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Abstract. If E is an elliptic curve over Q; then let E(D) denote the D�quadratic twist of E: It
is conjectured that there are infinitely many primes p for which E(p) has rank 0; and that there are
infinitely many primes ` for which E(`) has positive rank. For some special curves E we show that
there is a set S of primes pwith density 1

3 for which ifD = �pj is a squarefree integer where pj 2 S;
then E(D) has rank 0: In particular E(p) has rank 0 for every p 2 S: As an example let E1 denote
the curve

E1 : y2 = x
3 + 44x2

� 19360x + 1682384:

Then its associated set of primes S1 consists of the prime 11 and the primes p for which the order of
the reduction of X0(11) modulo p is odd. To obtain the general result we show for primes p 2 S that
the rational factor of L(E(p); 1) is nonzero which implies that E(p) has rank 0: These special values
are related to surjective Z=2ZGalois representations that are attached to modular forms. Another
example of this result is given, and we conclude with some remarks regarding the existence of positive
rank prime twists via polynomial identities.
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1. Introduction

Let E be an elliptic curve over Q with the given Weierstrass equation

E : y2 = x3 + ax2 + bx+ c; (1)

where a; b and c are integers. In this paper all curves and their points are assumed to
be Q�rational. If D is a squarefree integer, then letE(D) denote theD�quadratic
twist of E that is given by

E(D) : y2 = x3 + aDx2 + bD2x+ cD3: (2)

Recently there have been a number of investigations regarding the distribution of
ranks of elliptic curves in various families. For instance one may consult the works
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of Brumer–McGuiness, Goldfeld, Gouvêa–Mazur, Lieman, Mestre, Mai–Murty,
Ono, and Stewart–Top [2, 3, 8, 9, 14, 15, 16, 17, 19, 25].

In this paper we examine the following conjecture that was brought to the
author’s attention by J. Silverman.

CONJECTURE 1. If E is an elliptic curve, then there are infinitely many primes p
for which E(p) has rank 0; and there are infinitely many primes ` for which E(`)
has positive rank.

In this direction there are a number of results deduced from an analysis of
2-descents (see [22]) that confirm part of this conjecture for the congruent number
curve

E0 : y2 = x3 � x:

For instance it is known that if p � 3 (mod 8) is prime, then E0(p) has rank 0:
As another example if p � 5 (mod 8) is prime, then E0(2p) has rank 0:

2. New examples

Using a completely different method we prove part of this conjecture for certain
special elliptic curves. For these curves we show that there are infinitely many
primes p for which E(p) has rank 0, and we also obtain a surprising multiplicative
property. We show the existence of a set S of primes p with density 1

3 with the
special property that ifD = �jpj is a squarefree integer where pj 2 S; thenE(D)
has rank 0:

In the case of the congruent number curve E0, there are similar results for
integers with few prime factors. For instance, again using a careful analysis of
2-descents [22], it is known that E0

pqr has rank 0 if p; q; and r are primes satisfying

p � 1 (mod 8); q � 3 (mod 8); r � 3 (mod 8); and�
p

q

�
= �

�
p

r

�
:

We recall some essential facts. Throughout this note we let q denote the uni-
formizing variable q := e2�iz where Im(z) > 0, and all integer weight newforms
will be normalized eigenforms of all the Hecke operators. For every integer weight
newform f(z) = �1n=1a(n)q

n 2 Sk(N;�) with rational integer coefficients, there
exists a Galois representation �f (see [6,7])

�f : Gal(Q=Q) ! GL2(Z=2Z)

with the property that if p - 2N is prime, then

tr(�f (Frobp)) � a(p) (mod 2):
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We shall make use of such representations.
We also make use of Shimura’s theory of half-integral weight modular forms,

a theory that we now briefly describe (see [23]). Let N be a positive integer that is
divisible by 4 and define ( c

d
) and �d by

�
c

d

�
:=

8>>><
>>>:
�

�
c

j d j

�
if c; d < 0

�
c

j d j

�
otherwise:

�d :=

(
1 d � 1mod 4

i d � 3mod 4:

Also let (cz + d)1=2 be the principal square root of (cz + d) (i.e. with positive
imaginary part). Let � be a Dirichlet character modulo N: Then a meromorphic
function g(z) on H = fIm(z) > 0g is called a half integer weight modular form
with Nebentypus � and weight �+ 1

2 if

g

�
az + b

cz + d

�
= �(d)

