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SUMMARY

An approximate expression is derived for the rate of change in fre-
quency of an inversion introduced at a low initial frequency into a multi-
locus system at equilibrium under recombination and selection. It is
shown that this expression gives accurate predictions of the rate of
progress of the inversion, even if the initial population is perturbed
somewhat from equilibrium. Extensions to the cases where there are sex
differences in recombination and selection are considered. An implication
of the results is that selection pressure for newly arisen inversions depends
on the existence of a stable equilibrium with linkage disequilibrium. The
expected chance of survival of a new inversion in a large population is
shown to be approximately one half the square root of the loss in fitness
due to recombination.

1. INTRODUCTION

Cytological and genetic observations of many species of plants and animals
have revealed polymorphisms for chromosome rearrangements which reduce
crossing-over when heterozygous. The best-studied case of such polymorphism
is that of the paracentric inversions of the third chromosome of Drosophila pseudo-
obscura, which has been exhaustively investigated by Dobzhansky and his asso-
ciates. Several theories have been proposed to account for the maintenance of
these polymorphisms by natural selection. Perhaps the simplest is that the
chromosome rearrangements are associated with position effects which confer an
advantage on the heterozygotes. Some evidence for this view has been presented
by Sperlich (1959), for the case of inversion polymorphisms in D. subobscura.
Another theory was proposed by Sturtevant & Mather (1938), and elaborated by
Kojima (1967), Nei, Kojima & Schaffer (1967) and, most recently, by Ohta (1971).
It states that the superior fitness of heterozygotes for chromosome rearrangements
suppressing crossing-over (for brevity, we will refer to such rearrangements as
inversions in what follows) is due to the accumulation by chance of different
recessive, partially recessive or over-dominant mutations in different rearrange-
ments. Homozygotes for inversions will, on average, thus be homozygous for more
genes reducing fitness when homozygous than inversion heterozygotes.

These two theories fail to account for the observations of Dobzhansky's school
on the behaviour of artificial populations of D. pseudoobscura formed from mixtures
of races of different geographic origin. Although, for example, the arrangements
AR and CH come to a stable and repeatable polymorphic equilibrium when the two
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sequences are derived from the same locality, there may be no stable equilibrium
(and the results of replicate experiments are usually highly unpredictable) when
AR is derived from a different locality from CH (Dobzhansky, 1951). These
observations led Dobzhansky (1951) to propose that inversion polymorphisms
are maintained because the suppression of crossing-over in inversion heterozygotes
reduces the average rate at which recombination breaks up favourable complexes
of genes on the same chromosome. On this theory, different populations may tend
to develop different sets of interacting (coadapted) genes associated with the same
inversion, and this explains the findings in the inter-population crosses.

This theory is related to the idea, put forward by Fisher (1930), that genetic
factors reducing crossing-over will be favoured in populations polymorphic for
two loci, whose alleles interact in such a way that the combinations AB and ab
have superior fitness to the combinations Ab and aB. The lower the amount of
crossing-over between the two loci, the lower the rate at which the unfavourable
combinations of alleles are produced in the double heterozygote ABjab. This theory
has been made more precise by the mathematical investigations of, among others,
Kimura (1956), Haldane (1957), Lewontin & Kojima (1960), Bodmer & Felsenstein
(1967), Nei (1967), Turner (1970), Lewontin (1971), Deakin (1972) and Feldman
(1972). I t does not appear, however, that a general deterministic theory of the
conditions for establishment of a new inversion has been developed. In this paper,
we hope to contribute to the development of such a theory.

We will derive a simple expression for the rate of change in frequency of an
inversion introduced at a low frequency into an infinitely large population at
equilibrium under selection for an arbitrarily large number of loci. It turns out
that the inversion will spread at a significant rate only if introduced into a gamete
whose marginal fitness is greater than the mean fitness of the population; the
rate of change of the inversion frequency is proportional to the deviation of this
marginal fitness from the population mean fitness. This implies that there is
effectively no selection for an inversion if the initial population is in linkage
equilibrium. Gene interaction is thus, in itself, insufficient to favour inversion
polymorphism, although it is a necessary condition.

