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ABSTRACT 

I discuss the connection between the rotation rate of late-type dwarf stars and 
their level of surface "activity11 (as deduced from visible, UV, and X-ray observa­
tions) from both theoretical and observational perspectives. 

1 . INTRODUCTION 

Understanding the connection between stellar activity and intrinsic stellar 
parameters (such as stellar mass, age, and rotation rate) is, strictly speaking, a 
rather formidable problem because it presupposes that one has a full understanding 
of the various theoretical components that are thought to be involved: stellar inte­
rior and evolution theory, stellar dynamo theory and, finally, the theory of chromos-
pheric and coronal formation. On a qualitative level, much is of course known: that 
is, after all, part of the point of this symposium. Nowadays, it is common wisdom 
that the production of stellar magnetic fields in stellar interiors largely determines 
the level of stellar surface "activity11 (see, for example, discussions in Bonnet & 
Dupree 1980). It is on the detailed, quantftative, level that the difficulty manifests 
itself: given a star with known mass, age (or radius), and surface rotation rate, can 
we predict the expected level of surface activity? In trying to address this ques­
tion, three major stumbling blocks arise: 

(i) It is not obvious that the given parameters are sufficient to uniquely deter­
mine stellar surface emission levels. In addition to the (trivial) fact that activity 
levels vary substantially during the course of the solar cycle (during which the 
Sun's age and mass hardly can be thought to vary), one must keep in mind the 
much.more profound problem that stellar surface rotation rates may be a very poor 
guide to the actual rotation profile in the stellar interior (which is presumably a 
major determinant of activity levels). I will not concern myself with this basic 
difficulty here. 

(ii) It is not obvious in what sense current theories of stellar magnetic field 
production and coronal activity are predictive; one must carefully examine not only 
the limitations of the theoretical tools used, but also scrutinize the limitations of 
the physics which enters current calculations. I will address this problem first. 
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(Hi) It is not obvious what theory is to account for. Before theorists invest 
much effort in detailed modeling of specific "rotation-activity" correlations which are 
claimed by observers, it is well to ask for the basis of these correlations; as I will 
try to show, although the sought-for connection between rotation and activity (for 
example) can be made very precise, it is another matter whether observations are 
presently able to establish this connection. 

Unsurprisingly, there are thus both observational and theoretical conundrums to 
puzzle over; In the following, I will try to discuss these, keeping in mind that much 
of the basic details of both the observations and theory are summarized here by 
others (see especially Gilman 1983; Golub 1983; Schussler 1983; Vaiana 1983). 

2. ON THEORY 

Can one predict the variation of stellar surface "activity" with the stellar rota­
tion rate fi and other intrisic stellar parameters, such as stellar mass and age? To 
begin the discussion, it is worthwhile to distinguish the several possible theoretical 
approaches , and the roles that these play in answering the above question (see 
Schussler 1982 for further details): 

(i) Linear (kinematic) dynamo theory is exploratory, but not quantitatively 
predictive. Linear kinematic dynamo theory is based on the supposition that 
Lorentz forces are negligible, so that in order to determine the evolution of (mean) 
stellar magnetic fields, it is sufficient to consider the field as kinematically tran­
sported by a given fluid flow (which is determined by some other theory, such as a 
model for interior stellar convection). Such theories (which by far dominate what 
one usually refers to as "dynamo theory") cannot provide information concerning 
the amplitude of the magnetic fields built up during the course of dynamo action; 
this is so because the equations are linear in the very variable dne would like to 
have information about, the magnetic field. However, such theories do provide a 
physical picture for many aspects of the dynamo process, motivate the construc­
tion of more sophisticated models, and allow the calculation of growth rates, for 
example, for unstable dynamo waves (cf. Moffatt 1978, Parker 1979) . It therefore 
makes little sense to attempt to link the amplitude of stellar activity with the meas­
ures of dynamo activity derived from linear kinematic theory (such as the growth 
rate or dynamo number). Naively, one might of course hope that such a connection 
does exist; indeed, the literature abounds with such hopes* But it remains a 
disheartening fact that linear theory has little, if any, predictive power regarding 
the behavior of solutions to the full non-linear equations (which include, for exam­
ple, the back-reaction of the magnetic fields on the fluid flow). An instructive 
example to convince the skeptics in this regard are the recent calculations of sim­
ple non-linear extensions of standard dynamo equations by N. O. Weiss and colla­
borators (Weiss 1983; see also Bobbins 1977, Jones 1 9 8 1 , and Ruzmaikin 1981); 
it is very evident from their work that many of the essential features of the non­
linear solutions (such as quasi-periodic and chaotic behavior) are entirely absent in 
the linear solutions. This is of course not to say that linear theory ought to be for­
gotten: the point is only that the essence of the present problem - understanding 
the effects of magnetic field production in the non-linear regime - is virtually by 
definition outside the domain of linear dynamo theory (whose more modest aims are 
more in the nature of demonstrating the possibility of dynamo action, rather than in 
providing detailed models of observed dynamos). I suspect that it is the success 
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of linear theory in successfully "modeling" the gross features of the solar cycle, 
such as the sunspot butterfly diagram and the polarity laws, by parameter fitting 
that has obscured the fact that such modeling actually says little regarding the 
governing physics (viz., Gilman 1982, 1983) . 

(ii) Model non-linear dynamos fall in a very distinct class of dynamo calcula­
tions in which the equations used are approximations of the full non-linear equations 
of motion (through, for example, some truncation process and/or simplifications of 
geometry or of the dimensionality of the system); these approximations are gen­
erally made in the spirit of, first, preserving what are believed to be the essential 
non-linear interactions thought to occur in the physical system and, second, making 
the problem mathematically tractable. The emphasis here is on capturing the basic 
properties of the physical processes likely to be occuring in a computationally 
feasible way; because these calculations are not full simulations (see below), they 
are not likely to provide a quantitatively-accurate account of the competition 
between various non-linear effects in the actual physical system (i.e., the solar con­
vection zone). Recent calculations of magnetoconvection (see Weiss 1983 in this 
volume) fall into this category of dynamo modeling. 

(Hi) Dynamo simulations, that is, "full" numerical simulations of the magnetohy-
drodynamic equations, seek to model the dynamo behavior of the (thermally-driven) 
convective flows which are ultimately responsible for dynamo action; the calcula­
tions of Gilman ( 1 9 8 1 , 1982a, b), reported in this volume, are exemplary of this 
kind of approach. In this case, a serious attempt is made to solve the full set of 
equations in a realistic geometry, so that one would think that limitations of the 
simplified non-linear models to have been overcome. As Gilman ( 1983 ) has noted, 
there remain, however, several major limitations: present calculations are not fully 
compressible, do not take magnetic buoyancy into account, and are limited in spa­
tial resolution. The latter difficulty manifests itself in the necessity to impose 
artificial (turbulent) diffusivities (because the diffusive range is not simulated), and 
in the fact that the formation of localized flux ("flux ropes"), as in the classic cal­
culations of Weiss (1966) , cannot be taken into account. An interesting further 
limitation of present calculations (which is likely to be relatively easily disposed of) 
is the fact that the effects of fluid helicity (i.e., <v*curl v » are derived only from 
fluid flow on the resolved scales (unlike the eddy diffusivities, which do take into 
account the "macroscopic" effects of turbulent motions on unresolved scales); 
thus, the turbulent diffusivities and the "a-effect" due to unresolved turbulence are 
not taken equivalent account of. Finally, it is argued by some (see Frisch 1982 in 
this volume) that the very introduction of eddy diffusivities into a simulation 
negates the purpose of the simulation; although, strictly speaking, this point of 
view has merit, I believe that for the purposes of modeling stellar dyanamo 
behavior, the introduction of eddy diffusivities is benign (the limitations imposed by 
the neglect of compressibility being much more serious). 

