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Summary

When multiple related families derived from inbred lines are jointly analysed to detect quantitative
trait loci (QTLs), the analysis should estimate allelic effects as accurately as possible and estimate
the probability that different parents carry alleles that are identical in state. Analyses exist that
assume that all parents carry unique alleles or that all parents but one carry the same allele. In
practice, many configurations are possible that group different parents according to their identity-in-
state condition at a putative QTL allele. Here, we propose a variable model Bayesian analysis that
selects among possible identity-in-state configurations and jointly estimates the allelic effects of
identical-in-state parents. We contrast this analysis with a fixed model analysis that estimates unique
allelic effects for all parents. We analyse two simulated mating designs: an experimental design in
which three inbred parents were crossed to generate two families of 150 doubled haploid lines ; and
a breeding design in which 20 inbred parents were crossed to generate 60 families of 20 doubled
haploid lines, with each parent contributing to six families. In all cases where some parents were
simulated to carry alleles of identical effect (that is, they were identical in state), the variable analysis
estimated allelic effects with lower mean-squared error than the fixed analysis. The variable analysis
showed that, unless each family contains many individuals (more than 100), there is insufficient
information in DNA-marker and phenotypic data to determine with high probability the QTL
allelic number.

1. Introduction

Plant geneticists and breeders need to perform quan-
titative-trait-locus (QTL) analysis in multiple related
families derived from inbred lines in two contexts.
First, multiple experimental QTL mapping families
exist for numerous crops (e.g. barley, oat, soybean,
corn), and specific inbred parents are often shared
across families (e.g. Brummer et al., 1997; Kianian
et al., 1999; Orf et al., 1999). Second, in breeding situ-
ations, parents are often mated in diallel designs to
generate families from which to select. The number
of families produced is then often greater than the
number of inbred parents. Several methods have been
proposed to map QTLs within multiple families. Xu
(1998) and Yi & Xu (2000) propose models that

parameterize allele substitution effects or allelic effects
themselves as random effects. These models assume a
specific parametric distribution of the random effects,
usually normal with mean zero and estimated vari-
ance. Fixed effect models can relax the assumption of
normally distributed random effects and accommo-
date the desire to estimate fixed QTL allelic values.

Fixed effect models have been presented by Rebaı̈
& Goffinet (1993, 2000) and by Liu & Zeng (2000).
A major issue with these models relates to the num-
ber of parameters they are required to estimate. The
least-squares models of Rebaı̈ & Goffinet (2000)
assume that all parents contributing to the families
evaluated carry different alleles such that numerous
QTL effect parameters must be estimated. The maxi-
mum-likelihood methods of Liu & Zeng (2000) exam-
ine a series of likelihood-ratio tests in which the value
of the allele carried by each parent in turn is esti-
mated. These tests therefore allow for two allelic value
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parameters in the specific configuration that one
parent carries a value different from all others (Liu &
Zeng, 2000). More than two allelic value parameters
might be required accurately to model data on pro-
geny derived from several parents even when some
parents carry identical QTL alleles. An ideal statisti-
cal model would fit the data well while estimating
fewer allelic effect parameters than required by the
assumption that all parents carry distinct alleles. If the
identities of QTL alleles were known, such a model
could be constructed by pooling parents carrying the
same allele into a single class. In practice, although
the identities of alleles are not observable, the pheno-
typic effect of alleles provides information that can
guide the specification of statistical models estimating
the correct number of alleles and pooling information
appropriately. Selection among such models would
allow statistical assessment of identity in state at a
QTL among parents. Furthermore, determining ident-
ity in state among parents would allow models to fit
the data well without estimating separate allelic effects
for all parents. For example, if alleles carried by
parents A and B are contrasted in one family, and al-
leles carried by parents A and C in another, estimated
substitution effects will indicate the similarity between
the alleles carried by parents B and C. Information of
this type can form the basis of a model-selection pro-
cedure in which different models represent different
numbers of alleles segregating among parents and
different configurations of parents classified together
as identical in state.

The non-nested nature of such models presents
difficulties for model selection within a maximum-
likelihood framework. Here, we propose a Markov
chain Monte Carlo (MCMC) method capable of gen-
erating a Bayesian posterior distribution of the num-
ber of QTL alleles segregating among parents, and of
estimating the posterior probabilities of the different
possible identity-in-state configurations. We apply the
method to simulated data to determine its ability to
estimate the true number of alleles present and their
configuration within parents, and the impact of this
modelling procedure on the estimates of allelic effect
relative to procedures that assume all parents carry
unique alleles.

2. Methods

(i) QTL model

Consider f families derived from crosses among P
inbred founders and containing a total of n progeny
individuals. Among the founders, there are lfP dis-
tinct alleles at a putative QTL. The vector of observed
phenotypes y is modelled as

y=Xb+QCa+e, (1)

where X is an nrf design matrix relating progeny to
families, b is a fr1 vector of family means, Q is an
nrP matrix indicating from which parent a progeny
received QTL alleles (for any given progeny row, only
the two columns of Q that correspond to the pro-
geny’s parents can be non-zero), C is a Prl con-
figuration matrix linking the parental origin of each
allele with its effect, a is a lr1 vector of those QTL
allelic effects, and eyN(0, Is2) is an nr1 vector of
residuals.