2. THEORY

Let us consider a population segregating for an arbitrary number of autosomal
loci, such that there are n types of gametes with frequencies xx, x2, ..., xn. Let
tha relative fitness of the genotype formed by the union of the ith and^'th gametic
types be w^ (we assume that generations are distinct and that there are no fitness
differences between the sexes). Provided that the parameters of recombination
are the same in both sexes (this restriction will be removed later), we can write
the following general equation for the change in frequency from one generation
to the next of the ith gametic type in a random mating population (cf. Lewontin,
1964),

= ^ ^ ) ( 1 )

w
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where wit is the marginal fitness of the ith gametic type (wi- = '%ZjWii), w is the

population mean fitness (w = S ^ ^ i ) and /oi is a parameter measuring the con-
ii

tribution of cross-over events to the change in xi.
At equilibrium, we have

w
If there is complete linkage equilibrium at equilibrium, then wi% ~ w and pi = 0

for all i. If there is linkage disequilibrium at equilibrium, then some of the pt

must be negative and some positive, although (for systems of greater complexity
than two loci each with two alleles) some may be zero. We may speak of gametes
for which pi > 0 as being in excess and those for which pi < 0 as in deficiency,
although (except for the two-locus, two allele case) it does not follow that their
frequencies are necessarily respectively greater or smaller than those expected on
the basis of random combination of alleles at different loci.

We shall now consider the fate of a newly arisen inversion covering the region
containing the loci in question. The inversion is assumed to be introduced into
a large, equilibrium population, and its initial frequency is assumed to be small,
as would be the case if it arose by a mutation. Since such a mutation is effectively
a unique event and since all but very large inversions, when heterozygous, com-
pletely suppress crossing-over in and around the chromosome segment between
their breakpoints, we can assume that the inversion is introduced into only one
type of gamete, with which it remains associated indefinitely. We will also assume
that the fitnesses of the carriers of the inversion are exactly the same as non-
inversion individuals of the same genotypes.

Let the inversion be introduced into the ith gametic type. Let the frequency of
the inversion among the ith gametic type be q, the overall frequency of the in-
version be y, and the overall frequency of the ith type of gamete be x^ Since the
inversion, when heterozygous, completely suppresses crossing-over among the
genes we are considering, we have in any generation

y (»<-«) ( 3 )
=

w

where wi = ^x^w^, w = Yixiwi.> as before.

The frequencies of the other gametic types in the population, including the
non-inverted ith gamete, will in general be perturbed from their equilibrium
values by quantities of the order of y, owing to their encounters with the inversion
in heterozygotes. We can therefore write:

w = w + O(y)
so that equation (3) becomes

Ay = ys + O(y*) (4)
12 GRH 21
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where 5 = —^— = ^ .
W %i

Since y = qxit we have

= x^q + Oiqy)

so that Aq = qt + O(q2) (5)

, wt —w p,
where t = l- A = £ | .

xjw %i
An equation similar to equation (4) is given by Kimura (1956) for a special case

of a two-locus system.
Equations (4) and (5) demonstrate that both the overall frequency of the in-

version and its frequency among gametes of the ith type will change initially at
rates dependent on pt. If p{ > 0, y and q will increase; if pi < 0, the inversion
will be eliminated; if px = 0, the change in the inversion frequency will be at most
of the order of the square of its frequency. For an inversion introduced by mutation
into a large population, such changes are negligible.

These results can be summed up by saying that a newly arisen inversion will
be selected for in a large population only if it is introduced into a gamete present
in excess at equilibrium, and that the selection coefficient in favour of the in-
version is equal to the deviation of the equilibrium marginal fitness of the gamete
concerned from the mean fitness of the equilibrium population, relative to the
latter.

In the special case of two loci with alleles A, a and B, b respectively, there are
four gamete types AB, Ab, aB and ab, with frequencies xlt x2, x3 and £4. The
coefficient of linkage disequilibrium, D, is defined as x1xi — x2x3, and in this case
we have

wHRD
Pi = ±—^=—w

where R is the recombination fraction, wH is the fitness of the double heterozygote
A /a B/b, and the sign is positive for x1 and x4 and negative for x2 and £3 (Lewontin &
Kojima, 1960).

Equations (4) and (5) thus become

^ ^ (6)
tw

and A? = ± g ^ P + 0fe«). (7)
x\w

In the next section of this paper, we will illustrate the adequacy of the approxi-
mations made in deriving the above formulae by comparing the predictions of
equations (4) and (5) with the results of exact calculations of population trajectories
for systems of two, three and five loci.
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3. NUMERICAL TESTING OF FORMULAE

The results derived above were tested by first determining the equilibrium for
a given set of fitnesses, recombination parameters and initial gamete frequencies,
by iteration of the appropriate recurrence relations for the system "without the
inversion, using the formulae and methods of Lewontin & Kojima (1960) for two-
locus systems, Kojima & Klekar (1969) for three-locus systems, and Lewontin
(1964) for the five-locus case. Only cases with two alleles at each locus were studied.
Using the equilibrium gamete frequencies obtained in this way, the selection co-
efficients s and t of equations (4) and (5) can be calculated for an inversion intro-
duced into a given type of gamete. These coefficients can be used to calculate the
expected values of Ay and kq (given the current values of y and q), which can be
compared with the values obtained by direct calculation of the course of change of
the system, incorporating the presence of the inversion.

