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An oscillation theorem for a
superlinear functional differential
equation with general

deviating arguments
Yuichi Kitamura and TakaSi Kusano

An oscillation criterion is established for a class of functional
differential equations including the generalized Emden-~Fowler

equation

X

() 4y & (&) |x(g())|Y sen x(g(¢)) =0, y>1,

as a special case. The deviating arguments involved may be
retarded or advanced or otherwise. The result extends and
improves known fundamental oscillation criteria for superlinear

differential equations with retarded arguments.

The oscillatory behaviour of functional differential equations with
deviating arguments has been the object of intensive studies in the last
ten years. Most of the literature, however, is concerned with equations
involving retarded arguments. For typicaloscillationresultsregardingsuch

equations we refer to an excellent survey article of Mitropol'ski¥, Sevelo [7].

A systematic study of differential equations with general (not
necessarily retarded) deviating arguments was proposed by the present

authors; see, for example, [2] and {6]. As an illustration we mention the

following theorem proven in [2].
THEOREM A. Consider the superlinear equation
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(a) x(n)(t) + p(t)]x(g(t))]Y sgn x(g(t)) =0, y>1,

where p,g € C[R,R.]1, R_=[0, ™), and 1lim g(t) == . Suppose that

£

there is a function h € C'l[R+, R+] such that

(1) W t) =min{g(#), t} , A'(t) =20, 1lim A(t) = = ,
]
(2) j ()1 p(8)dt = =

Then, if n 1is even, every solution x(t) of (A) is oscillatory,
while, if n is odd, every solution z(t) 1is either oscillatory or such
that | (8) v 0 as the, =0, 1, ..., n-l .

In this note we consider the differential equation

(3) =M @)+ £(e, 2lgy (1)L ..nL alg (£)) =0

in generalization of (A) and wish to establish an oscillation criterion for
(B) which generalizes earlier standard oscillation criteria for retarded
differential equations ([3, 4, 5, 8§, 9, 10]1). Our result, when specialized
to (A), turns out to be a substantial improvement of Theorem A stated

above.

The conditions we assume for (B) are as follows:

(a) g.

; €ClB,, Rl , R=(%,® ,and lim gi(t) =w

1o
T =1, eueym;
(v) f ¢ C[R+x}?m, R] R f(t, Yo v ym) is nondecreasing in
each Y; > and ylf(t, Yis oo ym) > 0 for Y19, >0,
1 =1, v.o,m

{c) there exist functions p, ¢, ¥ € C‘[R+, R+] such that ¢(r)
and Y(r) are nondecreasing and positive for »r > 0 ,
|7(ts g -vos y)| 2 p(£)0(|yl) for (¢, y) € R, xR, and

dr
(3) E¢(P)w r)<°° for any § >0 .
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THEGREM B. LZet conditions (a), (b), and {(c) be satisfied. Put
g.(t) = min{gl(t), cees g (), t} and suppose that

)]n-l

) Jw [ga(t p(t) ;
—_——dt =,
V(g ()" )
Then, 1f n <is even, every solution z(t) of (B) is oscillatory,

while, 1f n 1ie odd, every solution z(t) is either oscillatory or such
that ]x(t)(t)| v0 a8 tAeo, ©=0,1, ..., n-1.

Proof. Let xz(¢) be a non-oscillatory solution of (B) defined on

@E, w] . Without loss of generality we may suppose that x(t) > 0 on
[7,> =) . Choose a t, > T  so large that g,(¢) 27T  for ¢2¢

x
From (B), x(n)(t) <0 for t =zt , so that by a lemma of Kiguradze [7,

0 °

Lemma 2] there exists a t, > t, and an integer Xk ¢ {0, 1, ..., n-1}

0
such that k 3 n (mod 2) and
(5) x(i)(t) >0 for t=zt , ©=0,1, , ko,
(6) (1055 () >0 or bz e, s ke, n

Let n be even. Clearly k = 1 and so x'(t) >0 for ¢ = tl . We

claim that

k-1
(t-t,) k-1 .
(kja)! f: (?nf%—l)! Flo, 2(g(a)))ds , t=2t,

(1) z'(¢) =

where %{g(s))} stands for (x(gl(s)), cens x(gm(s)]) . Observe that

k), .. " entr (4) mk-1 [F (eet)™ K1 ()
x (t) = igk W x (7) + (-1) JT ———(n-k—l)! x (s)ds

for any ¢, I'Zz¢, . Since (6) holds and n - k - 1 is even, it

follows from the above that

T n-k-1
(k) N (s-t) (n)
x(t) = - Jt (ki) x' " (s)ds

for T=1¢t2= tl , which in the limit as T > o gives
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n-k-1
(8) 2K () = jw lomt) —— ols, 2(3(s)))de , t=¢
t

(n-k-1)! 1

This coincides with (7) if %k =1 . Suppose k > 2 . Then we have

k-1
(¢-¢,)
(9) 2(8) 2~y = ) Ltz e
This follows from the equation
k-1 (2-)50 t o, k-2
z'(¢t) = iéﬁ ——(ZSTTT_-x(L>(t1] + Jt L%zﬁéjT—-x(k)(s)ds
1

(k)(

with the aid of (5) and the decreasing nature of &
with (9) yields (7) as claimed.