The QTL allele configuration C is equivalent to an
identity-in-state configuration among parents. The l
alleles segregating among P inbred parents define l
groups, with all parents within a group sharing a
common allele at the QTL. For example, assuming
five parents and three alleles, a possible configuration
groups parents 1 and 4, and parents 2 and 3, whereas
parent 5 carries a unique allele. The elements of C, cij,
are set to 1 if parent i carries allele j, and to 0 other-
wise. Thus, in the case of inbred parents studied here,
each row has a single non-zero element, and parents
grouped by sharing a common QTL allele have 1 in
the same column. For the above example, the con-
figuration matrix is

C5r3={cij}=

1 0 0
0 1 0
0 1 0
1 0 0
0 0 1

0
BBBB@

1
CCCCA: (2)

In specifying C, the identity of the parents matter
but the identity of the alleles do not. That is, referring
back to the matrix, permuting columns in the matrix
results in configurations that are deemed identical,
whereas permuting rows changes the configuration
because it changes which parents are grouped
together. Naturally, also, shifting a 1 from one column
to another changes the configuration.

We define k(P, l) as the number of distinct allele
configurations given P and l. Notice that a configur-
ation conveys information about the grouping of
parents as carrying the same allele but not infor-
mation about the order of alleles. The function k(P, l)
can be defined recursively as

k(P, l)=
lPx

Plx1
i=1 k(P, i)

l !
(lxi) !

l !
: (3)

The first term lP represents a complete ordered
enumeration of l alleles among P parents. Within this
enumeration are configurations that contain fewer
than l alleles and we must eliminate these configur-
ations from the tally. To eliminate the configurations
that contain i alleles, we use the configuration number
k(P, i). There are l !}(lxi) ! orderings of i distinct
alleles using l allelic symbols. We therefore multiply
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k(P, i) by that ratio. Finally, we divide the whole by
the number of orderings of l alleles, l !.

The joint posterior density of all unobservables
h=(b, Q, C, a, l, s2) given the observables (y and X)
and prior information can be expressed as

p(h jy,X) / p(yjb, a,Q,C, l, s2)

rp( b )p(a)p(Q)p(C j l)p(l)p(s2),
(4)

where p(y |b, a, Q, C, l, s2) represents the likelihood
assuming multivariate normality:

p(y j b, a,Q,C, l, s2)=(2ps2)x
n
2

rexp x
(yxXbxQCa)0(yxXbxQCa)

2s2

� �
(5)

and p(*) is the prior distribution for parameter *, with
the prior for configuration, p(C | l), being conditioned
on allelic number.

(ii) MCMC sampling procedures

To implement a MCMC model, we used a scalar
Metropolis–Hastings procedure in which each par-
ameter in h is sampled in turn, considering all other
parameters fixed (Gilks et al., 1996). Briefly, a candi-
date ~hh for MCMC sample ht+1 is generated from
a proposal density p(~hh |ht). With probability a(ht | ~hh),
ht+1=~hh and otherwise ht+1=ht, where

a(ht, ~hh)=min
p(ht j ~hh)p(~hh)p(y j ~hh)
p(~hh jht)p(ht)p(y jht)

, 1

 !
: (6)

Allelic values and QTL genotypes are initialized
given the information from the linked markers. Iter-
ations then consisted of the steps :

’ update QTL inheritance matrix Q ;
’ update QTL allelic effects a ;
’ update family means b and residual variance s2 ;
’ update QTL allelic configuration conditional on

allelic number, C | l ;
’ update the number of alleles l.

Details of the prior probabilities, candidate pro-
posal densities and calculation of the acceptance
probability follow.

1. QTL inheritance matrix Q. The prior for QTL
genotype derives from the rules of Mendelian segre-
gation and recombination relative to flanking mar-
kers. QTL genotypes are updated independently for
each progeny and are sampled directly from their full
conditional posterior (Jansen, 1994).

2. Allelic effects a. Denote aj as the effect of allele j
at the QTL. The prior for aj was normal with zero
mean and standard deviation equal either to the
phenotypic standard deviation or to one half the

phenotypic standard deviation. The proposal density
for ~aaj was uniform centred on the previous parameter
value ~aaj jaj(t) � unif(ajxra, aj+ra), where ra is the
radius of possible change in allelic value. The radius ra
was empirically tuned to obtain acceptance prob-
abilities between 0.2 and 0.5 (Roberts, 1995). The
acceptance probability a(aj, ~aaj) is

a(aj, ~aaj)=min
p(~aaj)p(y j ~hh)
p(aj)p(y jh)

, 1

 !
, (7)

where ~hh is identical to h except that aj is replaced by ~aaj.
3. Family means b and residual variance s2. The

prior distribution for the family mean was uniform
positive with a maximum at twice the phenotypic
mean. The prior for the residual variance was uniform
positive with a maximum at ten times the phenotypic
variance. These vague priors were chosen to avoid
constraining the posterior distributions of the par-
ameters. We denote the mean for family i as bi. The bi
values were sampled for each family in turn using
proposal densities and acceptance probabilities simi-
lar to the allelic values described above. The residual
variance was assumed to be either equal across or in-
dependent for each family, depending on the family
size as described below. Otherwise, it was sampled
similarly to the family means and to the allelic values.