Some results of these computations are given in Tables 1, 2 and 3. Table 1 gives
the results for two two-locus systems, with the inversion introduced at an initial
q of 0-005 into a gametic type (AB) present in excess. In both of the cases shown,
agreement between the theoretical values of Ay and Aq and those obtained by
direct calculation was good, up to frequencies of the inversion of 5 % or so. In
both cases, the inversion increases steadily in frequency, at the expense of the
non-inverted gamete with the same genotype. By the 200th generation, the in-
version has risen to a frequency of 50 % in case (a), and represents nearly 100 %
of all the AB gametes; in case (b), the corresponding values are 25 and 50%.

Table 1. Selection for inversions in two-locus systems

(a) Symmetric fitness matrix (6) Asymmetric fitness matrix

BB
Bb
bb

AA
0-6
0-2
0-6

Aa
0-8
10
0-8

aa
0-6
0-2
0-6

BB
Bb
bb

AA
0-606
0-200
0-560

Aa
0-800
1-000
0-750

aa
0-602
0-180
0-600

R = 0-10, D = 0144, s = 0-052, t = 0-132 R = 0-05, D = 0-205, s = 0-026, t = 0-050

All values x 103

(o) (6)

Aq Ay Aq
Genera- , * ^ ,

tion y Found Exp. Found Exp. y Found Exp. Found Exp.
10
20
30
40
50
60
70

311
5-18
8-59
14-21
23-43
38-36
62-02

80 9819
90 149-97
100 216-78

0-16
0-27
0-44
0-73
119
1-92
2-99
4-44
607

016
0-27
0-45
0-74
1-22
2-00
3-23
512

0-41
0-68
1-11
1-82
2-92
4-60
6-98

0-41
0-68
113
1-86
305
4-94
7-86

3-30
4-30
5-50
7-10
9-20
11-80
1500

9-94 1218 19-40
7-82 12-88 18-07 24-80

0-09
011
0-14
0-18
0-23
0-30
0-38
0-49
0-62

009
0-11
014
0-18
0-24
0-30
0-39
0-50
0-64

7-28 11-30 14-58 25-57 31-70 0-78 0-82

017
0-21
0-27
0-35
0-45
0-58
0-74
0-94
118
1-49

0-17
0-21
0-28
0-36
0-46
0-59
0-75
0-97
1-23
1-57
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Table 2. Selection for inversions in three- and five-locus systems

(a) Three-locus system (b) Five-locus system

Fitness matrix

AA Aa aa

BB CC 0-500 0-181 0-500
Cc 0-138 0-241 0-138
cc 0-500 0-181 0-500

Bb CC 0-655 0-759 0-655
Cc 0-793 1-000 0-793
cc 0-655 0-759 0-655

bb CC 0-500 0-181 0-500
Cc 0-138 0-241 0138
cc 0-500 0-181 0-500

s = 0-025, t = 0-054

Number of loci
heterozygous

0
1
2
3
4
5

s = 0-037, t

Fitnes

0074
0111
0-222
0-407
0-667
1-000

= 0-085

All values x 103

(a) (6)

Ay Aq Ay Aq
G e n e r a - , ^———* , * s , K

 v , A—
tion y Found Exp. Found Exp. y Found Exp. Found Exp.

10 5-93 0-15 0-15 • 0-32 0-32 6-32 0-23 0-24 0-53 0-54
20 7-57 0-19 0-19 0-40 0-41 9-06 0-33 0-34 0-75 0-77
30 9-65 0-24 0-24 0-51 0-52 12-97 0-47 0-48 1-06 1-10
40 12-23 0-30 0-31 0-64 0-66 18-50 0-64 0-69 1-45 1-51
50 15.64 0-38 0-39 0-81 0-84 26-26 0-93 0-98 2-07 2-21
60 19-87 0-48 0-50 1-02 1-07 37-05 1-28 1-38 2-84 3-11
70 25-68 0-60 0-64 1-28 1-35 50-16 1-68 1-87 3-72 4-19
80 31-79 0-75 0-79 1-59 1-70 71-55 2-23 2-67 4-99 5-94
90 40-02 0-92 1-00 1-96 2-14 97-26 2-93 3-63 6-29 802

