Define

- n

(5.13) AY) =TT TT O — Wiy — 1),

i=1 1<k<I<n
then we have that

v -1 1

AY) g D)y) = >

Y Y e N
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With the help of this formula, one deduces that under the change of variables x; =

%, the second order differential operator D’ becomes

DKV?I?]?-_Z( (1_Cyl)(1 yJ/C)(l yJC/d)(l y;d/C) 52

= (1 yJZ)Z J
YA oA~/ —yie/dd —yd/o)
1-y)?
(e + 1 —ye/d) —yd/0) + (3+ (A —cy)(L - yl/c))
| 2 J
1-y)
(1—cy1)(1 yi/0)(1 —yc/d)(1 —yd/c)
o ) 6B
Note that
(5.14) my(y +y 1) = fin(y) + % CuMau(),
v

for certain ¢, , € C, hence we have by (5.9) that

(5.15)

1+ —cly+y b)) _ —C a - -
(aacea) “(T=aazers) ™0+ Ehucono

for certain b, ,,(c. d) € C with ((1— d)(1— cz/d))mf)w(c. d) depending polynomially
on ¢ and d. It follows now from (4.3), with similar arguments as for the proof of (5.12),
that
Diwae = 3 i (e 6.c. i,
p<

for c.d #0, ¢ # d, d # 1 with constants ¢, ;> depending polynomially on -, 3 and 7.
The leading term CAWJ(Oc. B,c.d;7) = al(. 3;7) isindependent of c and d (a) given
by (4.10)). The behaviour of the second order g-difference operators under the limit
transitionsis given by

PrOPOSITION 5.3. Fix \ € P*.
(1) Fix(a,b,c,d) € C*andq € (0, 1), then for all x < X\ we have that
(5.16)
et e) =
(e(cd)
Q2
depends polynomially on t and ¢, and the zero order term with respect to the variable e
isc},(a.b.c.d;q1).

p\‘ |u 1 1 1 1 1 1 1 1
) A (eqza(d/c)?.e g2 (c/d)?. —e "7 (d/c)?. —eq2b(c/d)?; a.t)
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(2) Fix(a,b) € C?andq € (0, 1), then for all ;. < \ we havethat
. € \A=lul 1, 1.1 1 1
(5.17) (o) = (q_i) AW(eqib. e g7, —q?. —qgia; q.1)
depends polynomially on t and ¢, and the zero order term with respect to the variable e
iscy (@ b;q.1).

(3) Fix(a,b) € C>andq € (0,1), thenfor all » < A wehavethat c§ (b, a, 1. d;q,1)
depends polynomially on t and d, and the zero order termwith respect to the variabled
iscy ,(a b;q.1).

(4) Fix(a.3.7) € Vsandc.d € Csuchthatc,d #0, 2 #d and d # 1, then for all
@ < A we havethat

iy G (€. 07/, q"d /. ¢/d; 6 )
im—

ail (1-0q?

(5) Fix(a,B,7) € Vyandc.d > 0, thenfor all , < X\ we havethat

= cf\*XY‘J(oc. 8. ¢, d;7).

im 5%’ c.d;q.q)
al1 (1—0q)?

(6) Fix (o, B,7) € Vj, thenfor all u < A we have that

— ~BJ .
=c¢y (o, B.c.d7).

CL o {3; o
lim 5.(0%.9%0.97)

e

ProOF. We first prove (2). Fix (a,b) € C2. Proposition 4.1 implies that E’m""(t. €)
depends polynomially on t, and Laurent polynomially on e. So it is sufficient to prove
that for arbitrary fixedt € C,

i RAWL — AL
lim e (t. €) = ¢, (0).

Sofix t € C. Proposition 4.1 givesfor fixeda, b,t € Cand 0 # ¢ € R that

€\ M eqt/2b.e1qt/2,—qt/2.—qt/2a) ~ %X
(5.18) (£> (D(A\‘}J;tti qt/2,—qt/2,—qt za)m/\)<qT>
isequal to
~AW.L e\l @(
(5.19) EA e (t.e)(q%) m;,,( . )