4. QTL configuration matrix conditional on allelic
number C | l. To obtain adequate acceptance rates for
changing C, small changes were proposed at each
iteration. Among the l alleles, consider that l2 are
carried by more than one parent, of which one (say,
allele u) is randomly chosen. The proposal consists of
shifting one random parent from carrying this allele
to carrying a different allele (say, allele v). In terms of
C, this operation corresponds to identifying columns
with more than one ‘1’ entry, picking one of those
columns (the column for u) and one of its ‘1 ’ entries,
and moving the entry to a different column (the col-
umn for v). Only columns with more than one ‘1’
entry can be used for allele u so that, after the oper-
ation, there are no null columns. The acceptance
probability a(C, ~CC) for this is

a(C, ~CC)=min
gul2p(y j ~hh)
gv
~ll2p(y jh)

, 1

 !
, (8)

where gi is the number of parents carrying allele i, and
~ll2 is the number of alleles carried by more than one
parent in the proposal (the number of columns in ~CC
with more than one ‘1’ entry).

5. QTL allelic number l. With equal probability, a
proposal is made either to increase or to decrease the
allelic number. An increase is proposed only if the
current number of alleles is less than the number of
founders (l<P). A decrease is proposed only if the
current number of alleles is greater than two (l>2).
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Changing l also changes C. We first describe pro-
posals to increase the allelic number.

To increase allelic number, an allele (say, allele u)
carried by more than one parent is randomly chosen
and the parents are randomly split into two groups. A
new allele is created (say, allele v) with an allelic value
chosen from the allelic value prior distribution, and
one group of parents is shifted to carrying this new
allele. Given l2 alleles carried by more than one parent
and (2gux1x1) distinct random splits into two groups
for allele u, the proposal probability for increasing
allelic number by one is

p(l+1 j l)= p(~aav)

(2gux1x1)l2
: (9)

To decrease the allelic number from l+1 back to l,
two different alleles are randomly chosen from the
l+1 alleles at the QTL, and these are combined into
one allele. The probability for this proposal is

p(l j l+1)=2� (l+1)l: (10)

Bringing all these terms together, the acceptance
probability a(l, l+1) for an increase in allelic number
is

a(l, l+1)=min
2(2gux1x1)l2

(l+1)l
r

p( ~CC j l+1)p(l+1)

p(C j l )p( l)

 

r
p(~hh

x
)

p(hx)p(~aav)
r

p(y j ~hh)
p(y jh) , 1

!
,

(11)

where hx includes all elements of h except for l and
C. Notice that ~hhx contains the same parameters as
hx plus the parameter ~aav so that its prior is p(~hhx)=
p(hx)p(~aav), and the third term in a(l, l+1) cancels
out. To determine the prior p( ~CC j l+1), consider that
there are k(p, l+1) possible configurations of l+1
alleles among p parents. In the absence of information
leading to a preference for any given configuration,
the prior for a specific configuration conditional on
l+1 alleles is therefore k(p, l+1)x1. Similarly, p(C | l)
is k(p, l)x1. In the analysis, we evaluated both uni-
form and Poisson priors for l. With the uniform prior,
p(l+1) and p(l) cancel out. With a Poisson prior, their
ratio is l}(l+1), where l is the prior mean of the
Poisson distribution. These considerations simplify
the second term in a(l, l+1) to k(p, l)}k(p, l+1) and
k(p, l)l}k(p, l+1)(l+1) for the uniform and Pois-
son cases, respectively. In the terminology of revers-
ible-jump MCMC (Green, 1995; Waagepetersen &
Sorensen, 2001), the parameters l and C are categori-
cal variables that are model indicators. With respect
to continuous variables, the jump satisfies dimension
matching because dim(~hhx)= dim([hx, ~aav]). That is,
~hhx has one more parameter than hx. Further, to
conform to reversible-jump MCMC, the acceptance

probability needs to be multiplied by the Jacobian of
the function ~hhx=g(hx, ~aav). However, g(hx, ~aav) is the
identity function and its Jacobian is 1.

Similar considerations for the acceptance prob-
ability for a decrease in allele number a(l, lx1) lead to
the following

a(l, lx1)=min
(lx1)l

2(2gu+gvx1x1)~ll2

�

r
p( ~CC j lx1)p(lx1)

p(C j l )p(l) r
p(y j ~hh)
p(y jh) , 1

!
, (12)

where gu and gv are the number of parents that carry
the two alleles randomly chosen to be combined.
The second term in a(l, lx1) simplifies to k(p, l)}
k(p, lx1) and k(p, l)l}k(p, lx1)l for the uniform
and Poisson cases, respectively.