100 50-16 1-13 1-25 2-40 2-70 129-51 3-59 4-83 7-56 10-58

Table 2 shows some similar results for three and five-locus systems. Part (a)
shows a three-locus case, with loci in the order ABC, with the map distance
between adjacent loci 1-9 cM and no interference. The inversion was introduced
with a q of 0-01 into the gamete aBG, which made up 46-4% of the initial popula-
tion. Part (b) shows a system with five loci. Here, the map distance between
adjacent loci was 1 cM, and interference was complete. The fitness of a genotype
was determined solely by the number of loci for which it was heterozygous, the
effect of increased heterozygosity increasing (on a linear scale) with the level of
heterozygosity. In this case, the gamete into which the inversion was introduced
(again with q = 0-01) was present at a frequency of 43-9 % in the initial population.
In both these cases, and in many others studied, agreement between the expected
and observed values of Ay and &q was very good, provided that the values of y
and q respectively were below about 5%. Above this level, the fit becomes pro-
gressively worse as y and q increase.

When the inversion is introduced into a gamete in deficiency at equilibrium, it
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is rapidly eliminated in accordance with equations (4) and (5). For example, with
the fitness matrix of Table l(a) and R = 0-10, when an inversion is introduced
into a deficient gamete with an initial q of 0-005 and y of 0-0005, y is reduced to
less than 0-000001 and q to 0-000009 by generation 30, at rates which agree with
those predicted by equations (4) and (5).

With certain types of fitness interactions, notably with the two-locus systems
studied by Lewontin & Kojima (1960) or with multiplicative heterotic interactions,
it is possible, with suitable recombination parameters, to have equilibria with
no linkage disequilibrium. In such cases, the change in y and q should be, at most,
of order y2 and q% respectively. This is found to be the case in practice, so that with
values of y less than 1 % or so, there is virtually no change in frequency of the
inversion, even after several hundred generations. For example, with the fitness
matrix of Table 1 (a) and R = 0-20, there is a stable equilibrium with D = 0 in
the absence of inversions. An inversion introduced with an initial q of 0-005 and
y of 0-00125 reached q = 0-00648 and y = 0-00163 after 200 generations. This
represents a very slight selection pressure, corresponding to effective s and t of
0-00013 and 0-0013 respectively, compared with their theoretical value of zero.

If, however, an inversion is introduced at a high enough initial frequency,
selection can increase its frequency quite rapidly, even if the initial population
is in linkage equilibrium. An example of this is shown in Table 3. With this fitness
matrix, an inversion introduced into an AB gamete, with an initial y of 0-0025,
increased its frequency to only 0-0029 after 200 generations. In part (a) of Table 3,
it can be seen that the inversion increases slowly when introduced at a y of 0-0125
(after 200 generations, it reaches y = 0-035). With higher initial frequencies, as

Table 3. Effect of initial frequency on the progress of an inversion introduced into a
two-locus system in linkage equilibrium

Generation

10
20
30
40
50
60
70
80
90

100

Fitness matrix

BB
Bb
bb

R= 0-

(a) Initial y =

y

12-8
131
13-5
140
14-6
15-2
15-8
16-6
17-3
18-2

Ay

0-03
004
005
0-05
006
0-06
007
0-08
008
0-09

AA

0-250
0-625
0-250

10, D

All

= 0, 8

values x

= 0-0125

0-10
0-12
016
0-19
0-21
0-23
0-26
0-28
0-30
0-33

Aa

0-375
1-000
0-375

= 0, t =

103

t

y

29-5
32-2
35-2
38-7
42-9
48-0
54-2
620
721
85-3

aa

0-250
0-625
0-250

0

(6) Initial y =
A

Ay

0-26
0-28
0-33
0-35
0-46
0-56
0-70
0-89
116
1-55

0-025

Aq

0-96
101
112
1-20
1-51
1-81
2-19
2-70
3-34
4-30
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54

48

42

36

£-30

24

18

12

6 12 18 24 30 36 42 48
Observed change in inversion frequency ( x 103)

54

Fig. 1. Exact values of Ay/y five generations after the introduction of the inversion,
at an initial q of 0-01, plotted against the predicted values. The fitness matrices of
Table 1 (a) and Table 3 were used.

in part (b) of Table 3, the inversion increases more rapidly (to y = 0-15 after
200 generations, with initial y = 0-025). With an initial y of 0-05, the inversion
reaches its equilibrium frequency of 0-50 after only 120 generations.