Let for v € P, &,(e) be the coefficient of m,(x) := ¥ s, X” in (5.19). This makes sense,
since r"n,,,(q%x/e) is asymmetric Laurent polynomial for all . € P*. In fact, we have for

u € P that .
(5.20) ( )lﬂlr”n,,,(qix) = m,(x) +1(X; )

o)
ot | ™
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with r(x; e) asum of monomialsm,(x) withv € P, v, < 0and || < |/, with coefficient
given by apolynomial expressionin ¢, homogeneousof degree|u| — |v|. Combining this
with the following two limits (cf. [S1])

g2x

(620 limuf( eatb. ot —af. —gtaa.t) = vh(a.ba.0).
e— €

(5.22) Iingd#‘w(%( eq?b. ot gt —a?ara.t) = of (. bi ..
and with Proposition 4.2, resp. formula (5.19) gives for v € P with v, < Othat
1[13 G, (e) =0,
and for . € P* that
lime, () = lim& (¢ ) = &, 0.

This proves (2).
(1) We havethe following limits (cf. [S1]):

1
lim f‘W( d Xl:eq%a(d/c)%.e—lq%(c/d)%.—e-lq%(d/c)%,—eq%b(c/dﬁ;q.t)
0 e(cd)?

(5.23) =¢B(x;a,b,c.d;q.t)

1
im o (L eqtad/ 9. ol e/t~ Mot @/ —eatble/) et
e—0 e(cd)z

(5.24) = ¢B(x;a.b.c.d; q.1).

The proof is now completely analogous to the proof of (1).
(3) Followsdirectly from Proposition 4.2 and formula (4.7).
(4) Anarbitrary second order g-difference operator

D =Y (7 ()(Tqi — 1d) + 7 ()(Tg2; — 1))

i=1
can be rewritten in the following way
(625 (DN = é(/x 09(Ta 4 ((05771)) 9+ BO9(Ta 44 )W)

with Did‘ the backward partial g-derivativein directioni given by

(f — Tqif)(¥)

O N = =
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and
AX) = gL — g (%),
Bi(¥) = q (1 — g)x(7 () — am ().

Fix (o, 3,7) € Vyandc,d € C suchthat c.d # 0, @ # d and d # 1. Rewrite Daw in the
form (5.25), so let

(1 —ax)(1 — bx)(1 — cx)(1 — dxi)
1—x)(1 - )

(a—x)(b—x)(c—x)(d—x)
(1 =x)a—x)

with A(X) given by (5.13). It isimmediate that

() =YW (x) = 1A (T A) (),

M () = ¢ () = AN (T, B)(X),

im A C. ™ /c.q™d/c c/dig.q) X1 — ox)(1 — x /o)1 — xd/c)(1 — xic/d)
qr1 (1—09)? - (1—x)? '

To evaluate the limit for B;, we need the following remark. Let z be a complex variable
andfix q € (0. 1), then definefor u,v € R, DY, by

((Tqv = T)f) @
1-9z

with (Tsf)(2) := f(s2). Then Dy, maps C[Z] into C[Z], resp. C[z z ] into C[z z™}], and

(OlH@ =

I(;Trrf(Dﬂ_vf)(z) =(u +v)3—fz(z) vi e Clzz Y.

Note that Dg ; is the backward partial g-derivative in the variable z. In particular, we
have that . .
im Jami8 — T A)X)

I(:le @—ax = 21(9;8)(%).
A straightforward calculation gives then that
lim B 60" /c.q™d/c.c/d; q. )
a1 (1-09p2
_ 2xi(l —ox)(d —xi/c)(d —xc/d)(1—xd/c)
B (11—
((o+ 1)1 —x¢/d)(L —xd/) + (3 + 1)(1 — ex)(1 — %/0))
1-x)
2(1— o)1 —x /)1 —xc/d)(d —xd/C) x, 4, =
gy RS XI_2)2X|C/ =9/ 5 10,500
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Hence we have

) ()

ail (1—07
Consequently, the coefficients satisfy

i (e, /c.q’*'d/c.c/d;q,q7)
ail (1—0)?

= (DY 5N(X)  vf e AV,

=y (a8, c.d;7)

foral p < A.
(5) Fix (a,3,7) € V3 and c.d > 0. Rewrite the second order g-difference operator
Dg in the form (5.25). The A’s and B;’s are then given by the following expressions:

A(X) = (1 — a)’g *(gax — c)(gbx; + dt" AN H(TLA) (X

— (1 — Q) n— . cd -
B9 = o2 (x+ (@ =0 — 57809 (T, 8000

(526) (cPabx + (gad — abo) — £ A9 (Tu)(9).
|
Similar calculations as for (4) givesthen that
- OFED0 e 5
u%‘?w =(Dgly, ) Vfe A>,

hence the coefficients cﬁ.u(q“. q’.c.d;q,q) (u < \) satisfy

c? (@".q’.c.d;q.q")

mm = = ¢ (o B. €. 0 7).
(6) Thisisaspecia caseof (5). ]

Next wewill definethe BC,, type orthogonal polynomialsfor more general parameter
values. Fix g € (0. 1). Let X denote AW, B or L. Denote ¥ := iy, for X = AW resp.
mX :=m, for X =Band L.