�
c

d

�2�+1

��1�2�
d (cz + d)�+(1=2)g(z);

for all 
a b

c d

!
2 �0(N):

The set of all such forms that are holomorphic on H as well as at the cusps is
denoted by M�+(1=2)(N;�) and forms a finite dimensional C�vector space. The
subspace of those g(z) in M�+(1=2)(N;�) that also vanish at the cusps, the cusp
forms, is denoted by S�+(1=2)(N;�):

As in the case of integer weight forms, there are Hecke operators that preserve
M�+ 1

2
(N;�) and S�+ 1

2
(N;�): However for these forms the Hecke operators act

on Fourier expansions in square towers; specifically if p - N is a prime, then the
Hecke operator Tp2 acts on g(z) = �1n=1b(n)q

n 2M�+ 1
2
(N;�) by

g(z) j Tp2

:=
1X
n=0

(b(p2n) + �(p)

 
(�1)�n

p

!
p��1b(n) + �(p2)p2��1b(n=p2))qn:

As in the integer weight case, a form g(z) is called an eigenform if for every prime
p there exists a complex number �p such that

g(z) j Tp2 = �pg(z):
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The connection between half integer weight forms and the integer weight mod-
ular forms are the Shimura lifts, a family of maps which takes the L-function of a
half integer weight cusp form and returns theL-function of an integer weight mod-
ular form. More precisely let g(z) = �1n=1b(n)q

n 2 S�+(1=2)(N;�) where � � 1:
Let t be a positive square-free integer and define the Dirichlet character  t by

 t(n) = �(n)
� (�1)�

n

�
( tn). Now defineAt(n) by the formal product of L-functions

1X
n=1

At(n)

ns
:= L(s� �+ 1;  t)

1X
n=1

b(tn2)

ns
:

Then Shimura proved that the Mellin transform of this product, which we denote
by SHt(g(z)) = �1n=1At(n)q

n is a weight 2� modular form in M2�(N=2; �2):

Furthermore if � � 2; then SHt(g(z)) happens to be a cusp form.
Now we define the notation that is used in Theorem 1. Let E be a modular

elliptic curve with conductor N whose Hasse-Weil L-function is given by

L(E; s) =
1X
n=1

A(n)

ns
:

In particular this implies that there is a weight 2 newform F (z) = �1n=1A(n)q
n 2

S2(N;�1) where �1 is the trivial Dirichlet character modulo N:
Now suppose that for some positive integer M there exists a cusp form g(z) =

�1n=1b(n)q
n 2 S3=2(M; (d

�
)) that is an eigenform of the Hecke operators Tp2 for

which the image of g(z) under the Shimura lift is F (z): Now let S denote the set of
primes p for which b(p) is odd. With this notation we prove the following theorem.

THEOREM 1. Using the notation above, suppose there exists an integer weight
newform f(z) = �1n=1a(n)q

n with rational integer coefficients whose residual
Z=2Z-Galois representation �f is surjective and whose Fourier expansion satisfies

f(z) � g(z) (mod 2):

Furthermore suppose that for every squarefree integer n2 for which b(n2) is odd
there exists a squarefree integer n1; where (n1=n2) 2 Q�2

p for every prime p jM;

with the property that

L(E(�dn1); 1) � b(n1) 6= 0:

If D = �jpj is a squarefree integer with pj 2 S; then E(�dD) has rank 0:
Moreover S has density 1

3 :

Proof. From the works of Bump–Friedberg–Hoffstein, Coates–Wiles, Kolyva-
gin, and Murty–Murty, Waldspurger’s theorem [26] implies the following theorem.
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THEOREM. Let E0 be a modular elliptic curve over Q with L(E0; s) =
�1n=1A(n)=n

s: Let g(z) = �1n=1b(n)q
n 2 S3=2(M; (d

�
)) be an eigenform of the

Hecke operatorsTp2 such that SH1(g(z)) = F (z) =
P
1

n=1A(n)q
n:Now let Letn1

be a positive squarefree integer such that b(n1) 6= 0 and such thatL(E0

�dn1
; 1) 6= 0:

Suppose that n2 is a positive squarefree integer such that n1=n2 2 Q�2
p for every

prime p jM: If b(n2) 6= 0; then the rank of E0

�dn2
is unconditionally 0:

With this theorem, if p 2 S; then since b(p) � a(p) (mod 2) is odd (hence is
nonzero), it follows that E(�dp) has rank 0: Moreover by multiplicativity of the
Fourier coefficients of newforms, it follows that

a(m)a(n) = a(mn)

if gcd(m;n) = 1: Therefore we find that if D = �ipi is a squarefree integer where
pi 2 S; then a(D) � b(D) � 1 (mod 2) and hence E(�dD) has rank 0:

To complete the proof we need to establish that S has density 1
3 : Since a(n) �

b(n) (mod 2) for all n; we simply need to examine the coefficients a(p) when p
is prime. The Galois representation �f

�f : Gal(Q=Q) ! GL2(Z=2Z)

has the property that

tr(�f (Frobp)) � a(p) (mod 2)

for all but finitely many primes. However GL2(Z=2Z) = PGL2(Z=2Z) is isomor-
phic to S3; and since �f is surjective, we find by Chebotarev’s density theorem that
the set of primes p for which tr(�f (Frobp)) � 1 (mod 2), those primes where
the image has order 3; has density 1

3 : 2

Before we give some immediate corollaries, we should mention that it is not
apparent how often the above theorem applies. Although it is true that this theorem
is easy to apply in practice, it is not clear how often the hypotheses of the theorem
are satisfied. The author is inclined to believe that this phenomenon is very common,
but he does not see how to quantify this assertion.

Before we mention corollaries, we define some relevant partition functions that
are similar to those that have occurred in other settings [1]. Let e1(n) (resp. e2(n))
denote the number of two colored partitions of n into an even number of parts
where the parts of the first color are distinct even integers (resp. multiples of 6) and
the parts of the second color are distinct multiples of 22 (resp. 18). Similarly let
o1(n) (resp. o2(n)) denote the number of two colored partitions of n into an odd
number of parts where the parts of the first color are distinct even integers (resp.
multiples of 6) and the parts of the second color are distinct multiples of 22 (resp.
18). Define the two partition functions a1(n) and a2(n) by

a1(n) := e1(n� 1)� o1(n� 1);

a2(n) := e2(n� 1)� o2(n� 1):
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The generating functions for a1(n) are a2(n) are

1X
n=1

a1(n)q
n = q

1Y
n=1

(1� q2n)(1 � q22n)

1X
n=1

a2(n)q
n = q

1Y
n=1

(1� q6n)(1 � q18n):

(3)

Recalling that Dedekind’s eta function �(z) is a weight 1
2 cusp form given by

the infinite product

�(z) := q1=24
1Y
n=1

(1� qn);

we find that

�(2z)�(22z) =
1X
n=1

a1(n)q
n

�(6z)�(18z) =
1X
n=1

a2(n)q
n:

COROLLARY 1. Let E1 denote the elliptic curve given by

E1 : y2 = x3 + 44x2 � 19360x+ 168234:

If D is a squarefree integer for which a1(D) is odd, then E1(D) has rank 0:
Moreover the set S1 of primes p for which a1(p) is odd has density 1

3 :

Proof. It turns out that the modular form f(z) = �(2z)�(22z) 2 S1(44; (�11=�))
is a newform. Therefore it follows from the theory of Hecke operators that if m
and n are relatively prime positive integers, then

a1(m)a1(n) = a1(mn): (4)

By Euler’s Pentagonal number theorem we find that

�(2z)�(22z) =
1X
n=1

a1(n)q
n

= q

0
@X

k2Z

(�1)kq3k2+k

1
A �

0
@X

j2Z

(�1)jq33j2+11j

1
A :
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As a consequence we find that a1(n) = 0 if n � 2; 6; 7; 8; 10 (mod 11): There-
fore the Galois representation �f attached to �(2z)�(22z) satisfies

tr(�f (Frobp)) � a1(p) � 0 (mod 2):

for at least half the primes. Therefore since the image of �f is a subgroup of S3; by
the Chebotarev density theorem the representation �f is surjective if there exists a
single odd prime p 6= 11 for which a1(p) is odd. Since a1(5) is odd, it follows that
�2 is surjective and the set of primes p for which a1(p) is odd has density 1

3 :

Now define the weight 3
2 cusp form g(z) by

g(z) :=
1X
n=1

b1(n)q
n = f(z)�(z)

=

 
1X
n=1

a1(n)q
n

!
�
�

1+ 2q + 2q4 + 2q9 + � � �
�
:

By (5) we find that a1(n) � b1(n) (mod 2) for all n: Moreover g(z) is an eigen-
form of the Hecke operatorsTp2 and its image of under the Shimura correspondence
is F (z) = �1n=1A(n)q

n = �2(z)�2(11z) which is a newform in S2(11; �1) where
�1 is the trivial character. Therefore it follows that the Hasse-Weil L�function of
X0(11) is given by

L(X0(11); s) =
1X
n=1

A(n)

ns
:

One can easily verify that E1 is the �11-quadratic twist of the elliptic curve
X0(11) given by

y2 + y = x3 � x2 � 10x� 20:

By the multiplicativity of a1(n); it follows that if m and n are relatively prime
positive integers for which b1(m) and b1(n) are odd, then b1(mn) is also odd.
Therefore with a little computation this completes the proof of the corollary. 2

COROLLARY 2. Let E2 denote the elliptic curve given by

E2 : y2 = x3 � 432:

If D > 1 is a squarefree integer for which a2(D) is odd, then E2(D) has no
nontrivial rational points. Moreover the set S2 of primes p for which a2(p) is odd
has density 1

3 :
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Proof. This proof is similar to the proof of Corollary 1. It turns out that f(z) =
�(6z)�(18z) = �1n=1a2(n)q

n 2 S1(108; (�3=�)) is a newform. The representation
�f is also surjective following a similar argument to the one given in Corollary 1.

The weight 3
2 cusp form g(z) 2 S3=2(108; (3=�) defined by

g(z) :=
1X
n=1

b2(n)q
n = �(6z)�(18z)�(z)

=

 
1X
n=1

a2(n)q
n

!
�
�

1+ 2q + 2q4 + : : :
�

is almost an eigenform of the Hecke operators. If g0(z) := g(z) jT25 = 6q2+6q5�
6q8 � : : : ; then G(z) := g(z)� 1

3g0(z) is an eigenform of all the Hecke operators
and its image under the Shimura lift is �2(3z)�2(9z); a weight 2 newform in
S2(27; �1): Fortunately it turns out that g0(z) � 0 (mod 6); and soG(z) � g(z)

(mod 2): As in the proof of Corollary 1, we find that a2(n) � b2(n) (mod 2) for
all n: However if �2(3z)�2(9z) =

P
1

n=1 A(n)q
n; then

L(E; s) =
1X
n=1

A(n)

ns
;

where E can be taken to be the CM elliptic curve with conductor 27 given by

E : y2 = x3 + 16:

It is easy to verify thatE2 is the�3-quadratic twist ofE:As in Corollary 1, one may
check that the hypotheses in Theorem 1 are satisfied; therefore if D is a squarefree
integer for which a2(D) is odd, then b2(D) is odd andE(�3D) = E2(D) has rank
0: Since it is well known that for all such D > 1; the torsion group is trivial, the
result now follows. 2

We now mention the following interesting corollary that gives an elliptic curve
description of the sets S1 and S2: If E is an elliptic curve and p is a prime, then let
jE(Z=pZ)j denote the number of rational points of the reduction of E modulo p:

COROLLARY 3. The sets of primes S1 and S2 satisfy

S1 = f11g [ fprimes p where jX0(11)(Z=pZ)j is oddg

S2 = fprimes p where jE(Z=pZ)j is oddg

whereE is the elliptic curve given by

E : y2 = x3 + 16:
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Proof. By the fact that (1�Xn)2 � (1�X2n) (mod 2); we find that

�(2z)�(22z) =
1X
n=1

a1(n)q
n � �2(z)�2(11z) (mod 2);

�(6z)�(18z) =
1X
n=1

a2(n)q
n � �2(3z)�2(9z) (mod 2):

Recall from the proofs of Corollaries 1 and 2 that �2(z)�2(11z) and �2(3z)�2(9z)
are the Mellin transforms of L(X0(11); s) and L(E; s) respectively.

If p is a prime for which X0(11) has good reduction, then

a1(p) � p+ 1� jX0(11)(Z=pZ)j (mod 2):

Hence if p is a prime for whichX0(11) has good reduction, then p 2 S1, if and only
if jX0(11)(Z=pZ)j is odd. Since X0(11) only has bad reduction at p = 11; a brief
computation shows that 11 is also in S1: Exactly the same argument holds forS2:2

Remark 1. By the theory of lacunary modular forms, it follows that the set of
positive integers for which ai(n) = 0 has arithmetic density 1:

Remark 2. If D = �jpj is a square-free integer where pj 2 Si, then assuming
the conjecture of Birch and Swinnerton Dyer it can be shown that the order of
the Tate–Shafarevich group of Ei(D) is, up to small scalar factors, (coming from
the local Tamagawa numbers) b2

i (D): Since the bi(D) are themselves values of
special partition functions, is there a combinatorial realization of elements of the
Tate-Shafarevich groups of these twists analogous to the combinatorial realizations
of certain ideal class groups in [20]?