These results demonstrate that an inversion is effectively neutral when intro-
duced at a low frequency into an equilibrium population in linkage equilibrium,
but may be selected for strongly in such a population when its initial frequency
is high enough.

The accuracy of equation (4) in predicting the rate of progress of a low frequency
inversion is illustrated graphically in Fig. 1, in which the exact values of Ay/y five
generations after the introduction of the inversion, with an initial q of 0-01, are
plotted against the values of s obtained from the appropriate equilibrium formulae.
The fitness matrices of Tables 1 (a) and Table 3 were used.

4. FACTORS AFFECTING THE SELECTION COEFFICIENT OF AN INVERSION
It is of some interest to consider how the selection coefficient of a newly arisen

inversion in a gamete in excess at equilibrium is affected by the factors determining
the nature of the equilibrium population: the level of epistatic selection and the
recombination parameters for the genes involved. It is fairly obvious that, other
things being equal, the greater the amount of epistasis, the greater the selection
coefficients s and t are likely to be. In the case of the symmetric fitness, two-locus
model of Lewontin & Kojima (1960), the amount of epistasis can be summed
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005 -

004 -

003 -

= 0-6

2 4 6 8 10 12 14 16
Recombination fraction

Fig. 2. Upper graph: Values of s plotted against R for two different fitness matrices.
Lower graph: D plotted against R, for the same fitness matrices.

up in a single parameter e, which measures the difference between the effects of
making locus A heterozygous in heterozygotes and homozygotes for locus B,
relative to the fitness of A/a B/b. The fitness matrices of Table 1 (a) and Table 3
are of the symmetric type: e is 0-6 for the former, and 0-25 for the latter. In Fig. 2,
the values of s and D for these fitness matrices are plotted against R. I t will
be seen that the curve of s for the system with higher e is mostly the liigher of the
two.

Recombination affects the selection coefficient in a more complex way. As can
be seen from Fig. 2, there may be an optimum value of R. Interestingly enough,
the selection coefficient is not an increasing function of the amount of linkage dis-
equilibrium. This is obvious from the fact that the pi must be zero when linkage
is complete, and also when it is loose enough for no disequilibrium to exist. In the
two-locus examples just discussed, D decreases steadily with increasing R, whereas
the maximum in s occurs quite near the point above which D = 0. This also seems
to be true for systems involving more than two loci, where the advantage of
heterozygosity increases with the number of loci already heterozygous. Quite high
selection coefficients can be obtained with only moderate linkage disequilibrium;
for example, with the curve of Fig. 2 corresponding to the fitness matrix of
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2 4
x

0-25

0-20

015

010 I

005

0-1 0-2 0-3 0-4
Recombination fraction between adjacent genes

0-5

Fig. 3. Values of s and gamete frequency, for the gamete Abe,
plotted against recombination fraction.

Table 1 (a), an s of 0-04 is obtained when D = 0-056, i.e. when the gametes AB
and ab each have frequencies of 0-306, compared with frequencies of 0-194 for the
deficient gametes Ab and aB.

With more complex fitness interactions, the pattern of relationship of s with
the amount of recombination may be more complex. With the general symmetric
two-locus fitness matrix of Bodmer & Felsenstein (1967), for example, it is im-
possible for equilibria with D = 0 to exist, so that there is always some selection
pressure for an inversion regardless of R. A similar three-locus case, with an
asymmetric fitness matrix, is illustrated in Fig. 3. The map distances A —B and
B — C were the same and there was no interference. It will be seen that s, for
the gamete Abe, increases continuously with map distance, while the frequency
of Abe in the initial population falls from about 26 % (with no recombination) to
14% (with independent assortment).