It \s useful to note at this point that there do exist dynamo calculations which fall 
into none of the above categories; specifically, these are models in which account 
is taken of possible non-linearities, but without providing a systematic basis for 
deriving these effects (so that the non-linearities are imposed ad hoc). At times, 
such models are very enlightening (the best example perhaps being the original 
dynamo model of Leighton 1964, in which an artificial flux eruption and loss term 
was inserted into the induction equation); but, in general, I do not see such models 
as useful contributions because, in a profound sense, these models are not 
testable. 
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It is an interesting fact that magnetic buoyancy plays a very subsidiary role in 
most of the above approaches to dynamo theory: it is either altogether neglected, 
or enters only by defining a critical time scale (i.e., the typical rise, or crossing, 
time for magnetic flux generated in the deep convection zone to reach the solar 
surface; cf. Robinson & Durney 1982 and Schussler 1980) . This neglect is very 
likely seriously in error. Acheson (1978) showed that, if stellar rotation is taken 
into account, magnetic buoyancy changes from a problem of lack of steady equili­
brium to a classic instability problem; hence, a new time scale enters the problem, 
namely the inverse growth rate of the relevant instability (see Schmitt & Rosner 
1982 for a full discussion of the various possible instabilities and associated 
growth rates). This insight led a number of theoreticians to re-consider the possi­
ble location of the magnetic flux generating region of the dynamo (Rosner & Vaiana 
1979; Spiegel & Weiss 1980, 1 9 8 1 ; Golub et a/. 1980; Knobloch et a/. 1981); and, 
in particular, to consider the possibility that this generating region actually lies 
below the convection zone proper, i.e., in the "overshoot" boundary layer that must 
separate the fully-convective zone from the stably-stratified radiative core, leading 
to the so-called "shell dynamo" (Rosner 1980). 

It must be noted that this new approach to the flux generation problem is con­
ceptually distinct from Parker's (1975) reanalysis of the rate of rise of magnetic 
flux due to magnetic buoyancy. In this calculation, Parker showed that reasonable 
estimates of the rise rate of buoyant flux tubes lead to the difficulty that, unless 
flux tubes are produced in the lower region of the solar convection zone, the rise 
time to the surface is too short to allow the "a-effect" (resulting from the action of 
the Coriolis force on rising flux "bubbles") to function effectively; hence, Parker 
argued, it must be the case that dynamo action does not occur everywhere within 
the solar convection zone, but rather occurs preferentially in its lower depths. In 
this case (as in the case of Schussler 1979, 1980, Spruit 1981 and, more 
recently, van Ballegooijen 1982), the focus is on the motion of flux tubes; and, in 
the case of Parker (1975, 1979) and others, the assumption is that the relevant 
dynamics occurs within the convection zone proper. 

This second approach of course does not attempt to answer the question of 
how these flux ropes came to be, regards this problem as distinct from the buoy­
ancy problem and, typically, appeals to (for example) the calculations of N. O. 
Weiss (1966) and collaborators in order to account for magnetic flux intermittency 
(cf. Schussler 1983). In the alternative approach which J. Schmitt and I have 
been following, the initial focus Is on the stability of diffuse magnetic flux lying just 
below the base of the convection zone; i.e., we assume that in the region of 
toroidal magnetic flux amplification (which is assumed to coincide with the boundary 
layer separating the solar convection zone proper from the radiative core), the 
magnetic field has not as yet filamented into flux ropes, and is therefore "diffuse". 
One then investigates the following formal problem: consider the MHD stability of an 
electrically conducting and differentially rotating gas in the presence of a toroidal 
magnetic field B, an external, constant gravitational field, and radiation pressure, 
with the effects of viscosity (v), magnetic field diffusion (17), and heat diffusion (*) 
to be included. Thus posed, the problem can be addressed by application of clas­
sic linear (and local) analysis, and was first studied in depth analytically (without 
inclusion of radiation pressure) by Acheson (1978, 1979); the full linear analysis, 
covering the plausible range of available parameters (the most important of which 
are the (thermal) Prandtl number V/K and the (magnetic) Prandtl, or Schmidt, number 
17/c), and presenting growth rates for both low and high frequency modes, has been 
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recently given by Schmitt & Rosner (1982). In the following, I wilt briefly summar­
ize the principal conclusions from these studies that directly impinge on the subject 
at hand. 

To orient ourselves, we chose cylindrical coordinates (r, £ , z) such that the 
local Q-vector points in the z-direction, the local magnetic field in the ^-direct ion 
and local gravity g* is a vector in the meridional plane; Q and B are functions of 
the meridional coordinates; viscous forces, radiation pressure and, of course, grav­
i ty are regarded as external forces. The basic "equilibrium" state is assumed to 
be axisymmetric and stationary; no motions other than the prescribed rotation rate 
fl(r,z) are assumed to be present (thus one ignores flows whose time scales are of 
order the Eddington-Sweet circulation). Each of the diffusive processes (of heart, 
magnetic field, and momentum) defines a characteristic time scale: we have P/\ , 
17/A , and */X , where X is some scale length. These time scales may be vast ly 
different; this possibility is of considerable importance because it is this disparity in 
diffusive time scales that allows for the presence of so-called doubly-diffusive 
instabilities (Stommel, Arons & Blanchard 1956; see review of Huppert & Turner 
1981). 

XI 

Radiative Zone Convection Zone 

Figure 1 : Sketch of the magnetic field geometry envisaged for the convectively-
stable boundary layer separating the radiative core from the outer convec­
tion zone (from Schmitt & Rosner 1982). 

Because the phenomenon of double-diffusive instability may not be universally 
familiar, I digress for a moment. Consider the classic case of cold, fresh water 
overlying warm salty water (Stern 1960) such that the density (as well as the 
salinity and temperature) decreases with height. Naively, one would think that 
because the density profile is statically stratif ied, the system ought to be also 
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stably stratified; this is incorrect. Focus on the upward displacement of a "bubble" 
of water from its equilibrium position: the dense, hot, and salty bubble will try to 
equilibrate with the ambient less dense, cooler, and fresher water by means of 
molecular diffusion. Suppose that the heat diffusivity is larger than the salt 
diffusivity (as is indeed the case for water); the bubble's temperature will then 
equilibrate with its surroundings more rapidly than its salinity does, so that the bub­
ble, upon its return to its equilibrium position, will be relatively more dense than its 
surroundings at this position. It therefore sinks past its initial equilibrium, and the 
above process repeats; hence the bubble will execute overstable oscillations 
which are driven by the unstable temperature gradient (i.e., in the absence of a 
salinity gradient, the fluid would be unstably stratified as denser cold water would 
overlies less dense warm water). Note, however, that the key to the instability is 
the inequality of the two governing diffusivities (of heat and salinity), with the third 
diffusivity in the problem, the viscosity, simply acting to damp the bubble's motion. 
Of course, more complex cases can be considered, the best-known of these being 
warm, salty water overlying cold, fresh (and denser) water; in this case (which is 
commonly encountered in oceans), the water develops highly horizontally-structured 
and vertically-enlongated "salt fingers", again as a result of the higher diffusion 
rate of heat than salinity (so that a descending, initially hot and salty "bubble" 
becomes yet denser than its surroundings, and continuous to descend). Where 
does the connection to the magnetic buoyancy problem lie? Here the appropriate 
analogies are between the density, temperature, and salt distributions in water and 
the temperature, entropy, and magnetic field in the magnetofluid, respectively; 
analogous to the saline water case, the magnetic diffusivity is substantially smaller 
than the heat diffusivity, so that overstable oscillations and, presumably, analogues 
of salt fingers become possible. It is the latter possibility that led J. Schmitt and 
me to consider the possibility that the magnetic buoyancy problem and the mag­
netic flux tube problem in the deep convection zone may have a common solution. 

