Glasgow Math. J. 51 (2009) 187-191. © 2008 Glasgow Mathematical Journal Trust.
doi:10.1017/S001708950800462X. Printed in the United Kingdom

NOTE ON THE DIVISIBILITY OF THE CLASS NUMBER OF
CERTAIN IMAGINARY QUADRATIC FIELDS

YASUHIRO KISHI

Department of Mathematics, Fukuoka University of Education,
Munakata, Fukuoka 811-4192, Japan
e-mail: ykishi@fukuoka-edu.ac.jp

(Received 8 April 2008; revised 3 June 2008; accepted 1 July 2008)

Abstract. We prove that the class number of the imaginary quadratic field
Q(+/22F —37) is divisible by n for any positive integers k and n with 2% < 3" by
using Y. Bugeaud and T. N. Shorey’s result on Diophantine equations.
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1. Introduction. In[1], N. C. Ankeny and S. Chowla proved

THEOREM 1.1. [1, Theorem 1] Let n be an even positive integer and d := x> — 3" be
a square-free integer with 2 | x and 0 < x < (2 - 3112, Then the class number of the
imaginary quadratic field Q(y/d) is divisible by n.

The aim of the present paper is to remove the conditions ‘even’ and ‘square-free’
in the above theorem for the case where x is a power of two. Namely, we will prove

THEOREM 1.2. For any positive integers k and n with 2°* < 3" the class number of
the imaginary quadratic field Q(«/2% — 3") is divisible by n.

B. H. Gross and D. E. Rohrlich [3] (resp. H. Ichimura [5]) proved that the class
number of the imaginary quadratic field Q(+/1 — 4a”) (resp. the real quadratic field
Q(+/a? + 4)) is divisible by n for any odd integer n > 3 and any integer a > 2 (resp.
for any integer n > 2 and any odd integer a > 3). Our main theorem is a similar result
of these ones.

REMARK 1.1. By putting » = 2¢ and m = 3 in Mollin’s theorem [6, Theorem 3.1],
we can show that if 2¢ — 3" is square-free, then the class number of Q(+/22k — 31) is
divisible by 7.

To prove Theorem 1.2, we use the same method as [5] and need a result of
Y. Bugeaud and T. N. Shorey which states the following:

Let F, (resp. L,) denote the nth number in the Fibonacci sequence (resp. Lucas
sequence) definedby Fo =0, F; = land F,, ., = Fy.1 + F,(n > 0)(resp. Ly = 2, L; = 1
and L, =L, + L, (n>0)). For A € {1, 2,2}, we define the sets F, Gy, Hy C
N x N x N by

F = {(Fi—2e, Licye, Fi) | k = 2, & € {£1}},
G, :=1{(,4p" — 1, p)| pis an odd prime, r > 1},
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there exist positive integers r, s, D;, D, and an odd
H;. := { (D1, Dy, p) | prime p with gcd(D,, D) = 1 and p 1 D1D; such that } ,
Dis* + Dy = A’p" and 3Dys> — Dy = +A°

except when A = 2, in which case the condition ‘odd’ for p should be removed in the
definitions of G, and H,.

THEOREM 1.3 [2, Theorem 1]. Given & € {1, /2, 2}, a prime p and positive coprime
integers Dy and D;, the number of positive integer solutions (x, y) of the equation

D1x2 + Dy = )szy

is at most 1 except for

G Dy Do p) € € (2,13,3,2),(J§,7,11,3),(1,2,1,3),(2,7,1,2),}
, Dy, D, p =

(V2.1,1,5),(v2,1,1,13),(2,1,3,7)

and

(Dl,Dz,p) € ng)\UH)L.

2. Proofs. First, we show two lemmas on Diophantine equations.

LEMMA 2.1. The equation
2V - =+1

has only three positive integer solutions (x, y) = (1, 1), (2, 1), (3, 2).

Proof. This can be easily proved by taking modulo some power of two. See details
in [4]. ]

LEMMA 2.2. Let k and D, be positive integers. Then the number of positive integer
solutions (x, y) of the equation

Dix> + 2%k =3

is at most 1.

Proof. It is easily seen that (1, Dy, 2%, 3) ¢ £ and (D, 2°%, 3) & G, for any positive
integers k and D;. Suppose that (D, 2%%,3) € F. Then we have k = 1 and D; = 8.
In this case, the equation 8x> 4+ 4 = 3" has no integer solutions. Next suppose that
(D1, 2%,3) € H,. Then both D;s* + 2% = 3" and 3D;s*> — 2% = £1 hold for some
positive integers r and s. Hence, we have

22(k+]) — 3r+1 ¥ 1,

which is impossible by Lemma 2.1. Thus, we have (D;, 2%, 3) & H;. The proof is
completed. ]

The following is the key lemma for the proof of our main theorem.

https://doi.org/10.1017/5001708950800462X Published online by Cambridge University Press


https://doi.org/10.1017/S001708950800462X

THE DIVISIBILITY OF THE CLASS NUMBER 189

LEMMA 2.3. Let k and n be positive integers with 2° < 3" and n > 3, and put
o =2k 4 22k — 30 € Q(+/2%k — 37). Then +a is not a pth power in Q(+v/2%* — 37) for
any prime p.