5. SEX DIFFERENCES IN RECOMBINATION AND FITNESS

Up to now, we have assumed that the recombination and fitness parameters
are the same for both sexes. Providing that the fitnesses and gamete frequencies
do not differ too much between the sexes, the arguments of § 2 of this paper can
be extended to the more general case, as follows. Consider first the case when only
the cross-over values differ in males and females. We can write the frequency of
the ith gametic type among gametes produced by females as xif, and the corre-
sponding frequency for paternally-derived gametes as xim. If xi is the average of
xif and xim, we can write xif = xi + 8i and xim = x% — 8^ It will be assumed that
terms O{8\) can be neglected. Write wif for the marginal fitness of maternal gametes
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of the ith type, and wim for the corresponding function for paternal gametes. We
have

"it = S X)mWiP

W = S <«*/«></ = 2 %mWiTO

and so:
•-Pi,

'-Pirn- . (86)
w

pif and pim are parameters measuring the effects of cross-over events in multiple
heterozygotes on the frequencies of the ith gametic type in males and females
respectively. pif is a function of the form

x x1 (XitXi "4-Xi Xit) R\} {Qcb\

where R$ measures the contribution to Axif of cross-over events in females formed
from the union of the Arbh and Ith gametic types.

If we neglect terms 0(S2), equation (9a) can be written as

p. _ v x x Rf1^ (96)
kl

Similarly, we can write
Pim ~ ZJ •ck'cl-akl Vlu^

kl

where i?^ ' ^ a s ajl analogous meaning to Rk
1}.

Substituting equations (96) and (10) into equations (8), and neglecting terms
0{S2), we get

W kl

"= 2 xkxl^'kl'

where wi_ = 2 xjwu-

If we write Pi = | S Jig> + i S -R^, we get

1 M; r t
M;

This is of identical form to equation (1), and shows that, to an accuracy of the
order of the square of the differences between maternal and paternal gamete
frequencies, the mean of the recombination parameters in males and females can
be used as the measure of recombination in predicting the change in gamete fre-
quencies under the joint action of recombination and selection. This may be com-
pared with the similar finding of Geiringer (1948) for the case of no selection.
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Table 4. Selection for an inversion in a two-locus system with
no crossing-over in males

Initial equilibrium
gamete frequencies

AB
Ab
aB
ab

0-375
0125
0-125
0-375

0-416
0-084
0-084
0-416

s = 0053, t = 0-133
All values x 103

Ay Aq

Generation
10
20
30
40
50
60
70
80
90

100

y
1-68
2-86
4-83
8-15

13-38
22-44
37-41
62-00

100-40
152-18

Found

009
0-16
0-26
0-44
0-72
1-20
1-94
3-05
4-56
6-22

Exp.

009
0-15
0-25
0-43
0-70
1-18
1-97
3-26
5-28
8-00

Found

0-23
0-39
0-65
1-09
1-80
2-93
4-65
7-11

10-18
1318

Exp.

0-23
0-38
0-64
1-08
1-80
300
4-91
7-91

12-35
18-40

When there are differences in fitness between the sexes, an analogous argument
holds good, provided that the squares of the sex differences in gamete frequency
and fitness, and also of the changes in gamete frequencies per generation, can be
neglected. The measure of fitness is the average of the male and female fitnesses.

Combining these results, it is obvious that expressions similar to equations (4)
and (5) can be derived for these more general cases with the above assumptions.
Gamete frequencies, fitnesses and recombination parameters are all to be measured
as averages for the two sexes.

This result is of particular importance in the case of organisms, such as many
Drosophila species, where recombination is restricted to one sex. An example of
the process of selection for an inversion in such a system is given in Table 4.
The fitness matrix of Table 1 (a) was used, with an R of 0-20 in females and 0 in
males. The inversion was initially introduced into maternal gametes with a q of
0-005. As may be seen from the table, the selection coefficients s and t, as calculated
from the composition of the equilibrium population lacking the inversion (which
was found by iteration of the appropriate equations), are very close to their corre-
sponding values for the case of equal recombination (R = 0-10) in both sexes.
The agreement between the exact and approximate theoretical values of Aw and
Aq is not significantly worse than in the case of equal recombination.
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6. EFFECTS OF PERTURBATIONS FROM EQUILIBRIUM

So far, the results we have derived have been based on the assumption that the
initial population, into which the inversion is introduced, is in equilibrium under
the j oint action of selection and recombination. It is clearly of interest to investigate
how far our conclusions must be modified when the initial population is perturbed
from such an equilibrium state. We studied this question with various two-locus
systems. In general, it appears that when there is strong enough epistatic selection
to generate appreciable potential selection for inversions, the system returns back
towards the equilibrium so quickly that there is no serious disagreement between
the observed and expected rates of change.