As an example of the possible behavior of the magnetofluid, consider the 
physically-simplest case, namely that corresponding to the axhsymmetric solutions 
of the full dispersion relation (studied first by Acheson and Gibbons; see Acheson 
1978) for a stably-stratified region. Three different inertial frequencies must be 
considered: the rotation rate fl, the Brunt-Vaisala frequency N (i.e., the frequency 
of adiabatic buoyancy oscillations), and a "magnetic" Brunt-Vaisala frequency M 
(defined analogously to N, but based on the magnetic field, rather than the entropy, 
gradient), which we assume to be much smaller than max{N, Q}; we hence require 
for stability that the frequency of buoyancy oscillations far exceeds the rotation 
and magnetic Brunt-Vaisala frequencies. We then adopt the (astrophysically 
interesting) assumption that the entropy gradient is stable, but that the magnetic 
field gradient is unstable - as could occur in the overshoot zone lying below the 
solar convection zone. The diffusivity (ij) corresponding to the destabilising 
ingredient (the magnetic field) then obeys the ordering v < 17 < *, and is thus brack­
eted by the diffusivities corresponding to the stabilising ingredients (rotation and 
entropy). In that case, buoyancy modes will be damped by efficient heat conduc­
tion on shorter length scales; and one obtains doubly-diffusive instability as long as 
the modulus of the ratio of the normal and magnetic Brunt-Vaisala frequencies does 
not significantly exceed *)/«. What actually happens? For these (axisymmetric) 
modes, the fluid motions must lie in the r-z plane; because of incompressibility, 
modes whose wave vector lies in the r-directlon correspond to motions along z, and 
vice versa. Consider first motions along z (which are not subject to Coriolis forces, 
but only to buoyancy effects); because there is no effective restoring force, these 
modes will grow exponentially. Next, consider what happens as we rotate the 
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wave vector in the r-z plane: as we cross the direction in which wave motions lie 
in the plane perpendicular to the buoyancy forces (i.e., such that g*k = 0) , we 
obtain stability (because there are no driving forces for these motions). When k x z 
= 0, the corresponding fluid motions along the r-direction will be subject to both 
Coriolis and buoyancy forces; hence, Coriolis forces may stabilise buoyancy effects 
(by "pushing11 in the azimuthal direction). However, if instability occurs, it will be 
oscillatory, with a frequency determined by the rotation rate Q if the magnetic 
Brunt-Vaisala frequency is less than fl. In that case, doubly-diffusive effects will 
enter again: the influence of Coriolis forces is now damped by diffusion of momen­
tum (controlled by v), while the influence of buoyancy is damped by diffusion of 
heat (controlled by *0 and/or magnetic fields (controlled by 17). 

A basic feature of these doubly-diffusive instabilities is that they occur only on 
"intermediate" length scales, that is, on scales lying between the short 
wavelengths which are heavily damped, and are thus stabilised, and the long 
wavelengths which are assumed to be stable; one can thus calculate cut-off 
wavenumbers, such that damping dominates at larger wavenumbers, by invoking the 
condition of marginal stability; we find that, to leading order (and for the ordering v 
« 17 « * ) , the cutoff wave number s depends very strongly upon * 

s 4 ~ " [ W J1 • N2[ M 2 + fl2 + fo/«)N2 ] / [ M 2 + 7(*?/«)Q2 + (*?/«)N2] (2.1) 

(where y is the ratio of specific heats), in contrast to Acheson's (1979) result 
obtained for an unstratified atmosphere. 

It is evident from the above that the actual behavior of the magnetic layer 
depends crucially upon the actual values of the various diffusivities, as well as on 
the actual value of the superadiabatic gradient and mean (diffuse) field strength in 
the unstable layer. Consider first the diffusivities. In the radiative interior, typical 
values for the Prandtl (?/*) and Schmidt (17/*) numbers are 

v/K ~ 2 * 10"6, t?/« ~ 7X10"4 , (2.2) 

and thus we are most certainly in the parameter regime v « ty « * assumed by 
Acheson (1978): application of this theory to the radiative interior of the Sun thus 
seems to be on safe grounds (but is not particularly interesting). The situation is 
however more problematical in the solar convection zone: this region is turbulently 
convective (the Reynolds number is very large), so that if one regards the physical 
variables in the MHD equations of motion as averages (i.e., as variables defined on 
spatial and temporal scales large when compared to the integral scales of the tur­
bulent flow), then the eddy (rather than the molecular) diffusivities are appropriate; 
these we take to be isotropic. This latter assumption is probably reasonable 
because, as the scales modeled by us are much smaller than the local pressure 
scale height, and as the scales of turbulent motions which provide the eddy 
diffusivities occur on yet smaller scales, the relevant Rossby number is likely to be 
large; hence rotation is unimportant for the scales of the turbulence responsible for 
the eddy diffusivities. 

As alluded to above, there are a myrad of other obstacles to (numerically) 
evaluating the growth rates for the unstable modes: we do not know the value of 
the superadiabatic gradient in the boundary layer separating the convection zone 
from the radiative interior (this is related to the classic problem of calculating the 
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extent of the overshoot region which must underlie the level at which the 
Schwarzschild criterion is met); and we do not know with any certainty exactly 
where the azimuthal (toroidal) magnetic flux is really built up (the earlier arguments 
not withstanding). But let us suppose that magnetic flux storage does occur below 
the fully-developed convection zone (cf. Arter 1983). In order to scale our results, 
we adopt the parameter values 

Bmean ~ 1°»00<> gauss; 
| B | / | V B | = 0 . 2 p / | V p | ; 

Q = 1 0 x Q O ; 
V - V i n " 4 

adiabatic 1 0 • 

(2.3a) 

(2.3b) 

(2.3c) 

(2.3d) 

The values for the density, the density and pressure scale heights, the sound 
speed, the curvature radius, the gravitational acceleration, and the adiabatic index 
y are relatively well established, and are kept constant throughout our calculations. 
The radiation pressure is neglected, and the surface angular velocity is adopted as 
the rotation rate (although the rotation rate very likely varies radially); we thus 
neglect local effects of differential rotation. 
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Figure 2: Growth rate versus wave number in the nonaxisymmetric case, with az­
imuthal wavenumber m * 3, rotation rate Q = 10 x 0s u n» for (typical) values 
of the superadiabatic gradient v - v