(iii) Simulations and analyses

We simulated two mating designs, one typical of ex-
perimental QTL-mapping families and one typical of
plant-breeding families. For the first design, three
parents (P1, P2, and P3) were mated to produce two
families, P1rP2 and P2rP3 (P2 was common to both
families). Each family consisted of 150 doubled hap-
loid (DH) progeny. For the second design, a total of
20 parents were mated in a circulant diallel to produce
60 families, each of 20 DH progeny.

A 10 cM chromosome segment flanked by markers
was simulated with a QTL located at 4 cM. In the
first design, three true QTL configurations were simu-
lated. Using ‘= ’ to indicate identity in state at the
QTL, these configurations were P1=P3lP2, P1=
P2lP3 and P1lP2lP3. In all cases, for those families
in which the QTL segregated, the variance caused by
it was either 10% or 20% of the phenotypic variance.
In the second design, two true QTL configurations
were simulated, one with four alleles each carried by
five parents and the other with 20 alleles, each parent
carrying its own unique allele. Allelic values were as-
signed to be evenly spread in terms of normal per-
centiles and standardized so that the average variance
caused by the QTLs over the 60 families was either
6% or 12% of the phenotypic variance. For the
simulated chromosomal segment, markers and QTL
genotypes in the progeny were randomly assigned
following the rules of Mendelian segregation and re-
combination using Haldane’s mapping function. A
random normal deviate was added to the genetic
value conferred by the QTL to obtain the QTL heri-
tabilities given above.

All Markov chains started with a burn in of 1000
iterations. We ran test analyses using either a single
chain of 100 000 iterations initialized with parameters
estimated from the data, or with ten chains of 10 000
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iterations with starting points chosen at random
from the parameter prior distributions. A preliminary
analysis of the two approaches indicated that they did
not differ in estimating parameter means or in pre-
dicting identity in state configurations among parents.
We therefore ran further analyses using the single
long-chain approach. To determine error in par-
ameter estimates caused by MCMC sampling, we
used the ‘batch means’ method (Roberts, 1995) with
100 batches, each 1000 iterations long. For estimating
allelic number, the error variance associated with
MCMC sampling was y4% of the variance among
analyses of independently simulated data. The pro-
portion of the variance caused by MCMC sampling
was higher for allelic number than for other par-
ameters. We deemed this level of MCMC sampling
error acceptable and continued running Markov
chains with a total of 100 000 iterations. For each
parameter combination, 15 replicate analyses were
performed, with new data simulated for each analysis.
Factors that differentiated the parameter combi-
nations were mating design, true QTL configuration,
QTL heritability, prior distribution for allelic values
and prior distribution for allelic number (see sampling
procedures above). We compared analyses allowing
for a variable number of QTL alleles (variable model)
with analyses that assumed each parent carried a
unique allele (fixed model). Analyses assumed the
presence of a QTL (we did not obtain posterior
probabilities for the presence of a QTL). The position
of the QTL analysed was also fixed at its simulated
position (we did not obtain posterior distributions of
the QTL position).

Model performance was evaluated according to the
estimated allelic number l and according to the mean
squared error (MSE) of the estimated allelic values a.
The MSE for a given allelic value is calculated from T
MCMC iterations as

MSE=
1

T

XT
t=1

(âatxa)2, (13)

where âat is the estimate for iteration t and a is the true
value. The MSE can in turn be decomposed into a
term caused by the sampling variance and a term
caused by the bias of the estimate

MSE=var(âa)+(bias(âa))2, (14)

where bias(âa)= 1
T

PT
t=1 âatxa. For a given analysis,

we calculated the MSE, sampling variance and bias of
a for each parent and averaged these responses over
all parents.

As an exploratory analysis, the posterior means for
l and for the MSE for a were analysed using analysis
of variance. Analyses were conducted separately for
each mating design and each QTL allele configuration
within mating design. Factors in the analysis were

allelic number prior (either Poisson or uniform), al-
lelic value prior (with standard deviation of 0.5 or 1 as
described above) and QTL heritability (low or high as
described above).

3. Results

(i) Estimation of QTL allelic number

Analysis of the influence of the prior distributions and
the effect of segregating QTL revealed straightfor-
ward patterns in the case of the experimental mating
design with three inbred parents of two families. Re-
sults for the two possible configurations in which only
two alleles were segregating (P1=P3lP2 versus P1=
P2lP3) were similar (data not shown) and we pooled
them. With only two QTL alleles segregating, the
analysis was sensitive to the assumed prior distri-
bution of the QTL allelic number. For the Poisson
distribution with mean parameter of 2 but truncated
to [2..3], the prior mean is 2.4, whereas the uniform
distribution of [2..3] has a mean of 2.5. This small
difference in prior mean was reflected in the posterior
mean, which increased by 0.063, averaged over QTL
heritability and allelic value prior factors (Table 1).
The analysis was most affected by the prior assumed
for the allelic value parameter. The two priors used
for the allelic value were narrow (prior standard de-
viation of half of the phenotypic standard deviation)
or wide (prior standard deviation equal to the pheno-
typic standard deviation). Compared with the narrow
prior for allelic number, the wide prior led to a lower
posterior mean for the allelic number.