LEMMA 5.4. Fix (a.b. c,d) € Vx (if X = AW) resp. (a. b, ¢, d) € V{ (if X = B) resp.
(a.b) € V§ (if X = L). Let u < A, then there exists a polynomial p, ,({X,,},<,<)
(independent of X) and homogeneous of total degree #{v € P* /v < A} such that the
rational function int given by

P ({0} p<vn)
H1/<A (Ci\()\(t) - Cl)/<,1/(t))
is a rational extension of the function t — d ,(t):(0,1) — C, where d (t) is the

coefficient of m’ in the expansion of P(t) with respect to the basis {m /v € P*} (cf.
Definition 3.2, 3.3 resp. 3.4).

(5.27) &, 0 =
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PROOF. For the givenvaluesof a. b. ¢, d we havethat c* (0 = (t) #al(t) = ¢k, (t)
as polynomiasin tif A # u, sodX (t) is awell defined rational funct|on int. Inview
of Proposition 2.5(a) and (2.6), there exists a polynomial p, , such that (5.27) is the
rational extension of di(.u(t)- The polynomial p, , does not depend on X and can be
chosen homogeneous of total degree#{v € P* /v < A} in view of Remark 2.6. n

Fix (a,b,c,d) € C* (if X = AW or B) or (a,b) € C? (if X = L) such that abcd ¢
{L,gtqg?2...}@(ifX=AW)or abgé {q*2 g-3....} (if X=BorL). Then, asobserved
in paragraph 4, ¢X, (t) = aX(t) # aX(t) = ¢ ,(t) aspolynomialsintif A # . Definedy ,
for these values of a, b, c, d by (5. 27), and define

(5.28) PXect) =m0 + 3 d, ()mi ()
<X

fort € N,<) dom(ai ,)- Asaconsequenceof Lemmas.4, Proposition 2.5 and Remark 2.7
we have:

COROLLARY 5.5. Keep the same aissumptions on a, b, c, dasin Lemma 5.4. Then
(0,1) < dom(d ) forall <\ and PY(-5t) = PX(; 1) for all t € (0, 2).

Hence for each A € P, the polynomial |5§ is a well defined extension of the poly-
nomial PX to a larger set of parameters (a, b, ¢, d, t). We will write PX(-;t) instead of
I5§(-; t). For the limit transitions (Theorem 5.1), we only need the extended definition of
Askey-Wilson polynomials.

REMARK 5.6. According to Proposition 2.1 and 2.5, the BC,, type Askey-Wilson
polynomials for general parameter values have the following properties:

Fix A € P*, and let a.b,c.d € C and t € C such that &W(a.b.c.d;q.t) #
aV(a.b,c.d;q.t) for all u < X, then P is an eigenfunction of Daw with eigen-
value aﬁ\W(a. b, c. d; g, t). Furthermore, if one can extend the inner product (-, -)aw.t for
more general values of (a.b,c.d) (abcd ¢ {1,q7%.q72....}), such that (f.g)aw; is
continuousin t for t € (0.1) for all f.g € AW, and such that Daw is selfadjoint with
respect to (-, -)aw, then the corresponding orthogonal polynomials (Definition 3.2) are
exactly the polynomials P{W(a. b, ¢, d; g, t) as defined by (5.28), for al t € (0. 1) (cf.
Remark 2.7).

PROOF OF THEOREM 5.1. Wefirst prove (2).
(2) Let(a.b) € V] andt € J,(a. b). Note that

(5.29) aW(eq?b, e 1q?. —q?, —qia; q,t) = a>L(a, b; g, ).
Hencewe have, in view of (5.19), that

(%)‘A‘Pﬁ\w(% eqzb.e 192, —qz, —q2a; . t) =

) () ol &) (),

n<X

(5.30) (

O
ol ™
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where

(5.31) d’i“ﬁ”—(t €) = le({ ) . 6)}[)<1/<)\)

< (a(a.b;g.t) — a(a. b;a.1)

The denominator on the right hand side is non-zero since t € Jy(a.b). Now apply
Proposition 5.3(2) and (5.20).
(1) Note that

(5.32)
AW (eqta(d/c)?. e lgi(c/d)t. —1qi(d/0)t. —eqib(c/d)?; q.t) = (@ b; . 1).