 d ■ - 10 , field strength B = 10 4 G, and 
magnetic field gradient scale H» = H L / 5 ; i/r is the angle between the direc­
tion of wave propagation and the radial direction at colatitude 9 = 60° . Ex­
cept for the singular case 6 = 0° , the results are insensitive to the choice 
of colatitude. We assume that there is no magnetic field gradient along the 
z-axis, and plot the growth rate for various values of ^ . There are two prin­
cipal branches, corresponding to (a) inertial ("fast") waves, whose growth 
rates peak at small spatial scales (large wave numbers); and (b) magnetos-
trophic ("slow") modes, whose growth rates peak at large spatial scales 
(small wave numbers) (from Schmitt & Rosner 1982) . 
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Typical results for the growth rate of the unstable modes are shown in Figure 
2 for the simplest non-axisymmetric case, in which there are no magnetic field gra­
dients along Q (so that there is no buoyancy driving force in the direction in which 
fluid motions are unaffected by the Coriolis force); we arbitrarily adopt an azimuthal 
wave number m = 3. Under these assumptions, motions along Q will be stable, and 
motions along the magnetic field gradient will be subject to the full stabilisation of 
rotation. The most unstable meridional wavevectors lie in the radial direction, as 
shown in Figure 2 ; in particular, the "slow" (magnetostrophic mode) instability 
occurs on the longer scales (smaller wavenumbers), and the " fas t " (inertial mode) 
instability occurs on shorter scales (it turns out that axisymmetric modes, with m = 
0, have no "slow" mode instability). Because the maximum growth rates are almost 
independent of the assumed Brunt-Vaisala frequency if |M /N | < q/ic, we conclude 
that, qualitatively, the assumed magnetic field configuration does not seem to be 
crit ical for the appearance of instability. 
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Rgure 3: Variation of the maximal growth rate versus the Prandtl and Schmidt 
numbers, for the parameter values used in Figure 2 ; we fix ty = 160° , and 
show results for two (Afferent wave number regimes, *s / 0 = (a) 10 ("slow" 
mode regime); (b) 10 (" fast" mode regime). Note that if turbulent eddy 
diffusivities apply (such that both the Prandtl and Schmidt numbers are of 
order unity), the magnetic field configuration is stable (from Schmitt & Ros-
ner 1982) . 
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Now, suppose that the diffusivities were given instead by their eddy values; 
does the behavior of the instabilities change? On the scales of interest, the tur­
bulent viscosity will be given by v t u r b ~ u(X)X, where u is a typical velocity on the 
scale X. If we assume u to be giyen by typical velocities in JJie lower part of the 
convection zone. we have u £ 10 cm sec"1; setting A £ 10 cm, we then obtain 
*turb < 1 ° 8 cm sec" . We assume that the energy flux is largely carried by radia­
tion, so that (*/*)eff ~ 0 (1) ; and, because the magnetic Prandtl number and 
Schmidt numbers are not well established, we shall explore the range of values 
10" 4 «rilK « 1 0 + 2 . 

In order to carry out this exploration of the parameter space of the (thermal) 
Prandtl and Schmidt numbers, we fix the wave numbers s and m, and calculate 
growth rates as a function of f}/« and P/K. Figure 3a shows the result of such a 
calculation for the case KS /Q = 10, m = 3, assuming again a spherically symmetric 
mean magnetic field configuration. The "slow" mode is evidently unstable for P/K £ 
10, r)/K £ 10" . Similarity, we obtain the growth rates for the most unstable mode 
for the case KS /Q = 10 (so that one expects to obtain the "fast" mode 
instability), shown in Figure 3b. These figures clearly show that the region of insta­
bility in the f) /* - P/K plane is a function of both parameters, although the growth 
rate, once It exceeds zero, depends only weakly on TJ/K and P/K. 

What are some of the implications of the above formal results? Here we tread 
on far less certain grounds. Doubly-diffusive processes characteristically give rise 
to intrinsically preferred length scales; thus, in our case, maximum growth rates 
typically occur on (dimensionless) scales KS /Q ~ 1 - 1000 for the range of subadi-
abatic gradient values considered bv us, corresponding to meridional wavelengths 
X m e r ~ 10 - 400 km for K ~ 1 0 8 cm^sec . One interesting possibility is that this 
instability (in the non-linear regime) gives rise to flux tubes of diameter ~ X _ e r (cf. 
Spiegel & Weiss 1980; Hughes 1982); simple-minded scaling arguments Tor the 
change in flux tube diameter during the course of its rise to the sgrface then yield 
flux rope scale sizes of ~ 10,000 km or more, not an outrageous number. Thus, it 
may be that flux tube formation may be a natural (nonlinear) consequence of 
doubly-diffusive instability. 

Our growth rate calculations also ^how that in a not too strongly stabilised 
region, both "slow", hydromagnetic waves and "fast" inertial waves may become 
unstable; these instabilities occur with comparable growth rates, but rather 
different characteristic spatial scales. Radiation is sufficiently efficient to cause 
these waves to lose their thermal buoyancy, but magnetic field diffusion does not 
occur rapidly enough to remove their magnetic buoyancy; the energy driving the 
instability therefore must come from the magnetic field free energy. It is not evi­
dent which modes are likely to be excited; however, experience with other sys­
tems exhibiting convectively unstable and stable zones (viz., thermosolutal convec­
tion) suggests that gravity modes will indeed be efficiently excited (see Press 
1981). 

Perhaps the most intruiging consequence of these doubly-diffusive instabilities 
is the implication for the so-called "shell" dynamo (Rosner & Vaiana 1979). As 
argued above, the overshoot convection boundary layer is thought to be the site 
for toroidal magnetic flux generation by the co-dynamo. Because of the presence of 
turbulent flows, the Schmidt (or magnetic Prandtl) number will be large [i.e., 0 (1 ) ] . 
Hence, the ratio of the magnetic and non-magnetic Brunt-Vaisala frequencies will be 
smaller than the Schmidt number, and the doubly-diffusive instabilities discussed 
above will be inhibited. Thus, toroidal magnetic flux accumulation is possible in this 
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boundary layer. However, once the toroidal magnetic field exceeds some critical 
threshold, turbulent motions will be suppressed; the eddy diffusivities will hence 
decrease (and so the Schmidt number will become small), and the system will 
become unstable. Because the instability growth rates are large, toroidal magnetic 
flux ejection in this model would then be episodic on a recurrence time scale fixed 
by the rate of toroidal flux amplification by the ui-dynamo. We conjecture that the 
formation of active region complexes is a consequence of this episodic eruption 
process, and that the spatial scale of the erupting magnetic flux is determined by 
the doubly-diffusive mechanism we have discussed above. 

Where does this theoretical work leave us? It is not hard to notice the many 
assumptions adopted in the above discussion; although these are necessary in 
order to progress in the present instability calculations, one would really prefer to 
know the actual parameter regime applicable to the Sun. The overshoot problem is 
just now being seriously addressed (cf. Hulbert, Toomre, & Massaguer 1981; van 
Ballegooijen 1982; Marcus, Press & Teukolsky 1982; Schmitt & Rosner 1983), so 
that there is some hope of understanding the stratification of the deep convecton 
zone and overshoot boundary; and the crucial problem of the non-linear develop­
ment of the doubly-diffusive modes is now also beginning to be attacked. But 
whether a definitive statement regarding the quantitative connection between stel­
lar rotation rate and "activity" can be made is somewhat doubtful. 

3. ON OBSERVATIONS. 

I now turn to a far more observationally-oriented aspect of the stellar 
"activity-rotation connection"; and ask to what extent we have observational 
knowledge of the existence of such a "connection" and, more specifically, to what 
extent one should - as a theoretician - pay heed to the precise nature of the 
correlations found by observers to connect stellar rotation rates and the various 
measures of stellar surface activity. 

The most basic question to be addressed is, quite clearly, why one ought to 
expect difficulties in the first place. Certainly, it must be that, as the volume of 
data has grown (virtually exponentially), application of standard data reduction and 
error analysis techniques, together with careful attention to the possible existence 
of sample biases, will avoid gross error; this ought certainly hold for correlation 
analyses of complete samples (that is, samples containing every star meeting some 
a priori selection criteria or, somewhat more weakly, containing a truly random 
selection of such stars). In the following, I will show that such standard analyses, 
when applied to currently'available stellar data, will very likely lead to error. 