Proof. Let p be a prime number and let D denote the square-free part of 22 — 37,
Then D is a negative odd integer.
First, we consider the case p = 2. Assume that « is a square in Q(+/2% — 37);

2
b/D
a=<ﬁi31:> (a,beZ, a=b(mod?2)).
Then we have
2+ b°D  ab
ok 4 22k_3n=%+% D. 2.1

Let us express 2% — 3" = Dm? for some non-zero integer m. We see that m must
be congruent to 1 or —1 modulo 4. Then equation (2.1) implies ab = 2m, which is
congruent to 2 modulo 4, a contradiction. Therefore, « is not a square in Q(+/2% — 37).
By the same argument, we can show that —« is not a square in @(+/2%% — 37),

From now on we assume p > 3. If —« is a pth power in Q(+/2% — 3"), then so .
It is therefore sufficient to prove that o is not a pth power in Q(+/2% — 3"). Assume,
for a contradiction, that « is a pth power in Q(+/2% — 37);

P
a=<ﬁi§£§> (a,beZ, a=b(mod?2)).

Then we have

(p—1)/2
1 L
2k + 22k — 3” = 2_]) E (g;)ap—zjszl)l + U)\/D
Jj=0

for some w € Z, where (f) denotes the binomial coefficient. Hence we obtain the
relation

e, o
2 =q Y <y>d’blbbok (2.2)
j=0

It is easily seen that a divides 2517,

First, we suppose that a is odd. Then b is also odd and « is equal to 1. Since «
is an integer in @Q(+/2% — 3"), we have D = 1 (mod 4) in this case. Assume that k = 1.
Considering (2.2) modulo p, we have

and hence (a, p) = (1, 3) or (a, p) = (—1, 5). If (a, p) = (1, 3), then we have

5="58D
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by (2.2). This contradicts D < 0. If (@, p) = (-1, 5), then we have
—13 =20*D +b*D?

by (2.2). This is also a contradiction because the equation —13 = 2X + X2 has no
solutions in R, and so in particular none in Z. Hence, k£ must be greater than or equal
to 2. Recalling that D = 1 (mod 4), we have

2?%¢ _ 3" = D=1 (mod 4).

Therefore, n must be odd. Since the square of any odd integer is congruent to 1 modulo
8, we have

D=2%_3"=_3=5(mod 8).

In this case, we can easily see that for a positive integer m,

(a—l—b\/ﬁ

5 ) € ZIVD] < 3 |m.

Then p must be equal to 3, and hence we have

2k+3 =1 +3b2D

by (2.2). This contradicts D < 0.
Next, we suppose that a is even. Then b is also even. By puttinga = 2uand b = 2v
with u, v € Z, we have

2k 4 /2% — 31 = (u+ v/ DY. (2.3)
Then we have
2k = u@i){z (p )w—zf‘—‘uzfu'. 2.4)
i Y

Considering (2.4) modulo p, we obtain
2K = u (mod p). (2.5)

Here, we note that the parities of u and v are different because the norm of u + v/D is
odd (especially a power of 3). When u is odd and v is even, the right-hand side of (2.4)
is odd, which leads a contradiction. Hence, u is even and v is odd. Since

(r-1)/2 (r-1)/2
Z p. W I WA D =/ Z p. W= I3 I D P~ pe-b/2
i Y = Y

is odd, we have

26 — 4u. (2.6)
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From (2.5), (2.6) and p > 3, we have u = 2. Then we can rewrite the relation (2.3) into
the following:

2k 4 2%k — 30 = (2K + v/ DY. (2.7)

Let us express 22F — 3" = v%D (vo € Z, vy > 0). Considering the norm of both sides of
(2.7), we have

—v2D 2% = 3r,

Then we obtain two positive integer solutions (x, y) = (v, 1), (v, n/p) of the equation
—Dx* + 2% =3,

This contradicts Lemma 2.2. The proof of Lemma 2.3 is completed. O

Proof of Theorem 1.2. Puta := 2% + /22 — 31 Then we have 3 { @ and N(«) = 3",
where N is the norm map of Q(+/2% — 37)/Q, and hence («) = a” for some ideal a of
Q(+/22k — 3m). Denote the order of the ideal class [a] by s. It is clear that s | n. Now let
us express a* = (), where 8 is an integer in Q(+/2%¢ — 37). Then by putting n = sm for
some positive integer m, we have

(@=a"=(@)" = ()" = (B").

We see that 3” — 2% is not square because it is congruent to — 1 modulo 3. Hence we have
Q(+/2% — 3m) £ Q(+/—1). Moreover, we immediately have Q(+/22k — 37) £ Q(+/=3).
Thus, the only units in Q(+/2% — 37) are &1, and hence we get

toa ="

When n = 2, it must hold that k = 1. Since +« = +(2 + +/—5) is not a square in
Q2% —32) = Q(v/—=5), wehave m = 1. When n > 3, we obtain m = 1 by Lemma 2.3.
Therefore, we obtain s =n in any case. This implies that the class number of
Q(+/2% — 3n) is divisible by n. The proof is completed. ]
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