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Abstract. We prove that the class number of the imaginary quadratic field
�(

√
22k − 3n) is divisible by n for any positive integers k and n with 22k < 3n, by

using Y. Bugeaud and T. N. Shorey’s result on Diophantine equations.
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1. Introduction. In [1], N. C. Ankeny and S. Chowla proved

THEOREM 1.1. [1, Theorem 1] Let n be an even positive integer and d := x2 − 3n be
a square-free integer with 2 | x and 0 < x < (2 · 3n−1)1/2. Then the class number of the
imaginary quadratic field �(

√
d) is divisible by n.

The aim of the present paper is to remove the conditions ‘even’ and ‘square-free’
in the above theorem for the case where x is a power of two. Namely, we will prove

THEOREM 1.2. For any positive integers k and n with 22k < 3n, the class number of
the imaginary quadratic field �(

√
22k − 3n) is divisible by n.

B. H. Gross and D. E. Rohrlich [3] (resp. H. Ichimura [5]) proved that the class
number of the imaginary quadratic field �(

√
1 − 4an) (resp. the real quadratic field

�(
√

a2n + 4)) is divisible by n for any odd integer n ≥ 3 and any integer a ≥ 2 (resp.
for any integer n ≥ 2 and any odd integer a ≥ 3). Our main theorem is a similar result
of these ones.

REMARK 1.1. By putting b = 2k and m = 3 in Mollin’s theorem [6, Theorem 3.1],
we can show that if 22k − 3n is square-free, then the class number of �(

√
22k − 3n) is

divisible by n.

To prove Theorem 1.2, we use the same method as [5] and need a result of
Y. Bugeaud and T. N. Shorey which states the following:

Let Fn (resp. Ln) denote the nth number in the Fibonacci sequence (resp. Lucas
sequence) defined by F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn (n ≥ 0) (resp. L0 = 2, L1 = 1
and Ln+2 = Ln+1 + Ln (n ≥ 0)). For λ ∈ {1,

√
2, 2}, we define the sets F ,Gλ,Hλ ⊂

� × � × � by

F := {(Fk−2ε, Lk+ε, Fk) | k ≥ 2, ε ∈ {±1}},
Gλ := {(1, 4pr − 1, p) | p is an odd prime, r ≥ 1},
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Hλ :=

⎧⎪⎨
⎪⎩(D1, D2, p)

∣∣∣∣∣∣∣
there exist positive integers r, s, D1, D2 and an odd

prime p with gcd(D1, D2) = 1 and p � D1D2 such that

D1s2 + D2 = λ2pr and 3D1s2 − D2 = ±λ2

⎫⎪⎬
⎪⎭ ,

except when λ = 2, in which case the condition ‘odd’ for p should be removed in the
definitions of Gλ and Hλ.

THEOREM 1.3 [2, Theorem 1]. Given λ ∈ {1,
√

2, 2}, a prime p and positive coprime
integers D1 and D2, the number of positive integer solutions (x, y) of the equation

D1x2 + D2 = λ2py

is at most 1 except for

(λ, D1, D2, p) ∈ E :=
{

(2, 13, 3, 2), (
√

2, 7, 11, 3), (1, 2, 1, 3), (2, 7, 1, 2),

(
√

2, 1, 1, 5), (
√

2, 1, 1, 13), (2, 1, 3, 7)

}

and

(D1, D2, p) ∈ F ∪ Gλ ∪ Hλ.

2. Proofs. First, we show two lemmas on Diophantine equations.

LEMMA 2.1. The equation

2x − 3y = ±1

has only three positive integer solutions (x, y) = (1, 1), (2, 1), (3, 2).

Proof. This can be easily proved by taking modulo some power of two. See details
in [4]. �

LEMMA 2.2. Let k and D1 be positive integers. Then the number of positive integer
solutions (x, y) of the equation

D1x2 + 22k = 3y

is at most 1.

Proof. It is easily seen that (1, D1, 22k, 3) �∈ E and (D1, 22k, 3) �∈ G1 for any positive
integers k and D1. Suppose that (D1, 22k, 3) ∈ F . Then we have k = 1 and D1 = 8.
In this case, the equation 8x2 + 4 = 3y has no integer solutions. Next suppose that
(D1, 22k, 3) ∈ H1. Then both D1s2 + 22k = 3r and 3D1s2 − 22k = ±1 hold for some
positive integers r and s. Hence, we have

22(k+1) = 3r+1 ∓ 1,

which is impossible by Lemma 2.1. Thus, we have (D1, 22k, 3) �∈ H1. The proof is
completed. �

The following is the key lemma for the proof of our main theorem.
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LEMMA 2.3. Let k and n be positive integers with 22k < 3n and n ≥ 3, and put
α := 2k + √

22k − 3n ∈ �(
√

22k − 3n). Then ±α is not a pth power in �(
√

22k − 3n) for
any prime p.

Proof. Let p be a prime number and let D denote the square-free part of 22k − 3n.
Then D is a negative odd integer.

First, we consider the case p = 2. Assume that α is a square in �(
√

22k − 3n);

α =
(

a + b
√

D
2

)2

(a, b ∈ �, a ≡ b (mod 2)).