The pattern of the estimate of allele number was
simpler when three QTL alleles were segregating. In
that case, when the QTL had high heritability, the
model virtually always selected a three-allele model,
so that the estimate of allelic number was three with
low standard deviation (Table 1). When the QTL had
lower heritability, the analysis at times attempted to
group either parents P1 and P2 or P2 and P3, such that
the estimate of allelic number was slightly lower
(Table 1). The priors for allelic number and allelic
value did not affect the estimates of allelic number in
these cases.

The most immediate observation from the posterior
means for allelic number for the breeding mating de-
sign involving 20 parents and 60 families is that, when
the true number of alleles segregating was 20 (that is,
each parent carried its own unique allele), the estimate
of that number was much lower than the true number.
In estimating the number of alleles, the effects of the
QTL heritability and of the priors were qualitatively
similar to the three-parent mating design but were
stronger and interacted with each other (Table 2).
Given that there were 20 parents, the truncated Pois-
son prior had mean 4.3, whereas the mean of the
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uniform prior was 11. The posterior mean was affec-
ted by this difference in prior mean, increasing by
1.03, averaged over QTL heritability, allelic value
prior and true allelic number factors. Increasing the
QTL heritability strongly increased the estimated
number of alleles. For two cases in which four alleles
were segregating, this increase was surprising because
the resulting estimated allelic number was greater
than the true number (Table 1). Thus, increasing QTL
heritability and therefore QTL information content
did not necessarily bring the estimated allelic number
closer to the true number. As in the three-parent
design, increasing the standard deviation of the prior
for allelic value decreased the estimated number of
alleles. The effects of allelic number prior and QTL
heritability worked synergistically, in that increasing
the prior mean for allelic number and increasing the
QTL heritability together had a greater effect on the
estimated number of alleles than predicted from either
factor in isolation. Finally, increasing the standard

deviation of the prior for allelic value tended to sup-
press the effects of increasing the prior for allelic
number or of increasing QTL heritability.

(ii) Prediction of identity in state at the QTL

To evaluate the effectiveness of the analysis at de-
termining identity in state among parents, we checked
whether the analysis grouped as identical in state pairs
of parents simulated to carry alleles of equal effect
and distinguished as not identical-in-state pairs of
parents simulated to carry alleles of differing effects.
Consider the prior probability that any two parents
will be declared identical in state, PIIS. PIIS is closely
related to the allelic number assumed by the analysis ;
at the limit, if the analysis only considered one allele
then PIIS=1; if it considered the same number of
alleles as parents then PIIS=0. It is therefore more
useful to consider the prior probability (PIIS | l ), where
l is the allelic number estimated for an analysis. For

Table 1. Posterior mean of allelic number as affected by QTL heritability (H2Q), allelic number prior and
allelic value prior. Standard deviations for posterior means given in parentheses

Allelic number prior Poisson distribution$ Uniform distribution [2..P]

Allelic number prior# 0.5 1.0 0.5 1.0
Parents : alleles· H2Q

3 : 2 0.10 2.30 (0.09) 2.22 (0.13) 2.37 (0.10) 2.25 (0.10)
3 : 2 0.20 2.31 (0.14) 2.19 (0.10) 2.39 (0.10) 2.26 (0.15)
3 : 3 0.10 2.89 (0.20) 2.82 (0.21) 2.98 (0.03) 2.88 (0.16)
3 : 3 0.20 3.00 (0.00) 3.00 (0.00) 3.00 (0.01) 3.00 (0.00)
20 : 4 0.06 3.58 (0.50) 2.62 (0.24) 4.17 (1.35) 2.66 (0.40)
20 : 4 0.12 4.23 (0.66) 3.29 (0.43) 5.83 (1.44) 3.86 (0.54)
20 : 20 0.06 4.05 (0.62) 2.91 (0.45) 4.85 (1.49) 3.14 (0.61)
20 : 20 0.12 5.16 (0.66) 4.31 (0.69) 8.97 (1.48) 4.88 (0.91)

# Prior was normal with a standard deviation equal to the fraction of the phenotypic standard deviation given.
$ The Poisson prior was truncated to [2..P]. The mean parameter for the prior was 2 for the three-parent design and 4 for the
20-parent design.
· Number of parents and simulated number of alleles carried by parents.