Similar arguments as for (2) give then the desired result.

(3) Same arguments as for (1) can be applied with d playing the role of ¢, since
a*(a. b; g t) isindependent of d and symmetric in a and b.

(4) Fix (o, 8.7) € Vyandc,d € C suchthat c.d # 0, ¢ # d and d # 1. Denote the
right hand side of formula (5.5) by P{"-(x; e, 3, ¢, d; 7), then

PAI(x: v, 5. C.ci7) = i (X) + 3 df\::”(a- B. c. d; )iy, (X)

n<A

for certain constants df\*(a. 8, c.d;7) € C in view of (5.15). P"(x; o, 8. c. d;7)
is an eigenfunction of D,"(\f,‘j‘i with eigenvalue aj (e, 3;7), because PJ(x; o, §;7) is an

eigenfunction of D}  with eigenvalue aj(a, 3;7). Hence

. Dy 5d — al(ow. 6;7)
PWIC o B.c.d; T :( AW Ar )
il 1 o e o
in view of Proposition 2.1 and Proposition 4.8. So we havefor < A that
pA [l({ V.0 J(a /6 C d T)}ﬂ<l/<)\)
Ih<x (ai (Ol. ﬁr T) - ai(a ﬁi T))

by Proposition 2.5(a) and (2.6), where p, ,, isthe same polynomial asin (5.27). Note that
a¥(c.q™"/c.q™'d/c,c/d;q.q) = & (a". s q. ).

d & (g”.o%;0.q7) > aB4(g".q%;q.q") for all A > p and &l g € (0.1) (Proposi-
tion 4.7). Since p, ,, is homogeneousof total degree#{v € P* /v < A}, wethus have by
Lemma5.4 that

P ({EW(c. g™ /c. " d/c.c/d; . o)} pev<n)

qoz+l qH+ld c .
0.0 = — P
o< (3550, o 0. ) — &9, o%; 0. )

)\'“(C c -a, B

with

(C qa+1/c q8+1d/c C/d q qT)

(o oz+lC {3+ldCCd T_Vﬂ
eV (.o /c.q’**d/c.c/d; . q") 107
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BlLiyx 8- T
SBLiqo - oy < & (@797 0.9)
al/ (q 'qqu) (1_q)2 *
We have that
lim&>"(@". o’ 6.q) = (e 4:7)
for al v € P*, soit follows from Proposition 5.3(4) that
I m d¥W(c.q"/c.q’d/c.c/d;q.q) = ag‘VﬂV‘J(a. B.c.d;7)
a .

foral u < A.
The proof of (5) and (6) can be given in asimilar way. ]

REMARK 5.7. For limit transition (5.6), the condition c.d > 0 can be weakened to
c+d # 0if one usesthe extended definition of the big g-Jacobi polynomials. For subsets
of the set of parameter values a, b, ¢, d, t for which we proved limit (5.5), a proof of
(5.5) was already known by looking at the behaviour of the orthogonality measure when
g tendsto 1. See [M1] for athree parameter subset, and [vD], Proposition 4.3 for afive
parameter subset. For the limit transitions from big resp. little g-Jacobi polynomials to
Jacobi polynomials ((5.6) resp. (5.7)), this technique can also be applied. Seethe end of
Section 6 (Proposition 6.5) for more details.

6. Someremarksabout the limit transitions. We first discuss the possihilities to
extend the limit transitions (5.2), (5.3) and (5.4) to the whole parameter domain. Fix
(a.b.c.d) € Vi (if X=B) or (a.b) € V§ (if X=L) andfix g € (0.1). Then

p)\.u({éﬁ\;}v.x(tﬂ 6)}ﬂ§1/§>\)
Mo (S @ bra.t) — &t (a, by . 1))

for X = Bresp. L and 4 < A depend polynomially on e and rationally on t. Since
a*(a, b; g, t) isindependent of ¢ and d, we havefor p < A that

pk,u({diﬂ(b-, a, 11 dn d t)}pngg)\)
< (a8 (@ bra,t) — a(a b; g, 1))

depends polynomially on d and rationally ont. Fix A € P*. We have that limit transition
(5.3) holds for t € (0, 1) if and only if for al < A the following two conditions are
satisfied:

(1) t € dom(d}" (- €)) for € sufficiently small,

() lim_odV (. e) = df (0.