To be more precise, consider a volume-limited sample of stars, for which we 
have measurements of stellar parameters such as rotation rates, mass, effective 
temperature, x-ray luminosity, Ca II index, etc. Let us assume for the moment that 
for every star in the sample (of N stars), all data are available; that is, every star 
In the sample is characterized by M distinct parameter measurements F = {f^, f 2 , 
... , fjy|}, so that the full sample is completely characterized by the N x M matrix of 
measured parameters. Classically, one can describe the sample by specifying the 
joint probability distribution function ^r(f 1 , fP, ... , f M ) , such that 

♦ ( . • • X i f , . . . dfM (3.1) 
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is the probability that a given star has its characteristic parameters lying in the 
range (f.., f1 ^df -p ••• ; fjy|> f^ + dfiy|)- N o w» st j s always possible to write \jr in the 
form (with f^ = L, L some passbana luminosity, and f 2 = Ot 0 the stellar rotation 
frequency) 

* ( L , Q , • • • ) - 9 ( Q ) * ( L | Q , • • • ) , (3.2) 

so that the first moment of the marginal (or conditional) distribution function $ 
yields the regression curve 

<L(Q, • • • )> - J dLL*(L|fl, • • • ), (3.3) 

The aim of standard correlation analysis (in its various guises) is in fact to con­
struct this regression curve, which functionally relates the mean luminosity to the 
remaining stellar parameters. Least-squares, or minimum-variance, fitting and com­
mon factor analyses all fall into this generic class; in the most sophisticated ver­
sions, one attempts to construct a minimal set of stellar parameters (with M' < M) 
that fully describe the sample, and so "factor out" those parameters which are not 
truly independent (the functional dependence of these "factored-out" parameters 
on the remaining stellar parameters is one of the principal goals of such analyses). 
All of this is subject to two major restrictions: 

(i) In general, we do not know 4(L | Q, ... ). The common remedy is to assume 
some a priori functional form for <L> which contains several adjustable parameters 
ft, and then to minimize the variance of the fit of <L> to the data by variation of 
these parameters. This is the aim of classical regression analysis, and has been 
used to describe, for example, the correlation between stellar rotation rate and 
stellar x-ray emission (cf. Pallavicini 1980, 1982; Walter & Bowyer 1 9 8 1 ; Walter 
1 9 8 1 , 1982); in this case, the adjustable parameters 0, are the coefficient and 
exponent of the power law usually assumed to define tne mean variation of L , 
<LX>, with Q. 

(ii) In general, one may not have measurements of aii M of the parameters 
characterizing a given star; more specifically, some of the stars in the sample may 
have only upper bounds on their (X-ray) luminosity or rotation rate. This lack of 
information is only troubling insofar as standard regression analysis cannot deal 
with upper bounds. For example, classical least squares fitting can only be per­
formed if one has a measurement to compare theory with. It is unfortunately com­
mon to deal with this difficulty by simply ignoring it; typically, ene finds that stars 
whose parametric description is incomplete are simply removed from the sample 
under study. Naivety, one might think that removal of incomplete information is 
benign, but in fact upper bounds do provide information concerning the distribution 
of a given parameter within the test sample. 

To see how both detections and upper bounds contribute information about the 
sample population, consider the luminosity function ^(L), 

*(L) - JdO ••• * (L|0, • • • ) , (3.4) 
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obtained by integrating $ from Eq. (3.2) over all the remaining stellar parameters; 
<£(L) has the property that the probability for a given star drawn from the sample 
population to have a luminosity L in the range [L, L + dl_] is just 

* ( L ) dL 

The basic idea, first discussed by Avni et a/. (1980 ; also Avni 1981) in the context 
of quasar luminosity functions and quasar evolution, is that upper bounds impose 
integral constraints on the luminosity function which provide information rather 
analogous to that provided by actual detections. More specifically, consider the 
following simplified heuristic argument. Suppose we bin our detections and upper 
bounds as shown in Figure 4 ; and let us suppose that we really know the true dis­
tribution of L, that is, we know the bin probabilities ^. , i = 1 , ... , M (where M is the 
total number of luminosity bins), defined by 

L. + 6L ■r 
Li 

* , = J d L * ( L ) . (3.5) 

U(k) 
•^ 

, N(k 

1 2 n k M 

Bin Number 
(Luminos i ty ) 

Figure 4: Sketch of luminosity binning arrangement; the horizontal luminosity axis is 
consists of discrete bins, each characterized by an as yet unknown bin pro­
bability that a given observed star will have a luminosity in the luminosity 
range spanned by the bin. See t e x t for further details. 

Now denote the number of detections in bin k by N(k), and the number of upper 
bounds in bin k by U(k). Then the probability that a given upper bound in bin k 
(say) "really" belongs in bin n (that is, the star really has a luminosity that would 
place it in bin n, if we had sufficient sensitivity to observe i t ) , is 

*n / 2 *k" (3*6) 

k'=1 
Thus, the expected number of stars in our sample that have upper bounds on L 
which placed them in bin k, but which really "belong" in bin n, is jus t 

k 

U(k)'*n / 2 *k- ( 3 7 ) 

1^=1 
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Thus, the "effective" number of stars which belong in bin n is just the sum of the 
stars with measured luminosities which fell into bin n, plus the number obtained from 
the upper bounds, Eq. (3.7): 

M k 

Neffective<n) = N ( n ) + 2u<k>*n / 2 ♦ * • < 3 8 > 
k=n k'=1 

Now, in the limit of large samples, we expect that the ratio N
e f f e c t j V e^ n ^ N t ^Nt t h e 

total number of stars in the sample) will approach the bin probability # n ; hence, 
with a bit of algebra, we can solve for ^ n in Eq. (3.8): 

M M 

* n = N(n)/[Nt - ]?U(k) / [1 - 2 *k'l ^ ( 3 9 ) 

k=n kf=k+1 

This result gives, in closed iterative form, the differential luminosity function for the 
sample, and takes the upper bounds into account; given the set of values (N(k), 
U(k)}, one starts with n = M (the upper-most luminosity bin) and work downwards to 
smaller n. Note that this result is significantly different from what would be 
obtained If upper bounds were not taken Into account (i.e., if U(k) = 0 for all k in 
Eq. 3.9). For some purposes, it is more convenient to work with the integral lumi­
nosity function F(L), defined simply as 

00 

F(L) = J dL*(L); (3.10) 
L 

an example of a result of such a calculation is shown in Figure 5, the integral x-ray 
luminosity function for dwarf M stars (Rosner et at. 1981). 

Now let us return to the original problem of determining the functional form of 
the marginal distribution $(L | 0 , ... ), which contains the crucial information linking 
activity and the classical stellar parameters, such as rotation rate. Following the 
approach just described for deriving the stellar luminosity function, we will now out­
line the method for constructing 9; the parametric form presented here is due origi­
nally to Y. Avni (Avni & Tananbaum 1982; Tananbaum et ai. 1982). 

To begin, we shall adopt three major assumptions: 
1. We suppose that the problem can be described parametrically, that 

ls9 we shall assume that the mean variation of the stellar (X-ray) luminosity 
<L> (defined in Eq. 3.3) can be expressed as an analytic function of the 
remaining stellar parameters, 

<L> - f (0 , • • • ;6V62, • • • 0 m ) , (3.11) 
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UPPER BOUNDS 
DETECTIONS] 
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26 27 28 29 

LOG L x (erg s~1) 

Figure 5: Integral x-ray luminosity function for a voiume-limited sample of M dwarfs, 
as derived from Einstein Observatory data; F(>L) indicates the fraction of 
the entire population of dwarf M stars whose luminosity exceeds L (from 
Rosner et a/. 1981) . 

where B*t ... , 8 are the m regression parameters to be determined. For 
example, it is commonly assumed that one can connect <L> with 0 using the 
relation 

log<L> - 9 1
 + 0 2 logQ, (3.12) 

where 8^ and 0 2 are the fitting (or regression) parameters. It is not essen­
tial to assume a specific functional form for the connection between <L> 
and, say, fi; indeed, it is straightforward to apply this method non-
parametrically (so that no assumptions regarding the functional form of <L> 
must be made), as a student at Harvard, J. Schmitt (1962) , has recently 
done. 