Table 2. Model factors affecting inference of the number of alleles at a QTL as determined by analysis
of variance

Number of parents 3 3 20 20
True allele number 2 3 4 20

Model factor F value F value F value F value

Allelic number prior (pNA) 15.72 ** 3.41 NS 22.63 ** 61.59 **
QTL heritability (H2Q) 0.00 NS 24.28 ** 50.19 ** 147.54 **
Allelic value prior (pAV) 45.15 ** 3.89 NS 82.85 ** 128.15 **
pNArH2Q 0.32 NS 3.37 NS 6.75 NS 23.83 *
pNArpAV 0.51 NS 0.07 NS 7.01 NS 30.75 *
H2QrpAV 0.32 NS 3.99 NS 0.59 NS 9.23 NS

NS, not significant; *, significant with P<0.001; **, significant with P<0.0001.
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parents that were in fact identical in state, we also
calculated a posterior probability of identity in state
(PIIS | l, y). For the three-parent, two-family mating
design, (PIIS | l) averaged 0.24, whereas (PIIS | l, y) aver-
aged 0.63 and 0.70 for QTLs explaining 10% and
20% of the phenotypic variance, respectively. For the
20-parent, 60-family mating design, (PIIS | l) averaged
0.32, whereas (PIIS | l, y) averaged 0.56 and 0.63 for
QTLs explaining 6% and 12% of the phenotypic
variance, respectively. Similarly, we define the prior
probability that two parents are declared not identical
in state, conditional on the estimated allelic number,
as (PNIS | l)=1x(PIIS | l). For pairs of parents that
are in fact not identical in state, we also calculated
(PNIS | l, y). For the three-parent mating design,
(PNIS | l, y) averaged 0.96 and 1.00 for QTLs explain-
ing 10% and 20%of the phenotypic variance, respect-
ively. For the 20-parent mating design, (PNIS | l, y)

averaged 0.71 and 0.82 for QTLs explaining 6% and
12% of the phenotypic variance, respectively.

(iii) Estimation of QTL allelic value

Unlike the estimate of allelic number, the posterior
MSE of the estimate of allelic value was not sensitive
to differences in QTL heritability, allelic number prior
or allelic value prior (data not shown). We inves-
tigated whether the variable model estimates allelic
values with lower MSE than the fixed model. In the
three-parent mating design, when compared with the
fixed model, the variable model produces a lower
MSE when only two alleles were segregating but
a higher MSE when three alleles were segregating
(Fig. 1). The responses in the MSE were mirrored by
qualitatively identical responses in the sampling vari-
ance and bias components of the MSE (Fig. 1). In the
20-parent mating design, the variable model estimated
allelic values with the lowest MSE, irrespective of
whether there were fewer alleles than parents or the
same number of alleles as parents (Fig. 1). This result
was surprising both because it contrasted with the
result from the three-parent design and because the
variable model was in fact incorrect when all parents
carried a unique allele. Results for the sampling vari-
ance and bias components of the MSE were again
qualitatively identical (Fig. 1).

4. Discussion

(i) Influence of the prior for allelic value on
the posterior for allelic number

Compared with the narrow prior for allelic number,
the wide prior led to a lower posterior mean for the
allelic number. In determining the posterior for allelic
number, the analysis must select from models with
different numbers of allelic value parameters and
different possible identity-in-state configurations.
Evaluating the effect of the allelic value prior on this
model selection analytically would be a formidable
task and we provide only an intuitive discussion.
Formally, the posterior probability for a given model
M is P(M | y)/P(M )P(y |M ), where the second term
derives from an integration of the likelihood over
the prior for the parameters in M: P(y jM )=R
hM

P(y jhM)P(hM jM )dhM. To see how the prior for
hM affects this likelihood, consider model M1 with two
parents grouped to carry the same allele and contrast
it with model M2 in which the parents carry different
alleles. In M1, there is no QTL substitution effect be-
tween the two parents. In M2, the estimated QTL
substitution d̂d depends on the allelic value parameters
âa1 and âa2 of the two parents : d̂d=âa1xâa2. Assume now
that M2 is correct, such that there is some allelic sub-
stitution effect d= âa1xâa2l0. If the prior for allelic
value is vague, within a large fraction of the prior for
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Fig. 1. Mean squared error, sampling variance and
squared bias in the estimation of allelic values using either
the variable-allele-number model or the fixed-allele-
number model.
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(âa1, âa2), the QTL substitution effect d̂d will cause a
lower likelihood than assuming no QTL substitution
effect. Such decreased likelihood will occur when
sign(d̂d)lsign(d) and when abs(d̂d)4abs(d). Thus,
even when M2 is correct, a vague prior for the allelic
effects will cause the Bayesian analysis to favour M1.
Extending this idea to mating designs with many
parents, models with fewer QTL alleles group more
parents, and the posterior probability of these models
will increase as the prior for allelic value becomes
more vague. Sorensen & Gianola (2002) treat a sim-
pler case analytically to demonstrate the influence of
parameter priors on Bayesian selection between sim-
ple versus complex models. In selection between a
normal model with known mean and a normal model
with estimated mean, they show that a vague prior
on the mean favours selection of the simple over the
complex model and, in the extreme case of an im-
proper prior for the mean, the posterior probability of
the simple model is 1. Despite the simplicity of their
example, it captures the essence of our observation
that a wide prior on QTL allele effect leads to a lower
inferred number of QTL alleles than a narrow prior.