£} . Combining (8)

We now take a t, > ¢t; so that gu{t) =2 t. for ¢ = t2 . Since

1 1

x(n)(t) <0 for t=¢ there is a constant g = 1 such that

0 5
x(t) = at®™t for ¢ > t, » and hence if s = ¢, , then
-1
(10) z(t)/a = lg,(e)T"" rfor t) =t = guls) .

We divide both sides of (7) by ¢(x(t)/a)w{x(t)/a) and integrate it over
[tl, té] . t3 > t2 , obtaining

t3 ,
x'(2) dt
Jtl o{x(t) /a)y(x(t) /a)

‘3 (t-t,
2 Jt )16 (=00 /a)$ (=(2) 7a)
1

)k—l

e, #(5(s)))dsdt

t
J 3 (s_t)n-k-l
,  (n=k-1)1

t ~k-1 k-1
_ 3 ¢s (S—t)n (t-—tl] ffs ,5(§(3)l) Jids
T, (nk-1)1(k-1)1  ¢{x(¢) /a)v{=(2)/a)

1 tl
k- k-
>t3g“”(m®%ﬂ”kﬂﬁﬁ)l rle.E@EEe)) g
*Jt + (n-k-1)1(k-1)! o) a)vla(t) a) 2% -
2 1

Noting that =z(%) is increasing and using (b), (c), and (10), we see that

https://doi.org/10.1017/5000497270000825X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270000825X

An osciltlation theorem 399

() N ¢(x(9*(3))) (8)
ole() aulz(t)/a) =  o{x(2)] wlx%ti/a

>—p(8) i pos i< g(s)
Wig ™y T
From the above observations it follows that
t3 [_-g*(s)-tl] n_lp(S) x(tg /a dr
(11) J T ds = a{n-1)1 _T_T_T_T .
ty w(lg(a)™) a(t,)/a $TIVE

In view of (3), letting t3 + o in {11), we conclude that

J'm fg*(s)—tl]n-lp(s)
ty (lg(e)"™ ’

which contradicts (4). Thus, if »n is even, then all solutions of (B)

oscillate.

Let n be odd. If the integer %k in (5) and (6) is positive, then
the same argument as above leads to a comtradiction. Therefore, k must

be zero and we have

z(t) v ezo0, lx(t)(t)[ Y0 as tte , =1, ...,n1.

Suppose ¢ > 0 . Then from (B) we get

(12) M) +ole)p(t) =0 for > t, .

An integration of (12) multiplied by (t—tz)n_l/(n—l)! yields

-1 1
t (s-t)" n-1 (¢-t .
(e j Tl_iT—p(s)ds + Z — (—1)7'x(’b)(t) - x(tg] =0
t 1=0 )
2
for ¢t 2 t, , from vhich, taking (6) into account, we obtain

r (s-tg)n—lp(s)ds <o,

ts
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But this clearly contradicts (4), and so ¢ must be zero. Thus the proof

is complete.

Applying Theorem B to the particular case where

m Y.
e, vy oos ) = 0(8) IZI ly,| * sen v,

we have the following

COROLLARY C. Consider the differential equation
(n) z Vi
(c) () + pley T Ix(gi(t))l sgn x(gl(t)) =0,
=1

where Y; s =1, ..., m, are nonnegative constants. If

[m g.() 1 p(t)dt = =,

then, for n even, every solution x(t) of (b) is oscillatory, and, for
n odd, every solution xz(t) <s either oscillatory or such that
(4

|x")(t)|+o as tteo, 4=20,1, ..., n-1.

We give an example which shows that Corollary C actually improves

Theorem A.

EXAMPLE. Consider the equation

(13) 2(8) + & (g(9))]3 =0, g(t) =t + (6-£7) sin t .

Since gu(t) =t for 2km =t = (2k+l)m , k =1, 2, ... , we have

r £ g, (2)ae
an

v

o (2k+1)T
5 J £ tar
k=1

2k

v

m Y [(2k+1)7]
k=l

Hence, by Corollary C, all solutions of (13) are oscillatory.

On the other hand, Theorem A cannot be applied to (13), for there does
not exist a function HA(t) which satisfies both (1) and (2). In fact, if
h(t) 1is any function satisfying (1), then
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n(t) = n({2k+(3/2))m) = g((2k+(3/2))7) = [(2k+(3/2))ﬂ]1/2

for (2k-(1/2))m = ¢t = (2k+(3/2))w , k=1, 2, ... , so that we find

fn t°7/hh(t)dt =
3r/2 k=1

er ¥ [(2k-(1/2))n]‘7/h[(2k+(3/2))n]1/2 <o,
k=1

(2k+3/2)T
J T M) ar

o718

(2k-1/2)m

1A
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