2. We assume that all stellar parameters have been determined, with 
the sole exception of L, for which we have measurements as well as upper 
bounds; we regard each value of L (or upper bound on L) as an independent 
random variable whose distribution we seek to determine. Again, it is 
straightforward to extend this method to the case in which upper bounds for 
some of the other stellar parameters also exist (most crucially, for the rota­
tion rate Q); J. Schmitt has carried this extension out as well. 

3. We assume that the residuals {(L° - f b o 8 t ) j > , where L° is the 
observed luminosity and f b e s t = <l_> is the best-fit mean relation, have a 
Gaussian distribution with zero mean and variance a. This assumption is 
essential, but may be invalid: whether this assumption is applicable can only 
be determined a posteriori. 

The method is now quite straightforward: we first construct the likelihood func­
tion A (Kendall & Stuart 1976) 
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A(X | 6 ) - * ( L 1 | 0 ) * ( L 2 | 6 ) • • • * ( L n | 9 ) (3.13) 

where X = (L-p ... , Ln) is the set of detections and upper bounds for L, and 9 = 
(0-p — i 0m) is the set of m independently varied parameters in the fitting distribu­
tion function (in our case, the distribution function is assumed to be a Gaussian, 
and only one parameter enters, namely the variance <r). Note that the likelihood 
function is nothing but the joint probability density function for the independent 
random variables Lj. It is customary (and algebraically helpful in the following) to 
work with the negative natural logarithm of A, S = - 2 In A; for the case at hand, 
we find that S is given by 

Nd Nu 

S = 2N d In <r + < f " 2 2 (Ld, " f ) 2 " 2% »n G[ (LUj - f)/<r ] , (3.14) 

1=1 i=1 

where a, 

G(t) = J dtf (2ir)"1 / 2 exp( - tf2/2); (3.15) 

As an example of this method, I have applied the above formalism in order to 
obtain the conditional x-ray luminosity function 

* = * ( L X | Q ) (3.16) 

for single late-type main sequence stars (using the data of Pallavicini et at. 1982); 
this distribution function basically measures the variation in dispersion of the stellar 
x-ray luminosity about the mean <LX> as a function of the stellar rotation rate fi. 
The outcome of our calculation, cast in terms of the cumulative distribution F 
(scaled to unit variance) 

F(LX) - J dLx' » (L X ' | Q), (3.17) 

0 

is shown in Figure 6. The most striking result is that the residuals of the best-fit 
relation connecting <l_x> with 0 do seem to follow a Gaussian distribution of zero 
mean and unit variance, as we assumed in the beginning; that is, the distribution of 
L about its mean <LX> for fixed rotation rate is consistent with a random distribu­
tion; this suggests that: 

(i) the variation of <l_x> with Q is the dominant systematic contribution to the 
observed range in x-ray luminosities; 

(ii) the remaining scatter in luminosity (associated with the residuals Ld
{ -

<LX>) may be due to intrinsically stochastic processes; the obvious possibilites are 
a superposition of contributions from short-term stellar variability (for example, from 
flares) and from stellar activity cycle variations (which are randomly sampled in 
phase). 
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Log 

i 1 1 f 1 1 r 

-2 -1 0 1 2 
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Figure 6: Cumulative x-ray luminosity distribution function F(L | 0 ) , obtained from a 
sample of single, late-type dwarf stars for which x-ray luminosities (or upper 
bounds) and rotation rates were available (from Pallavicini et a/. 1982). * 
gives the distribution of stellar X-ray luminosity about the regression curve 
log <LX> = 0-, + $2 log 0. Also shown is the predicted distribution function 
(solid curve) for a Gaussian random variable of zero mean and variance 1 ; 
note the close correspondence between the observational result and the 
theoretical curve. 

It is interesting to note that, if the residuals are dominated by stellar cycle 
variability, then the observed variance of the residuals for fixed fi (given by Figure 
6 ) immediately gives the amplitude of stellar activity as a function of rotation rate; 
hence, long-term monitoring may not be required to study this aspect of activity 
cycles (long-term monitoring is of course crucial to studies of, for example, cycle 
periods). 

4 . SUMMARY. 
I have outlined some of the limitations of present attempts to "model" the con­

nection between stellar activity and intrinsic stellar parameters, such as the rota­
tion rate; and have discussed some remedies, it appears that at present, it may 
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be premature to ask theory t o account for reported correlations between, for 
example, x-ray luminosity and stellar rotation rate, on a quantitative level; but the 
time seems ripe to apply more rigorous analysis techniques in order to establish the 
observational quantitative connection between intrinsic stellar parameters and 
"ac t iv i ty " characteristics. Rather than "reinventing the wheel", we have taken 
advantage of recent work on quasar luminosity functions (in which many of the 
observational problems encountered in stellar research - upper bounds on detec­
tions, incomplete samples, etc., come up as well), and have applied this methodol­
ogy (with some modification) to analysis of stellar x-ray and rotation data; these 
methods could be easily extended to similar work with other "act iv i ty" indicators, 
such as Ca II data. 

ACKNOWLEDGEMENTS. 
I would like to thank Y. Avni, J. Schmitt, and N. 0. Weiss for many extensive 

discussions and suggestions. This work was partially supported by NAGW-79 and 
NAG8-445 at Harvard University. 

REFERENCES. 

Acheson, D. J.: 1978, Phil. Trans. Roy. Soc. Lond. A, 289, 459. 
Acheson, D. J., and Gibbons, M. P.: 1978, Appendix to Acheson (1978) . 
Acheson, D. J.: 1979, Solar Phys., 62 , 23. 
Arter, W.: 1983, in Solar and Stellar Magnetic Fields, ed. J. 0. Stenflo, t h i s volume. 
Avni, Y.: 1 9 8 1 , private communication. 
Avni, Y., Soltan, A., Tananbaum, H., and Zamorani, G.: 1980, Ap. J., 238 , 800. 
Avni, Y., and Tananbaum, H.: 1982, preprint. 
Bonnet, R. M. and Dupree, A. K.: 1 9 8 1 , Solar Phenomena in Stars and Stellar Sys­

tems, editors (Dordrecht: Reidel). 
Durney, B. R., and Spruit, H. C : 1979, Ap. J., 234, 1067. 
Galloway, D. J., and Weiss, N. 0.: 1 9 8 1 , Ap. J., 243, 945. 
Gitman, P. A.: 1970, Ap. J., 162, 1019. 
Gilman, P. A.: 1 9 8 1 , in The Sun As a Star, ed. S. Jordan (NASA SP-450), p. 2 3 1 . 
Gilman, P. A.: 1982, in Cool Stars, Stellar Systems, and the Sun, ed M. S. Giam-

papa and L. Golub (SAO Report 392) . 
Gilman, P. A.: 1983, this volume. 
Golub, L: 1983, this volume. 
Golub, U Rosner, R., Vaiana, G. S., and Weiss, N. 0.: 1 9 8 1 , Ap. J., 243, 309. 
Hulbert, N., Toomre, J., and Massaguer, J. M.: 1981 , BAAS, 13, 912 . 
Huppert, H. E., and Turner, J. S.: 1 9 8 1 , J. Fluid Mech., 106, 299. 
Jones, C. A.: 1 9 8 1 , Geophys. Astrophys. Fiuid Dyn. 
Kendall, M., and Stuart, A.: 1976, The Advanced Theory of Statistics, Vol. 2, 

(McMillan). 
Knobloch, E., and Rosner, R.: 1 9 8 1 , Ap. J., 247, 300 . 
Knobloch, E., Rosner, R., and Weiss, N. 0.: 1981 , M. N. R. A. S. (Comm.), 197, 45P. 
Marcus, P. S., Press, W. H., and Teukofsky, S. A.: 1982, Ap. J., in press. 

https://doi.org/10.1017/S0074180900029946 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900029946


ON THE STELLAR ROTATION-ACTIVITY CONNECTION 297 

Moffatt, H. K.: 1978, Magnetic Field Generation in Electrically Conducting Fluids 
(Cambridge: Cambridge Univ. Press). 