In the specific case of a 20-parent mating design,
when each parent carries a unique allele, the allelic
values conferred by some pairs of parents will be quite
close, such that grouping those parents will result in
an imperceptible decrease in the likelihood. Thus, the
data can be adequately modelled assuming the exist-
ence of fewer alleles than are in fact segregating. In
some sense, what the Bayesian analysis provides is an
estimate of the effective number rather than the true
number of segregating alleles. Distinct alleles that
nevertheless have similar effects contribute little to
increasing the number of effective alleles.

(ii) Information content in the data to determine
allelic number

In the context of the 20-parent breeding mating de-
sign, three lines of evidence indicate that phenotypic
and DNA-marker data contain relatively little infor-
mation that enables an estimate of QTL allele num-
ber. First, we have shown that the priors for allelic
number and allelic value strongly influence the
estimate of allelic number (Table 1). Second, the pos-
terior distribution for allelic number has high varia-
bility, indicating that, during MCMC sampling, there
is little likelihood penalty to either underestimating or
overestimating the allelic number (Fig. 2). Finally, the
posterior estimate for allelic number was highly vari-
able across replicate simulations, particularly under
the uniform prior distribution for allelic number
(Table 2, Fig. 3). Three sources of variation contri-
bute to between-replicate differences : MCMC sam-
pling error; genetic sampling of the evaluated lines ;
and environmental error on each line. Because the
error caused by MCMC sampling was small (see
Methods) between-replicate differences indicate that
the last two sources strongly influence the allelic-
number estimate. These observations beg the question
of the family size necessary to obtain reliable esti-
mates of allele number. We ran replicate simulations
of the 20-parent mating design under the uniform
prior for allelic number with different family sizes
(Fig. 4). The non-monotonic behaviour of the mean
estimate of allelic number as the family size increases
is noteworthy. It suggests that, as family size in-
creases, different information sources dominate the
analysis, presumably as follows. With very small
families (i.e. two or three individuals per family), the
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estimate for allelic number is dominated by the prior
information on allelic number. With small families
(5–20 individuals), the likelihood of models with high
allelic numbers decreases because of the effect of the
prior information on allelic value, as described in the
preceding section. With medium-sized families (40–80
individuals), information from the data causes the
likelihood of configurations that falsely group parents
carrying different alleles to drop. Consequently, the
posterior probability of models with allelic numbers
lower than the true allelic number becomes small.
Finally, with large families (>150 individuals), data

information consistently favours not only dis-
tinguishing parents that carry different alleles but
grouping parents that carry the same allele. The esti-
mated allelic number therefore approaches the true
number.

Although this explanation is intuitively appealing,
a more rigorous analysis is desirable. In particular, we
show here that Bayesian model selection does not
necessarily pick most parsimonious models and that
the relationship between data information content
and selected-model parsimony is complex. Given the
growing interest in Bayesian selection across models
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of different dimensions, particularly in the context of
QTL mapping (e.g. Sillanpää & Arjas, 1998; Yi & Xu,
2001), greater understanding of what determines the
selection of simple or complex models is needed. In
the case discussed here, interactions between prior
information and data information are complicated.
With small family sizes, the estimated allelic number
will reflect these interactions and probably has no
simple interpretation. Only if the data at hand include
150 or more individuals per family can the estimated
allelic number be interpreted as reflecting the true al-
lelic number.

(iii) Prior information on identity in state among
parents

In the analyses presented, we have assumed no prior
information on identity in state among parents. In
fact, such information could derive from the pedigree
of the parents if it was known. Using the pedigree,
probabilities of identity by descent can be calculated
(Lynch & Walsh, 1998) and further refined using
linkage methods if marker data is available on the
parents’ ancestors (Fernando & Grossman, 1989;
Goddard, 1992; van Arendonk et al., 1994). A second
source of prior information could derive from linkage
disequilibrium among markers surrounding the QTL
being analysed. Sufficient linkage disequilibrium
creates a relationship between the parent’s marker
haplotype and the identity of the QTL allele that it
carries. This relationship could be modelled to give
the probability of QTL identity between two parents
as a function of the similarity between their marker
haplotypes. Linkage disequilibrium and marker hap-
lotype information have been proposed in random-
effect QTL models (Meuwissen & Goddard, 2000)
and in fixed effect QTL models (Jansen et al., 2003).
Incorporating such prior information should improve
estimates of allelic effects.

(iv) Estimation of allelic value

When the variable-model groups parents as carrying
the same allele, it also pools the progeny derived from
those parents to obtain an estimate of allelic value.
Presumably, combining observations on alleles of
similar value so that more observations contribute to
a single parameter enables the variable model to esti-
mate allelic value with lower sampling variance.
Pooling observations to estimate parameters proved
to be important in the 20-parent design because of its
small family size.