Table 5 illustrates this conclusion for the fitness matrix of Table 1 (a), and
B = 0-10. In this case, the equilibrium gamete frequencies are xt = a;4 = 0-394
and x2 = xz = 0-106. In case (a) of the table, the inversion was introduced with
initial q = 0-005 into an AB gamete whose frequency was above its equilibrium
value, and which therefore tended to decrease in frequency in the initial genera-
tions (the initial gamete frequencies were chosen so that the decrease was due to
selection as well as recombination). In case (b) of Table 5, the inversion was intro-
duced into a population with AB in lower frequency than at equilibrium.

It will be seen in both these examples that the fit of the approximate equations
is somewhat worse than in the equilibrium case, but not greatly so. When the
inversion is introduced into a gamete which is deficient at the nearest equilibrium,
it is eliminated, even with considerable perturbations from equilibrium. For ex-

Table 5. Effect of perturbations from equilibrium of initial population on
the progress of inversions in two-locus systems

(a) Initial gamete frequencies. (b) Initial gamete frequencies.

ation y

10
20
30
40
50
60
70
80
90

100

3-21
5-35
8-93

14-85
24-54
40-22
6502

100-27
156-20
224-29

AB
Ab
aB
ab

Ay
A

1

Found

0-17
0-28
0-47
0-77
1-25
201
313
4-61
6-23
7-35

0-45
0-05
010
0-40

(a)

Exp.

017
0-28
0-47
0-77
1-28
210
3-39
5-23
81-4

11-69

8 = 0-052 t = 0-132
All values x 103

Aq

Found Exp.

0-44
0-72
117
1-91
307
4-82
7-26

10-27
1314
14-62

0-36
0-60
1-00
1-66
2-72
4-40
7-00

10-80
15-94
22-13

f

y

2-80
4-67
7-69

12-63
20-70
33-81
54-72
87-06

134-37
197-46

AB
Ab
aB
ab

Found

0-15
0-24
0-39
0-64
1-05
1-69
2-66
401
5-63
703

(b)
A

Ay

Exp.

015
0-24
0-40
0-66
1-08
1-76
2-85
4-53
7-00

10-29

0-30
0-20
0-12
0-38

Found

0-34
0-58
0-97
1-59
2-57
4-08
6-25
9-10

1214
14-31

Aq
A

Exp.

0-53
0-85
1-39
2-27
3-71
6-02
9-63

1504
22-61
3218
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ample, with the same fitness matrix and recombination fraction as above, when
the inversion is introduced with initial q = 0-005 into an Ab gamete in a population
with xx = 0-20, x2 = 0-30, x3 = 0-12 and x4 = 0-38, y is reduced to 0-0001 after
twenty generations. The quantitative agreement between the approximate and
exact values of Ay and A<? is slightly worse than in the corresponding equilibrium
case.

Several cases of an inversion introduced into a system perturbed from a D = 0
equilibrium were studied. Even when the inversion is introduced into a gamete
which is increasing temporarily in frequency, any marked increase in y and q is
confined to the first few generations (provided that the initial inversion frequency
is low), after which there is at most a very slow increase. For example, with the
fitness matrix and R of Table 3, an inversion introduced, with initial y = 0-0005,
into a population with gamete frequencies xx = 0-10, x2 = 0-20, x3 = 0-40 and
x4 = 0-30 increased to y = 0-00074 after five generations, fell to 0-00060 after
eighty generations, and reached 0-00072 after a thousand generations.

These results suggest that the effects of perturbations of the initial population
from its equilibrium state are relatively small. In particular, the qualitative con-
clusion that selection for an inversion is dependent on linkage disequilibrium, in
the equilibrium state from which the population has been perturbed, seems to
hold good.

7. DISCUSSION
One of the main conclusions of this work is that there will be appreciable selection

for newly arising inversions in multi-locus systems only if the population is at or
near an equilibrium with linkage disequilibrium. Feldman (1972) has reached the
same conclusion for the case of a modifier of recombination of arbitrary effect,
with the symmetric two-locus fitness matrix of Bodmer & Felsenstein (1967).
It has been widely assumed that epistasis with respect to fitness between the
genes located in the chromosome segment covered by an inversion is sufficient
for a new inversion to be favoured by selection. For example, Dobzhansky (1970)
writes: ' Inversions binding together coadapted gene complexes will be favoured
by natural selection'.