Pallavicini, R., Golub, L , Rosner, R., and Vaiana, G. S. 1982, in Cool Stars, Stellar 
Systems, and the Sun (Vol. I), ed. M. S. Giampapa and L. Golub, pp. 77. 

Parker, E. N.: 1975, Ap. J., 198, 205. 
Parker, E. N.: 1979, Cosmical Magnetic Fields (Oxford: Clarendon Press). 
Press, W. H.: 1 9 8 1 , Ap. J., 245, 286. 
Roberts, P. H., and Stewartson, K.: 1977, Astr. Nachr., 298, 3 1 1 . 
Robinson, R. D. and Durney, B. R.: 1982, Astron. Ap., 108, 322. 
Rosner, R.: 1980, in Cool Stars, Stellar Systems, and the Sun, ed. A. K. Dupree 

(SAO Report No. 389) , p. 79. 
Rosner, R., and Vaiana, G. S.: 1979, in X-ray Astronomy, ed. R. Giacconi and G. 

Setti (Dortrecht: Reidel), p. 129. 
Rosner, R., et ai.: 1 9 8 1 , Ap. J. Letters, 249, L5. 
Ruzmaikin, A. A.: 1 9 8 1 , Comm. Astrqphys., 9, 85. 
Schmitt, J. H. M. M.: 1982, In preparation. 
Schmitt, J. H. M. M., and Rosner, R.: 1982, Ap. J., in press, 
Schmitt, J. H. M. M., and Rosner, R.: 1982, in preparation. 
Schussler, M.: 1979, Astron. Ap., 7 1 , 79. 
Schussler, M.: 1980, Nature, 288, 150. 
Schussler, M.: 1983, t h i s volume. 
Spiegel, E. A., and Zahn, J.-P.: 1970, Comments Astrophys. Space Phys., 2, 178. 
Spiegel, E. A., and Weiss, N. 0.: 1980, Nature, 287, 616. 
Spiegel, E. A., and Weiss, N. O.: 1981 , preprint (Columbia Univ./Astronomy #A10). 
Spruit, H. C : 1976, Ph. D. Thesis, Utrecht. 
Spruit, H. C : 1 9 8 1 , preprint. 
Spruit, H. C. and Ballegooijen, A. A.: 1982, Astron. Ap., 106, 58 . 
Stern, M. E.: 1960, Tellus, 12, 172. 
Stommel, H., Arons, A. B., and Blanchard, D.: 1956, Deep-Sea Res., 3, 152. 
Tananbaum, H., Wardle, J. F. C , Zamorani, G., and Avni, Y.: 1982, preprint. 
Vaiana, G. S., et a/.: 1 9 8 1 , Ap. J., 245, 163. 
Vaiana, G. S.: 1983, t h i s volume. 
van Ballegooijen, A. A.: 1982, Astron. Ap., 106, 43. 
Walter, F. M.: 1 9 8 1 , Ap. J., 245, 677. 
Walter, F. M.: 1982, Ap. J.„ in press. 
Walter, F. M., and Bowyer, S.: 1 9 8 1 , Ap. J., 245, 6 7 1 . 
Weiss, N. O.: 1966, Proc. Roy; Soc. Lond., 293, 310. 
Weiss, N. 0.: 1981a, J. Fluid. Mech., 108, 247. 
Weiss, N. O.: 1981b, J. Fluid. Mech., 108, 273. 
Weiss, N. O.: 1983, this volume. 

DISCUSSION 

GILMAN: Parker's argument that magnetic buoyancy requires the solar field to be retained 
mostly in the deep layers of the convection zone for the dynamo to work must assume a 
magnitude for the a effect consistent with the observed magnetic cycle length. But in the 
global MHD dynamo models, the problem is that a is much too big to give the right period. 
Perhaps the presence of magnetic buoyancy would not eliminate the dynamo from the bulk 
of the convection zone, but rather would simply reduce the effective a to the point where 
a more nearly correct period comes out. What do you think about this? 
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ROSNER: I think that in the context of your global model, in which the dynamo processes 
occur throughout the convection layer, your suggestion is very plausible, and in fact is yet 
another good argument for including magnetic buoyancy in the model. 

SPICER: If you look at the question of magnetic buoyancy as an MHD stability problem, 
you find that magnetic buoyancy is just a magnetized form of the Raleigh-Taylor instability 
called the Kruskal-Schwarzschild instability. Now it is possible to stabilize the K-S in­
stability by shearing the magnetic field by adding a parallel current, albeit a weak parallel 
current. Hence, shearing the field may help keep the field from rising through the convection 
zone too quickly allowing amplification of the field. 

ROSNER: The relation between magnetic buoyancy and the Kruskal-Schwarzschild in­
stability is well-known. Indeed, there is a poster presentation by D. Hughes at this sym­
posium on the interchange instability (which is what you are addressing), which discusses 
the geat richness of the possible instabilities. Now, if one knows the particular instability 
to be suppressed, you are quite right that one can in principle stabilize the system by 
imposing suitable current flows (as is done in the laboratory). However, in the case of the 
Sun, it is very hard for me to see how the Sun manages to arrange for stabilizing current 
flows for the entire zoo of MHD instabilities which follow from the full dispersion relation. 
Perhaps some modes are stabilized by the kind of effect you propose, but at most this will 
just change the dominant mode of instability. 

SPRUIT: In general by adding complications to the magnetic configuration, like shear, 
one increases the free energy. Though certain instabilities may be reduced, the overall 
instability tends to get worse. 

SPICER: In response to the comment that adding an additional parallel current may 
suppress the K-S instability but causes other instabilities, I must state that it is a question 
of the magnitude of the magnetic field associated with the parallel current relative to the 
ambient field. Only a weak shearing field is necessary to stabilize the K-S instability, while 
large fields, associated with the parallel currents, give rise to the instabilities Spruit refers 
to — generically referred to as kinks. Perhaps fields are kept at the base of the convection 
zone by shearing but brought up only after the current density gets large enough to cause 
a kink. 

GARCIA DE LA ROSA: According to the current ideas on magnetic buoyancy, the velocity 
of ascension for a fluxtube is roughly proportional to the magnetic flux content of the tube. 
If you consider a unique layer of departure for magnetic flux tubes travelling towards the 
surface, how can you fit the obvious observation of the simultaneous coexistence on the 
solar surface of large and small active regions corresponding to fluxtubes with a difference 
of flux content of several orders of magnitude. 