Remark 3. The methods used here also will give nonvanishing quadratic twists
of more generic modular L�functions at the central critical value.

3. Further remarks

In this section we make some remarks concerning prime twists of elliptic curves.
First we recall the following conjecture of Bouniakowsky [21].

CONJECTURE [Bouniakowsky’s] Let F (x) be an irreducible polynomial over Q

with integer coefficients for which the only positive integer n dividing all F (k) for
every integer k is n = 1: Then there exist infinitely many positive integers m for
which F (m) is prime.

As a consequence of this conjecture we obtain:
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THEOREM 2. Let E be an elliptic curve given by the Weierstrass equation

E : y2 = x3 + ax2 + bx+ c;

where a; b; and c are integers that do not satisfy both

a+ b � 1 (mod 2);

a � c � 0 (mod 3) and b � 2 (mod 3):

Assuming Bouniakowsky’s conjecture, if E is an elliptic curve with no rational
points of order 2; then there exists infinitely many primes p for which E(p) has
positive rank.

Proof. If we define polynomials X(u); Y (u); and D(u) by

X(u) := u4 � 2bu2 � 8cu+ (b2 � 4ac);

Y (u) := u6 + 2au5 + 5bu4 + 20cu3 � 5(b2 � 4ac)u2

+(8a2c� 2ab2 � 4bc)u� (b3 � 4abc+ 8c2);

D(u) := 4(u3 + au2 + bu+ c);

then we find that

Y 2(u) = X3(u) + aD(u)X2 + bD2(u)X + cD3(u):

This identity is a special case of Legendre’s identity that is the topic in [10].
Therefore for every integer u the point (X(u); Y (u)) lies on E(D(u)): By Bou-
niakowsky’s conjecture there exists infinitely many positive integers u for which
D(u)=4 is prime. Since E(D(u)) is isomorphic to E(D(u)=4) over Q; it suffices
to show that for all but finitely many integers u that the point (X(u); Y (u)) has
infinite order. However by Mazur’s theorem, if (X(u); Y (u)) has finite order, then
its order must be 2; 3; 4; : : : ; 9; 10 or 12: However by the doubling formulas if this
point has finite order, then the polynomials X(u) and Y (u) must satisfy a finite
number of polynomial equations. Therefore there are at most finitely many integers
u for which (X(u); Y (u)) has finite order. 2

Assuming a reformulation of Bouniakowsky’s conjecture, one can deduce that there
are infinitely many primes p for which E(p) has positive rank. However since his
conjecture seems well beyond current techniques it does not seem reasonable to do
so.

It is interesting to note that the strongest results in the direction of Bouniakow-
shy’s conjecture imply the existence of infinitely many positive rank cubic twists of
certain elliptic curves where the twisting factor is at most a product of two primes.
Assuming the conjectures of Birch and Swinnerton Dyer, it is known that there are
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infinitely many primes p for which p�cubic twists of certain elliptic curves have
positive rank. If c is a nonzero integer, then let E0

c denote the elliptic curve with
complex multiplication by Q(

p
�3) defined by

E0

c : y2 = x3 + c: (5)

If D is a cube free integer, then the cubic twist of E0

c is E0

D2c
and is given by

y2 = x3 + cD2:

THEOREM 3. If c is an odd integer that is not a perfect square, then there exist
infinitely many integers D that are at most the product of two primes for which
E0

cD2 has positive rank.
Proof. If D(u) := u2 � c; then it turns out that the point (D(u); uD(u)) is a

point on the elliptic curve E0

cD2(u)
; the D(u)-cubic twist of the elliptic curve E0

c:

By Iwaniec’s theorem [11] since D(u) is irreducible over Q and c is odd,
there are infinitely many integers u for which D(u) is at most the product of two
primes. By the same argument that appeared in the proof of Theorem 2, there are at
most finitely many integers u for which the point (D(u); uD(u)) has finite order.2
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