Since epistasis of fitness effects (on a linear scale) is necessary for the existence
of linkage disequilibrium at equilibrium (Kojima & Kelleher, 1961), it is also
a necessary condition for the selection of a newly-arisen inversion. But there are
several types of fitness interaction which can generate stable equilibria with no
linkage disequilibrium for certain ranges of the recombination parameters, e.g.
multiplicative fitness interactions (Lewontin, 1964; Bodmer & Felsenstein, 1967).
In such cases, as we have seen, there is virtually no selection in favour of a new
inversion, unless it is introduced at an appreciable frequency (y = 5% or more).
This finding explains the multi-locus simulation results of Fraser & Burnell (1967),
who failed to obtain any selection for an inversion unless it was introduced above
a certain critical frequency. The system they were using generated unstable
equilibria with no linkage disequilibrium.
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It is of course possible that an inversion introduced into a multi-locus system
with epistatic selection but no linkage disequilibrium may drift up to a high
enough frequency to be selected. In a large population of this sort, the chance of
incorporation of an inversion is likely to be of the order of the reciprocal of the
total population size, so that a very large number of mutations to inversions would
have to occur for a single polymorphism to become established. It seems somewhat
unlikely that the more than forty known inversion polymorphisms in a species
such as D. subobscura, for example, could be explained by such a mechanism,
in view of the extreme rarity of spontaneous mutation to new inversions in
Drosophila.

On the other hand, if an inversion appears in a gamete in excess in a population
at equilibrium, its chance of survival in a large population will be, from equation
(4), approximately 2s. This follows from the standard result of Fisher (1930). As
has been shown (Figs. 2 and 3), given large enough selection pressures and suitable
linkage relations, values of s as high as 2 % can be produced with quite slight
linkage disequilibrium.

It is of some interest to derive an expression for the expected chance of survival
of an inversion introduced into a multi-locus system. As we have seen from equa-
tion (4), the chance of survival of a new inversion occurring in a representative of
the ithtype of gamete is either approximately 2(wi_ — w)/w (wi > w) or 0(wi. ^ w).
The probability that a newly-arisen inversion occurs in the ith gametic type is xt.
The expected probability of survival of a new inversion is thus

i

(for vbi > w). This can be approximated as follows, if we assume a normal dis-
tribution for ($£ —w)/w with zero mean and variance a2. On this basis, there is
a probability of ^ that the inversion has a non-zero chance of survival. Using the
usual formula for the mean of a truncated normal distribution, the expected chance
of survival of an inversion is approximately

P = 2 x | x 2 x 0-45- = 0-8o\ (12)

It can be shown as follows that a is directly related to the loss in fitness produced
by recombination every generation in the equilibrium population. We can write
the change in mean fitness of a multi-locus system in an arbitrary generation as

AM; = A s -A r

where As is the change in fitness due to selection alone (i.e. not involving cross-
over probabilities), and Ar is the change due to recombination.

It follows from the multi-locus version of the fundamental theorem of natural
selection developed by Kojima & Kelleher (1961) that we have

As « 2wa2. (13)

At equilibrium, As = Ar. The loss in fitness of the equilibrium population due
to recombination is therefore equal to 2<oa-2, approximately. The mean fitness of
a hypothetical population formed by random union of gametes drawn from the
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equilibrium population after selection, but before recombination has taken place,
is therefore w( 1 + 2a2). We can thus define the genetic load due to recombination as

2wa2 „
L. = « 2(72. (14)

W(1+2(T2)

From equation (12), we therefore have

P = 0-56 jLr. (15)
The expected chance of survival of a new inversion therefore depends on the

contribution of the segment of chromosome covered by it to the marginal variance
in fitness, or, equivalently, to the loss in fitness due to recombination in the original
population. Clearly, the same values of this quantity can be produced by a virtually
infinite set of combinations of possible interaction systems and numbers of loci,
so there is little point in speculating on the details of the genetic systems under-
lying inversion polymorphisms.

Finally, it should be emphasized that the selection coefficient s with which we
have chiefly been concerned here is not necessarily related to the selection co-
efficients for inversions which are observed in naturally occurring inversion systems.
These relate to the genetic system after the inversion has spread from its low
initial frequency. In many cases (but by no means all), the inversion will oust the
gamete with the same genotype and the final population will be dominated by
two types of gamete - the inversion, and the complementary type which gives the
maximum heterozygosity in combination with the inversion. The selective dif-
ferences between the hetero- and homo-karyotypes in such cases reflect the dif-
ferences between relatively homozygous genotypes and genotypes heterozygous
for many loci. For example, with the fitness matrix of Table 1 (a), the equilibrium
population with an inversion arising in an AB gamete can be shown to consist
of AB (inversion) and ab in equal frequencies. This gives a selection coefficient of
40 % against homokaryotypes, which is nearly 8 times as large as the largest s
of Fig. 2.
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