This follows from (5.20) and (5.30). Similar remarks hold for the limit transitions
(5.2) and (5.4). We have the following lemma.

(6.1) d i (te) =

(6.2) d¥-(a.bigt.d) :=

LEMMA 6.1. Fix m € No. Let J be a topological space, Jp a dense subset of J and
fo, ..., fm: Jo — C continuous functions. Define the function f: Jo x C — C by

m
(6.3) f(t.e) =S () te€ o, e €C.
k=0
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Supposethere exist m+ 1 different points {eo, . . . , em} such that the functions

t—f(t.¢):Jo—C (i=0,..., m)

can be extended to continuous functions from J to C. Then the functionsfo. .. ., fm can
be extended to continuousfunctions fromJ to C.

In particular we have that there is a unique extension of f to a continuous function
fromJ x Cto C suchthat f(t, 0) = fo(t) for all t € J (cf. (6.3)).

PrROOF. We havefor all t € Jo the matrix identity
(6.4) f(t) = AG(t).

with F(t) resp. g(t) the column vector with i-th entry f(t, ;) resp. fi(t) (i = 0. ..., m) and A
the matrix with (i. j)-th entry (&) (i,j =0.....m) (i therow index, j the column index).
The lemma follows, since every entry of the column vector ?(t) can be extended to a
continuous function from J to C and A isinvertible. ]

For fixed A € P* and fixed a and b, take J = (0, 1), and J, (a. b) for the dense subset
of J (J,(a, b) given by (5.1)), then in the next proposition we will apply Lemma 6.1 on
the functions (6.1) and (6.2), with m the highest degree of the functions as polynomials
in e resp. d. Note that in these situations, an algebraic proof can be given of Lemma6.1.

PrROPOSITION 6.2. Fix A € P*.
(1) Fix(a. b, c.d) € V3. Supposethat df'/*®(t, ¢) satisfiesthe conditions of Lemma6.1

for all 4 < A. Then (0, 1) C dom(d{"}®(-;¢)) for all ¢ andall 4 < A, andlimit transition
(5.2) isvalidfor all t € (0,1).

(2) Fix(a.b) € V. Supposethat df""(t. ¢) satisfies the conditions of Lemma 6.1 for
all ;1 < A. Then (0, 1) C dom(d{"\"(;;¢)) for all e and all ;2 < A, and limit transition
(5.3) isvalidfor all t € (0,1).

(3) Fix (a.b) € V. Supposethat aAB_’b(t, d) satisfies the conditions of Lemma 6.1 for
all < \. Then (0.1) C dom(dS:(-;d)) for all d and all 2 < X, and limit transition
(5.4) isvalidfor all t € (0,1).

PrOOF. In view of Lemma 6.1 and Remark 2.7, it is sufficient to check that (5.2),
(5.3) resp. (5.4) holdsfor t € J,(a, b), so Theorem 5.1 givesthe desired resullt. ]

Asacorollary, we have

THEOREM 6.3. Lett € (0,1), (a.b) € V! and A € P*, then

(6.5) m\g PP(x;b,a, 1, d;q.t) = P;(x;a b; g t).
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PROOF. Fix (a,b) € V| Fix d > 0 such that b > —1/dq, then (b,a,1,d) € Vg.
Henced?(t.d) = df (b.a 1,d;q.t) for al t € (0, 1) and for all ;1 < A (Corollary 5.5).
The big g-Jacobi polynomials

PY(x;b.a. 1.d;g. ) =m () + > df (b.a 1.d;q.O)m,(x) (A € P)
n<X

areorthogonal with respect to theinner product (-, ->gﬁ}'d. Proposition 2.3, applied to this

inner product, implies that dABA#(b. a, 1,d;g,t) depends continuously ont for t € (0, 1).
Hence Proposition 6.2(3) can be applied. ]

REMARK 6.4. The proof of Theorem 6.3 for arbitrary t € (0, 1) makes essential use
of the interpretation of the polynomials as orthogonal polynomials.

