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A COMPARISON OF METHODS FOR CONSTRUCTING 
PROBABILITY MEASURES ON INFINITE PRODUCT SPACES 

BY 

CHARLES W. LAMB 

ABSTRACT. The construction, from a consistent family of finite dimen
sional probability measures, of a probability measure on a product space 
when the marginal measures are perfect is shown to follow from a classical 
theorem due to Ionescu Tulcea and known results on the existence of 
regular conditional probability functions. 

1. Introduction. The famous theorem of Kolmogorov [5] gives the construction, 
from a consistent family of finite dimensional probability measures, of a probability 
measure on an arbitrary product of copies of the real line. Marczewski [6] extended the 
crucial compactness part of Kolmogorov's argument by defining, in a nontopological 
context, a compact class of sets. He called a probability measure compact if it is inner 
regular relative to some compact class and proved that Kolmogorov's theorem holds in 
an arbitrary product space if the marginal measures are compact. Ryll-Nardzewski [11] 
further extended the result to the case where the marginal measures are quasi-compact 
and proved that quasi-compactness is equivalent to perfection, a concept originally 
introduced by Gnedenko and Kolmogorov [3]. Without any compactness assumptions, 
von Neumann [7] obtained the general product probability theorem. Assuming only the 
existence of certain transition functions, Ionescu Tulcea [4] showed how to construct 
probability measures on infinite product spaces, and in the process obtained both von 
Neumann's result and Kolmogorov's original theorem as special cases. Dinculeanu [1] 
further extended Ionescu Tulcea's results to the case where there exist quasi-regular 
conditional probabilities. 

Our purpose here is to show that the general result of Ryll-Nardzewski follows 
directly from Ionescu Tulcea's theorem and known results concerning the existence of 
regular conditional probabilities. 

2. Preliminaries. Let {ft,, S*,)}^/ he an arbitrary family of measurable spaces. A 
measurable rectangle is a subset of n i e / f t , of the form UieISi9 where St E 3% for 
/ E / and St = ft, for i E Jc with J finite. The algebra of subsets of Il^/ft, consisting 
of finite disjoint unions of measurable rectangles will be denoted by si, and 3F = 
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® / E / ^ I is the a-algebra generated by si. For J C I,fj is the canonical projection of 
II/G/ft/ onto ri/eyft/, and if J C / is finite, then a set of the form/7 (#/)> where Z?y 

£ ©/eySF/» is called a cyclinder set based on J. The collection of all such cyclinder sets 
forms an algebra 20 and si C. 26 C 2F. 

If (Oi, 8£,) and (fl2, 2£2) are measurable spaces, then |x is a transition function from 
( f t „^ 1 ) to ( f t 2 , y 2 ) i f 

(i) for every co, E ft,, |x((o,,.) is a probability measure on (ft2, 3F2); 
(ii) for every A2 E 2£2, |x(.,A2) is a measurable function on (ft,, 9^,). 

Given a probability measure P, on (ft,, 2F,) and a transition function |x from (ft,, 9\) 
to (ft2, 3^), we may define a probability measure P,|x on (ft, x ft2, S£, (x) S£2) by the 
formula 

P,|x(A) = Pi(dw,) /^(a),,(o2)|x(a),,da)2). 

Compact and perfect measures are discussed in detail by Ramachandran ([9], [10]) 
and Sazanov [12]. We only mention here that a probability measure P on (ft, 9) is 
perfect, or that (ft, 3%P) is a perfect probability space, if for any real valued random 
variable X there is a Borel subset E of the real line such that E C X(Ct) and P(X~](E)) 
= 1. The restriction of a perfect measure to a sub-o--algebra of 9 is obviously perfect. 
Other than this simple fact we need only the following result: if (ft,,9^,,/>,) and 
(CI2, 92,P2) are probability spaces with P2 perfect and 2F2 countably generated, and if 
P is a probability measure on (ft, x ft2, 3F, ® 3F2) with marginal measures P, and P2, 
then there is a transition function jx from (ft,,5F,) to (ft2,9^2) such that P = P,|i. 
A particularly simple proof of this result was given by Faden [2]. 

3. Results. In what follows the index set / is assumed to be infinite and $ will denote 
the finite subsets of /. We first restate, in our terminology, Theorem (B) of [4]. 

THEOREM 1. Let {(ft/, S^j/e/ be a family of measurable spaces. Assume that for each 
i 6 | there is a probability measure Pj on (II,eyft/, ®/Gy2F/) such that 

(i) {PJ}J<=$ is a consistent family ; 
(ii) if J E $ and j E Jl\ then there is a transition function \ijjfrom 

( n / & A , ®iei9i) to (ft,-, 9j) such that PJU{j} = PJ\LU. 