ROSNER: Your question is quite apt, and in fact similar arguments led L. Golub, G. 
Vaiana, N.O. Weiss, and myself to a phenomenological picture of flux emergence, in which 
the small-scale fluxtubes indeed do come from higher layers, i.e., they are produced as 
large flux ropes rise through the convection zone and are "shredded" by turbulence (1981, 
Artrophyg. J. 243, p. 300). 

BASRI: I just wanted to point out that the RS CVn stars are the best current sample 
of stars which satisfy the theoretical properties Dr. Rosner has indicated are desirable. 
Observation of a volume limited sample has the best chance of having all detections in 
various diagnostics (no upper limits) coupled with well determined values of ft . One must 
then just be careful to know whether results from this sample are generally applicable to 
a larger class of stars. 
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ROSNER: I agree. In fact, as I pointed out, because the sample of stars considered by 
Walter and Bowyer contained only detections (i.e., every star looked at was detected), 
their "rectified" Lxl^boi distribution is in fact identical to the one derived by maximum 
likelihood techniques. I would however caution that in those cases in which periods of 
RS CVn stars are established purely by considering the orbital period of the system (i.e., 
arguing that because of tidal coupling, the rotation period is identical to the orbital period), 
there may be a difficulty: as discussed by J.-L. Tassoul (Theory of Rotating Stars, p. 
36ff), synchronism does not always obtain. For this reason, one should try to obtain the 
photometric period (as has in fact been done for many of the stars in this sample). 

GIOVANELLI: (1) Observations tell us a great deal about the origin of the small-scale flux 
elements. These have their origins in sunspots, and their disintegration has been studied 
in great detail. This is no mere possibility — it is a fact. (2) We have been able also to 
follow the transport of flux elements to polar regions. Since the tubes of force do not break, 
we have long subsurface tubes joining the polar flux elements back to their origins in the 
sunspot flux ropes. There must be a deeper flow back to the equator, for continuity, and 
these meridional circulations carry tubes of force downwards, where they are concentrated 
greatly unless gas can cross into the tube. I don't know whether this is a vital problem. 
But the main result is that the flux tubes are always strong deep in the convection zone. I 
believe that the theoreticians have been concentrating on the wrong thing: they have been 
concerned too much with building up strong fields deep in the convection zone, whereas 
the problem is rather in dealing with strong fields, and explaining how these strong fields 
can survive without floating. 

ROSNER: (1) My comments were directed not at the problem of forming small magnetic 
features at the surface, but rather at the problem of explaining the emergence of magnetic 
features (such as fields associated with X-ray bright points) which are already small upon 
emergence. In this case, Golub et al. (1980) argued that their origin might well be in the 
"shredding" of larger flux elements. I thus do not believe we are in disagreement. (2) I 
believe that we are not discussing the same issue. I agree that the ultimate fate of fluxtubes 
is an important problem, but it is not the problem I discussed. I addressed the question: 
How might fluxtubes be formed in the first place? Thereby, J. Schmitt and I considered 
the stability of an equilibrium field configuration at the base of the convection zone to 
doubly-diffusive modes. 

IONSON: What is the rotation-dependent force that competes with the buoyancy force? 
If one builds this effect into, for example, an a-w dynamo, is the cycle time modified? 

ROSNER: The Coriolis force is the competing element. Although it is of course hard to 
specify without doing the full calculation, qualitatively the answer is yes, the cycle time is 
modified. E. Knobloch, N.O. Weiss, and myself in fact recently looked at this very question 
(1981, Monthly Not. Royal Astron. Soc. 197, p. 45P), and suggested that it is the buoyant 
loss process from the flux-producing layer that controls the time scale of field eruption. 

FRISCH: You have rightly stressed the basic difference between ad hoc non-linear theories, 
which have little predictive power, and full non-linear calculations. Among the limitations 
of presently achievable calculations you mention problems relating to turbulent diffusivities. 
This, however, is a concept that belongs to ad hoc modelling (like dimensional analysis). 
The only known case where a systematic justification can be given for the use of turbulent 
diffusivities is when there is a clear-cut separation of scales. Otherwise, if we were to 
take seriously the concept of turbulent viscosity we would predict that high and moderate 
Reynolds number flows have essentially the same large scale features and differ only in 
the small scales. This however contradicts experimental evidence (e.g. from Taylor-Couette 
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flows) that by increasing Reynolds numbers we may have a transition from chaotic large 
scales to more organized (coherent) large scales. Such relaminarization phenomena are 
likely to play a role both in dynamo theories and in stellar variability theory. 

ROSNER: I agree with your basic point, but I note that, as a practical matter, one requires 
some artificial dissipation at small scales in current simulations, which are very strongly 
limited in spatial resolution. In the absence of "turbulent" transport coefficients, energy 
cascading to large wavenumbers could not be dissipated at the smallest calculated scale 
length (where classical diffusion is still negligible). 

VAN BALLEGOOIJEN: It was pointed out by Acheson (1978) that a small radial gradient 
of angular velocity brings about a new instability. This instability is more important than 
the usually considered buoyant instability for VA <C 2CIH (this corresponds to B <. 6 X 104 

G in the deep layers of the solar convective zone). An outward decrease of angular velocity 
makes the field unstable, while an outward increase stabilizes the non-axisymmetric modes 
of the tube. 

ROSNER: Quite right. In our work, we explicitly avoided looking at these modes, except 
for the B = 0 case, in which case we again showed (cf. Acheson, 1978) that one can retrieve 
the well-known Goldreich and Schubert result. As far as "importance" is concerned, I note 
that we use B ^ 104 G (which is, in light of our total ignorance, as reasonable a number 
as any), so that the inequality is barely satisfied. Furthermore, my comments regarding the 
inertial mode apply here as well: we really ought to do the non-linear calculation before 
deciding which modes are really important. 

GALLOWAY: In your linearized model you took a prescribed magnetic field. In practice 
the field must be generated by a dynamo, and that needs motions. The convective overshoot 
motions themselves could do it, but they would presumably also bring the flux into the 
convection zone, where it would be removed very quickly. Do you have any other ideas 
about how to generate the field? 

ROSNER: Your question aptly contrasts our idealized model with reality. Of course, we 
would like the penetrative flow into the boundary layer to carry flux down (to be amplified 
within the boundary by the w-effect), but these very motions can also carry flux outwards. 
The point is that the actual situation is likely to be very far from a simple stationary 
equilibrium, so that there may never be a time during which linear analysis applies. That 
is yet another reason to look at the non-linear regime, as we are now doing. 

SCHUSSLER: We should distinguish between buoyancy-related instabilities, which depend 
on an influence of the magnetic field on the overall stratification holding up more material 
than would be there without a field, and genuine buoyancy of an isolated fluxtube, which 
simply is a non-equilibrium phenomenon. Furthermore, we must not forget convection: 
small fluxtubes are dominated by the drag force due to convective flows, while big flux ropes 
are influenced by buoyancy. Thus the two types of fluxtubes may behave quite differently. 

ROSNER: You are quite right on both counts. In our paper (J. Schmitt and R. Rosner: 1982, 
A$trophy9.J., in press) we in fact go to great lengths to distinguish between the instability 
problem we deal with, and the buoyancy of "isolated" fluxtubes. As far as convection is 
concerned, I am a bit worried about available theories for the rise of buoyant fluxtubes. The 
problem may be very much complicated by processes such as recently discussed by Parker 
(1982), in which he shows that fluxtubes lying parallel to the axis of convective rolls can 
be "trapped" within regions of downflow, executing a stable motion with no net upward 
component. This seems to say that the actual rise rate of fluxtubes in a convection zone 
may be very sensitive to the details of the convective flow, and hence be a very difficult 
problem to solve generally. 

https://doi.org/10.1017/S0074180900029946 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900029946