In order to prove the limit transitions (5.2) and (5.3) for al (a,b.c.d) € Vg resp.
(a.b) € V' and all t € (0, 1), an interpretation of BC, type Askey-Wilson polynomials
asorthogonal polynomialsfor more general parameter valuesis needed (cf. Remark 5.6),
so that the same argument asin Theorem 6.3 can be applied.

In the one variable case, Askey-Wilson polynomials for more general values of
(a, b, c, d) have an interpretation as orthogonal polynomials. The orthogonaity domain
consists then of a continuous part and a discrete part, the discrete part coming from
residues. In the one variable case, Koornwinder showed that in the limits from Askey-
Wilson polynomials to big resp. little g-Jacobi polynomials, the discrete part of the
orthogonality domain of the Askey-Wilson polynomials blows up to the orthogonality
domain of the big resp. little g-Jacobi polynomials, while the discrete part shrinksto {0}
(cf. [K2] p. 812).

Recently, the first author has written down the orthogonality measure for the muilti-
variable Askey-Wilson polynomials with partly continuous, partly discrete measure and
described in detail the limit transitions to big resp. little g-Jacobi polynomials for the
caset = g¢ with k € N (cf. [S2]).

Definean inner product [- . - jﬁf‘c‘d onAS forc.d > 0, (a. 3.7) € V3 by
L ¢ Froe P S
66)  [fgur=1 [ o [ f0aRwikir)dx. g e A%,

with weight function w;(X; o, 3, ¢, d; 7) given by

Wy(x;7) = (_ﬁl(l — % /O (L+x /d)ﬁ) AKX

The polynomials {P}(&X; o, 3;7) /A € P*} are orthogonal with respect to [+, 157

ctd’
PROPOSITION 6.5. Fix A, u € P*.
(1) Leto € (0.00). 3 € (0,00) and 7 € [1/2, 00), then
1 qo(’q.{ —_ a.p
(M. M) g = (M M3y
(2) Leta, 8,7 € Nandc,d > O, then

: q%,¢’cd _ a.B,c.d
im(m. Mg g = (M. My
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PROCOF. (1) Fix my,m, € R suchthat m, > ny and my +nm, > 1. Then

(a™za), _ _
JH‘ (™7 0) =@

uniform for zon {z € C/|z| < 1} (cf. [K4]). Thisimplies for the function
0006 . B575.0) = qOM, (X (7)) m, (X () )V (0); o o . )

with X' (1) = (X2, "%, . . . . " Y7x,), and fixed .. 3 € (0. 00), T € [3. 00), that

(6.7) '(}“f O (X o, 857 0) = My ()M, (Vo (X; e, 35 7)
uniformly onV := {(xq, . ... %) /1> % > -+ > X > 0}. Sowe have:
: .9 — . %n—1 . -
im(m,. m) T3, = lim /X oo L g o B 6) dox
1 . 1 1
== (:TT/XFO.../X":O M ()M, (V3 (X; o, 3;7) dgX
1 n 1
== x1=0”-/><n=0 My (my, (Vi (X; o, 55 7) dx
= (my.m,)57.

For the first equality we used that

[ b dgu =1 _/ol houydgu (v #0),

for the second equality we used the uniform convergence of the integrand (formula
(6.7)) and that v; is symmetric, and for the third equality we used that v; is continuous
on [0, 1]" and thefact that (3.4) is also valid for multidimensional Jackson integrals with
continuous integrands.

2) For7 =k € N, theinner product (-, 223 simplifiesto
B,q.q

(f, g>B—n—1, SRR R C

with weight function

(o /c,—axi/d;q)
1(9axi /c. —gbx; /d; @)

w(x;a.b.c.d;q. o) = f[ Dy(X),

and

A = (-0 Oq 00 T] T — o)

1=0 i%

https://doi.org/10.4153/CJM-1997-019-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-019-9

404 J. V. STOKMAN AND T. H. KOORNWINDER

(cf. [S1]). We have that

Iip11 wx; g% q’.c.d;q. ) = wi(x; . 3, ¢, d;7)
q

uniformly for x € [—d, c]",if c,d > 0and o, 3,7 € N. Similar argumentsasin (1) gives
the desired result. n

With the help of this proposition, it is also possibleto prove that the BC, type big and
little g-Jacobi polynomials are g-analogues of the generalized Jacobi polynomials, with
techniques very similar to the techniques used by Macdonald to investigate the limit q
tendsto 1 for hisorthogonal polynomialsassociated with general root systems(cf. [M1]).
See also [vD], Proposition 4.3, where these techniques were used for the limit transition
from Askey-Wilson polynomials to Jacobi polynomials (formula (5.5)).