Then there is a unique probability measure P on 

(ft,y) = (n/e/ftl-,®l-6#S
:
/) 

such that Pj = PfJ] for all J E $. 
We now prove Ryll-Nardzewski's generalization of Kolmogorov's theorem. 

THEOREM 2. Let {(ft,, 2£/)}/e/ ^ a family of measurable spaces. Assume that for each 
J E $ there is a probability measure Pj on (Iï/Eyft/, ®iej9t) such that 

(i) {Pj}je$ is a consistent family ; 
(ii) P{,} is a perfect probability measure on (ft,, 2F,) for all i E /. 
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Then there is a unique probability measure P on 

(ft,s;) = (n /6A,0/6#3f/) 

such that Pj = PfJ1 for all J E $. 

PROOF. Let Q denote the finitely additive probability measure on 2ft defined by the 
formula 

Q(fj\Bj)) = PJ(BJ), 

where J E $ and Bj E ®, ey3v Since si C 2ft, g is also a finitely additive probability 
measure when restricted to si. 9̂  is generated by si and therefore it suffices to show 
that Q is countably additive on si. That is, if {A„}/?> i is a decreasing sequence of sets 
in si with empty intersection, then 

lim Q(An) = 0. 

For the purpose of proving that lim,,-^ Q(A„) = 0 for the fixed sequence {A„}„>\, 
note that any particular representation of A„ as a finite disjoint union of measurable 
rectangles involves finitely many measurable subsets of any [Î,. Hence {A„}„>, is a 
sequence of sets in the algebra generated by the rectangles which are measurable with 
respect to certain countably generated sub-cr-algebras Ŝ f of 9v If Pj denotes the 
restriction of Pj to 0/ey^f , then (i) holds with Pj replaced by Pf and (ii) continues 
also to hold, since the restriction of a perfect measure is also perfect. If si*, 2ft*, 2F* 
and Q* are defined analogously, then Q* is the restriction of Q to si*. 

If J E $ and j E Jc, then the results stated in Section 2 imply that there is a transition 
function yujj from (II/Gyft/, 0/Gy3?*) to (fl7-, 3F*) such that P*u{/} = P*V-J,J- Hence 
Theorem 1 implies that there is a unique probability measure on P* on (fl, 3F*) such 
that P* = P*/" 1 for all 7 E <j>, and therefore 

lim <2(A,7) = lim Q*(A„) = lim P*(A„) = 0, 

where the last equality follows from the countable additivity of P*. The proof is thus 
complete. 

4. Alternative approaches. The point to be emphasized in the proof of Theorem 2 
is that, in general, it is impossible to obtain transition functions jxy 7 with PJU{J} ~ PJ^JJ 

as in Theorem 1, even if the marginal measures P^ are compact. However, it suffices 
to assume that the a-algebras 3F,- are countably generated and, in the presence of 
perfection, suitable transition functions then exist. 

Recent work of Pachl [8], as described in Ramachandran [10], on disintegration of 
measures implies that if the marginal measures P^ are compact, then PJUU}

 =
 PJV>J,J9 

where (JL7 7 is a quasi-transition function. In general, if (H,, ^ , ,P*i) is a probability 
space and (ft2> ^2) is a measurable space, then (x is a quasi-transition function from 
(n , ,9? 1 , p 1 ) to (n 2 , y 2 ) i f 

(i) for every w, E fî, there is a sub-a-algebra 9^^! C 3 2̂ such that |x(o)!,.) is a 
probability measure on (ft2> ^2 '); 
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(ii) for every A2 E 2F2 there is a set N(A2) E 9?, with />,(A^(A2)) = 0 such that 
A2 E 9̂ 2* if (Oi E A (̂A2)

C and |x(.,A2) is 9*,-measurable on N(A2)
C. 

Note that the definition of a quasi-transition function makes sense only with respect to 
a given probability measure P, on (ft,, 9^,). 

It is possible to obtain Marczewski's theorem (Theorem 2 with perfect replaced by 
compact) from a generalization of Theorem 1, where the transition functions in that 
theorem are replaced by quasi-transition functions. To follow this approach it is neces
sary to formulate and prove Ionescu Tulcea's classical theorem in the context of 
quasi-transition functions. This is a straightforward (but tedious) extension of the 
original result with extra care exercised in handling certain exceptional sets on 
probability zero. 

Theorem 2 can also be proved by showing that the assumption of perfect marginal 
probability measures implies the existence of quasi-regular conditional probabilities 
(not to be confused with the quasi-transition functions defined above) and applying the 
results of Dinculeanu [1]. 
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