Then we have

2k +
√

22k − 3n = a2 + b2D
4

+ ab
2

√
D. (2.1)

Let us express 22k − 3n = Dm2 for some non-zero integer m. We see that m must
be congruent to 1 or −1 modulo 4. Then equation (2.1) implies ab = 2m, which is
congruent to 2 modulo 4, a contradiction. Therefore, α is not a square in �(

√
22k − 3n).

By the same argument, we can show that −α is not a square in �(
√

22k − 3n).
From now on we assume p ≥ 3. If −α is a pth power in �(

√
22k − 3n), then so α.

It is therefore sufficient to prove that α is not a pth power in �(
√

22k − 3n). Assume,
for a contradiction, that α is a pth power in �(

√
22k − 3n);

α =
(

a + b
√

D
2

)p

(a, b ∈ �, a ≡ b (mod 2)).

Then we have

2k +
√

22k − 3n = 1
2p

⎧⎨
⎩

(p−1)/2∑
j=0

(
p
2j

)
ap−2jb2jDj + w

√
D

⎫⎬
⎭

for some w ∈ �, where
(p

j

)
denotes the binomial coefficient. Hence we obtain the

relation

2k+p = a
(p−1)/2∑

j=0

(
p
2j

)
ap−2j−1b2jDj. (2.2)

It is easily seen that a divides 2k+p.
First, we suppose that a is odd. Then b is also odd and a is equal to ±1. Since α

is an integer in �(
√

22k − 3n), we have D ≡ 1 (mod 4) in this case. Assume that k = 1.
Considering (2.2) modulo p, we have

4 ≡ a = ±1 (mod p),

and hence (a, p) = (1, 3) or (a, p) = (−1, 5). If (a, p) = (1, 3), then we have

5 = b2D
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by (2.2). This contradicts D < 0. If (a, p) = (−1, 5), then we have

−13 = 2b2D + b4D2

by (2.2). This is also a contradiction because the equation −13 = 2X + X2 has no
solutions in �, and so in particular none in �. Hence, k must be greater than or equal
to 2. Recalling that D ≡ 1 (mod 4), we have

22k − 3n ≡ D ≡ 1 (mod 4).

Therefore, n must be odd. Since the square of any odd integer is congruent to 1 modulo
8, we have

D ≡ 22k − 3n ≡ −3 ≡ 5 (mod 8).

In this case, we can easily see that for a positive integer m,(
a + b

√
D

2

)m

∈ �[
√

D] ⇐⇒ 3 | m.

Then p must be equal to 3, and hence we have

2k+3 = 1 + 3b2D

b y (2.2). This contradicts D < 0.
Next, we suppose that a is even. Then b is also even. By putting a = 2u and b = 2v

with u, v ∈ �, we have

2k +
√

22k − 3n = (u + v
√

D)p. (2.3)

Then we have

2k = u
(p−1)/2∑

j=0

(
p
2j

)
up−2j−1v2jDj. (2.4)

Considering (2.4) modulo p, we obtain

2k ≡ u (mod p). (2.5)

Here, we note that the parities of u and v are different because the norm of u + v
√

D is
odd (especially a power of 3). When u is odd and v is even, the right-hand side of (2.4)
is odd, which leads a contradiction. Hence, u is even and v is odd. Since

(p−1)/2∑
j=0

(
p
2j

)
up−2j−1v2jDj = u2

(p−1)/2∑
j=0

(
p
2j

)
up−2j−3v2jDj + pvp−1D(p−1)/2

is odd, we have

2k = ±u. (2.6)

https://doi.org/10.1017/S001708950800462X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950800462X


THE DIVISIBILITY OF THE CLASS NUMBER 191

From (2.5), (2.6) and p ≥ 3, we have u = 2k. Then we can rewrite the relation (2.3) into
the following:

2k +
√

22k − 3n = (2k + v
√

D)p. (2.7)

Let us express 22k − 3n = v2
0D (v0 ∈ �, v0 > 0). Considering the norm of both sides of

(2.7), we have

−v2D + 22k = 3n/p.

Then we obtain two positive integer solutions (x, y) = (v0, n), (v, n/p) of the equation

−Dx2 + 22k = 3y.

This contradicts Lemma 2.2. The proof of Lemma 2.3 is completed. �
Proof of Theorem 1.2. Put α := 2k + √

22k − 3n. Then we have 3 � α and N(α) = 3n,
where N is the norm map of �(

√
22k − 3n)/�, and hence (α) = an for some ideal a of

�(
√

22k − 3n). Denote the order of the ideal class [a] by s. It is clear that s | n. Now let
us express as = (β), where β is an integer in �(

√
22k − 3n). Then by putting n = sm for

some positive integer m, we have

(α) = an = (as)m = (β)m = (βm).

We see that 3n − 22k is not square because it is congruent to −1 modulo 3. Hence we have
�(

√
22k − 3n) �= �(

√−1). Moreover, we immediately have �(
√

22k − 3n) �= �(
√−3).

Thus, the only units in �(
√

22k − 3n) are ±1, and hence we get

±α = βm.

When n = 2, it must hold that k = 1. Since ±α = ±(2 + √−5) is not a square in
�(

√
22 − 32) = �(

√−5), we have m = 1. When n ≥ 3, we obtain m = 1 by Lemma 2.3.
Therefore, we obtain s = n in any case. This implies that the class number of
�(

√
22k − 3n) is divisible by n. The proof is completed. �
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