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The purpose of this note is to derive an alternative expression to that given in
Lemma 1 below (due to Hsu, and to von Bahr) for the absolute moments of a
random variable, in terms of the characteristic function.

Let J b e a random variable (r.v.) with distribution function (d.f.) F(x) and
characteristic function (ch.f.)

\ eixtdF{x).
J - 0 0

The rlb moment of X (or of F) is

EX' = Hr = f" xrdF(x),
J - 0 0

and the rth absolute moment of X (or of F) is

E\X\r = Pr=r \x\rdF(x).
J

When fir < oo, (j)(t) is r times differentiate with

<j><r\O) = irnr, and

xreitxdF{x); r = 1, 2, • • •
J — 00

(e.g. Lukacs [4], p. 29).
It is well known that the moments /ir, r = 1, 2, • • • can be identified as the

coefficients of (iijr\ in a power series expansion of <j)(t) (see Pitman [5], Loeve [3],
p. 199, or equations (1), (2) of [1]), thus including absolute moments of even
integer order. When v > 0 is not an even integer, absolute moments Bv of order v
can be found from the following formula, due to Hsu [2], and von Bahr [6] (see
also lemma 1 of [1 ]).

LEMMA 1 . / / V > 0 I J not an even integer, and ft, < oo, then

j=o j !
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where v = m + d with m an integer, 0 < 5 ^ 1, and

Av = -7i/2r(v + l ) • sin (vn/2).

Now assume in addition that X 2: 0 a.e., and let

Gr(x) = fVdF(u),
Jo

with r = 0, 1, • • •, m < v g w + 1 and j3v < oo. Then jSv = /iv is the (v - r ) t h

moment of Gr(x) and i~r(j)(r)(t) is the ch.f. of Gr(x). Let

According to Theorem 2 of [1], /iv = /?v < oo implies that

am(0 — o(Ulv) for non-integral v,

0tla.m{t) = o(\t\v) for odd integers v, and

ymccm(t) = o(\t\v) for even integers v, as t -* 0.

Applying this result to Gr(x) and its ch.f. i~r<^(r)(f) (noting that v is either
non-integral or that v, v— 1, v —2, • • • are odd, even, odd, • • • integers respectively)
gives

LEMMA 2. If v > 0 is not an even integer, v = m + 5 with m an integer and
0 < < 5 ^ 1 , A T ^ 0 a.e. and ^ = jtv < oo, then

m — r

M(^\t)-ir X 00 J ' /WJ0 = «(ITr) as * -> 0;
;=o

/or r = 0, 1, 2, • • • m.
COROLLARY 1.

m — r

\t)-ir X (it)jnj+rljl) = o(|*rr) as |f| -* oo,
j = 0

for r = 0, 1, 2, • • • m.

PROOF. Observe that v > m and that |(/>(r)(/)| :§ //r < oo for r ^ m.
From lemma 1,

which, after integrating by parts m times and invoking Lemma 2 and Corollary 1
for r = 0, 1, 2, • • • m— 1 gives

COROLLARY 2.

(1) ^ / ? v = lim ^ i ± ^
e->0 /Yv+l ) J ,K-.cc
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If (f>(t) is (m+1) times differentiable, then a further integration by parts, and
application of Lemma 2 and Corollary 1 for r = m, gives

COROLLARY 3.

(2) AJy = lim - ^ - f J7 0(m+1)(O • r'dt
e-0 T(V+1)J£

Now drop the assumption that X 5: 0 a.e. Let A^ = max(0, X), X_ = max
(0, - X), with X+, X- ^0 and X = X+-X_ . K <l> + (t), <j>-(t) are the ch.fs of X+

and Z _ , respectively, then

and

Therefore, applying Corollaries 2 and 3 to Jf+ and X_, and adding, gives

THEOREM 1. If v > 0 is not an even integer, v = m + 8 with m an integer and
0 < 5 ^ 1, andfiv < oo, then (1) holds.

If<j)(t) is (w+1) //wej differentiable, then (2) /lo/lcfe.
Wenotethat (i) n0 = 1, (ii)</>(m + 1 ) (0 might exist for t # Oeven if (/>(m+1) (0)

does not exist, (iii) the integrands in (1), (2) might not be absolutely integrable
and thus (iv) contour integration might be needed to evaluate (1) and/or (2).

The possibility of obtaining Theorem 1 arose out of a discussion with Dr.
G. K. Eagleson.
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