REFERENCES

[AA1] G.E. Andrews and R. Askey, Enumeration of partitions: the role of Eulerian series and g-orthogonal
polynomials. In: Higher Combinatorics, (ed. M. Aigner), Reidel, Boston, Massachusetts, 1977, 3-26.

, Classical orthogonal polynomials. In: Polyndmes Orthogonaux et Applications, (eds., C.
Brezinski, A. Draux, A.P. Magnus, P. Maroni and A. Ronveaux), Lecture Notesin Math. 1171, Springer,
New York, 1985, 36-62.

[A] R.Askey, Some basic hypergeometric extensions of integrals of Selberg and Andrews, SIAM J. Math. Anal.
11(1980), 938-951.

[AW] R. Askey and J. Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi
polynomials, Mem. Amer. Math. Soc. (319) 54(1985).

[vD] J. F van Digjen, Commuting difference operators with polynomial eigenfunctions, Compositio Math.
95(1995), 183-233.

[EM] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher transcendental functions \Vol. 2,
McGraw-Hill, 1953.

[E] R.J. Evans, Multidimensional beta and gamma integrals, Contemp. Math. 166(1994), 341-357.

[GR] G. Gasper and M. Rahman, Basic hypergeometric series, Encyclopedia of Mathematics and its Applica-
tions 35, Cambridge Univ. Press, 1990.

[H] L. Habsieger, Une g-intégrale de Selberg et Askey, SIAM J. Math. Anal. 19(1988), 1475-1489.

[H1] G.J. Heckman, Root systems and hypergeometric functions |1, Compositio Math. 64(1987), 353-373.

[H2] , An elementary approach to the hypergeometric shift operators of Opdam, Invent. Math.
103(1991), 341-350.

[HO] G. J. Heckman and E. M. Opdam, Root systems and hypergeometric functions |, Compositio Math.
64(1987), 329-352.

[K] K.W.J. Kadell, A proof of Askey's conjectured g-analogue of Selberg'sintegral and a conjecture of Morris,
SIAM J. Math. Anal. 19(1988), 969-986.

[K1] T.H. Koornwinder, Askey-WiIson polynomials for root systems of type BC, Contemp. Math. 138(1992),
189-204.

, Askey-Wilson polynomials as zonal spherical functions on the SU(2) quantum group, SIAM

J. Math. Anal. 24(1993), 795-813.

, Compact quantum groups and g-special functions. In: Representations of Lie groupsand quantum

groups, (eds., V. Baldoni and V. Baldoni and M. A. Picardello) Pitman Research Notes in Math. Series

311, Longman Scientific and Technical, 1994.

, Jacobi functions aslimit cases of g-ultraspherical polynomials, J. Math. Anal. Appl. 148(1990),
44-54,

[M1] 1. G. Macdonald, Orthogonal polynomials associated with root systems, (1980), preprint.

[M2] , Symmetric Functions and Hall polynomials, Oxford Univ. Press London, New York, 1979.

[S1] J V. Stokman, Multivariable big and little g-Jacobi polynomials, Mathematical preprint series, Univ. of
Amsterdam, 1995, report 95-16; SIAM J. Math. Anal, to appear.

[AAZ]

[K2]

[K3]

[K4]

https://doi.org/10.4153/CJM-1997-019-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-019-9

LIMITS FOR BC TYPE ORTHOGONAL POLYNOMIALS 405

, Two limit transitions involving multivariable BC type Askey-WIson polynomials, Mathematical
preprint series, Univ. of Amsterdam, 1996, report 96-01; Proceedings of the Mini-Semester on Quantum
Groups and Quantum Spaces, Warsaw, 1995, Banach Center Publications, to appear.

[V] L.Vretare, Formulasfor elementary spherical functionsand generalized Jacobi polynomials, SIAM J. Math.

Anal. 15(1984), 805-833.

[s2)

Faculty WINS

University of Amsterdam
Plantage Muidergracht 24
1018 TV Amsterdam

The Netherlands

e-mail: jasper @wins.uva.nl
e-mail: thk@wins.uva.nl

https://doi.org/10.4153/CJM-1997-019-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-019-9