Despite the fact that the variable model estimated
allelic value with lower MSE and lower squared bias
averaged across all parents, we found that it intro-
duces a systematic bias. In particular, estimates of the
allelic values of alleles with extreme effects are smaller

than the true effects. This moderation of the estimates
arises because, when different alleles are incorrectly
grouped, extreme alleles must inevitably be grouped
with less-extreme alleles, pulling their resulting allelic
value estimate toward the mean. We regressed esti-
mated allelic value on true allelic value and found re-
gression coefficients significantly lower than one for
the variable model but not significantly different from
one for the fixed model (Table 3, Fig. 5). Regression
coefficients were little affected by the actual number of
alleles segregating (data not shown). This paradoxical
combination of lower mean bias with systematic bias
can be explained by a linear model of the estimated on
the true allelic value: âaij=b0+b1ai+eij, where âaij is the
estimated allelic value for allele i in analysis j, ai is the
true value for that allele and eij is a residual. The in-
tercept for this linear model was consistently very
close to zero and we omit it from the analysis below.

Table 3. Regression of estimated allelic value on
the true allelic value as affected by analysis model
and QTL heritability. The residual variance about
regression is given in parentheses

Number
of parents

QTL
heritability

Variable
model

Fixed
model

3 0.10 0.962 (0.0029) 0.992 (0.0029)
3 0.20 0.969 (0.0018) 0.970 (0.0025)
20 0.06 0.755 (0.0058) 0.984 (0.0093)
20 0.12 0.882 (0.0076) 0.987 (0.0090)

Variable model
Fixed model
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Fig. 5. Regression of 25% and 75% quartiles of estimated
allelic value on the true allelic value (triangles and black
line for variable model, and diamonds and grey line
for fixed model). QTL heritability was 6% with the
configuration in which all parents carried unique alleles ;
analyses combined over allelic value and allelic number
priors.
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We are interested in the expectation of the squared
bias:

E{[bias(âa)]2}=E [(âaijxai)
2]

=E{[(b1x1)ai+eij]
2}

=(b1x1)2E(a2)+E(e2):

This equality follows from the property of re-
gression that the predictor variable has zero covari-
ance with the residual. Finally

E{[bias(âa)]2}=(b1x1)2E(a2)+E(e2)

=(b1x1)2var(a)+var(e), (15)

because E(a)=E(e)=0. Eqn 15 allows us to compare
the sources of bias in the variable and fixed models.
The var(a) term is fixed within a QTL heritability
class. For the fixed model, (b1x1)2B0, whereas, for
the variable model, (b1x1)2>0 (Table 3). Because,
despite this systematic effect, the squared bias for the
variable model is lower than that for the fixed model,
the residual variance around the regression must also
be lower. We did in fact observe lower residual vari-
ances in the variable model than in the fixed model
(Table 3). These relationships are illustrated in Fig. 2.
The variable model shows a shallower slope but also
a narrower interquartile range. This narrower inter-
quartile range gives the variable model its advantage
over the fixed model.

(v) Extension to other mating designs and unknown
QTL locations

We have simplified the development of this analysis
by assuming inbred parents and progeny. Extensions
to mating designs with non-inbred parents or progeny
do not necessitate the introduction of new concepts. If
parents are not inbred, the dimensions of the allelic
configuration matrix C would expand to 2Prl so that
the matrix could keep track of the identity of both
maternally and paternally derived alleles of each
parent. A vector of dominance interactions between all
allele pairs would be needed to model the phenotypes
of non-inbred progeny. Increasing the allelic number
from l to l+1 would require l new dominance par-
ameters on top of the one additive parameter. All new
allelic-effect parameters could be drawn from their
priors as we have done in the simple case described. In
that case, calculation of the Metropolis–Hastings ac-
ceptance probability would be exactly the same as for
the simpler additive model.

We have also simplified the analysis by assuming
the QTL position to be known and focussing all
MCMC iterations on that single position. An analysis
that also estimated the posterior density of QTL pos-
ition would require a procedure to update QTL pos-
ition and would estimate allelic number conditional

on position. Several procedures to update QTL pos-
ition based on the Metropolis–Hastings algorithm
have been published (Satagopan et al., 1996; Sillan-
pää & Arjas, 1998; Yi & Xu, 2000) and could be
adapted to the present context. Estimating allelic
number conditional on position would require saving
MCMC realizations in a vector indexed by QTL
position, as has been proposed for estimating QTL
effect or variance conditional on position (Sillanpää
& Arjas, 1998; Yi & Xu, 2001). To obtain adequate
estimates of QTL parameters conditional on position,
methods that estimate QTL position naturally require
more MCMC iterations than methods that assume
the position known. The increase in the number of
iterations might not be that great, however, given that
most iterations will occur at positions of high pos-
terior probability, focusing the iterations in much
the same way as restricting the QTL to a known
position.
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