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Abstract. In this note we answer two question posed by Berkani and Koliha [Acta
Sci. Math. 69 (2003), 359–376]. We show that generalized Browder’s (resp. generalized
a-Browder’s) theorem holds for a Banach space operator if and only if Browder’s (resp.
a-Browder’s) theorem does. We also give condition under which generalized Weyl’s
(resp. generalized a-Weyl’s) theorem is equivalent to Weyl’s (resp. a-Weyl’s) theorem.
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1. Introduction. Throughout this paper, B(X) denote the algebra of all bounded
linear operators acting on a Banach space X. For T ∈ B(X), let T∗, N(T), R(T),
σ (T) and σap(T) denote the adjoint, the null space, the range, the spectrum and the
approximate point spectrum of T respectively. Let α(T) and β(T) be the nullity and
the deficiency of T defined by

α(T) = dimN(T), and β(T) = codimR(T).

If the range R(T) of T is closed and complemented and α(T) < ∞ (resp. N(T) is
complemented and β(T) < ∞), then T is called an upper (resp. a lower) semi-Fredholm
operator. In the sequel SF+(X) (resp. SF−(X)) will denote the set of all upper (resp.
lower ) semi-Fredholm operators. If T ∈ B(X) is either upper or lower semi-Fredholm,
then T is called a semi-Fredholm operator, and the index of T is defined by ind(T) =
α(T) − β(T). If both α(T) and β(T) are finite, then T is a Fredholm operator. An
operator T is called Weyl if it is Fredholm of index zero. The descent q(T) and the
ascent p(T) are given by

q(T) = inf{n : R(Tn) = R(Tn+1)},
p(T) = inf{n : N(Tn) = N(Tn+1)}.

A bounded linear operator T is called Browder if it is Fredholm of finite ascent and
descent. The essential spectrum σe(T), Weyl spectrum σw(T), and Browder spectrum
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σb(T) of T ∈ B(X) are defined by

σe(T) = {λ ∈ � : T − λ is not Fredholm},
σw(T) = {λ ∈ � : T − λ is not Weyl},
σb(T) = {λ ∈ � : T − λ is not Browder}.

Evidently

σe(T) ⊆ σw(T) ⊆ σb(T).

For T ∈ B(X), define the set LD(X) by

LD(X) = {T ∈ B(X) : p(T) < ∞ and R(Tp(T)+1) is closed}.
An operator T ∈ B(X) is said to be left Drazin invertible if T ∈ LD(X). We say that
λ ∈ σap(T) is a left pole of T if T − λ ∈ LD(X), and that λ ∈ σap(T) is a left pole of T
of finite rank if λ is a left pole of T and α(T − λ) < ∞. We denote by πa(T) the set of
all left poles of T, and by πa

0 (T) the set of all left poles of finite rank.
We say that Weyl’s theorem holds for T ∈ B(X) if

σ (T) \ σw(T) = E0(T);

where E0(T) is the set of isolated point of σ (T) which are eigenvalues of finite
multiplicity, and that Browder’s theorem holds for T ∈ B(X) if

σ (T) \ σw(T) = π0(T),

where π0(T) is the set of all poles of T of finite rank.
For T ∈ B(X), let SF−

+ (X) the class of all T ∈ SF+(X) with ind T ≤ 0. The essential
approximate point spectrum σSF−

+ (T) is defined by

σSF−
+ (T) = {λ ∈ � : T − λ is not in SF−

+ (X)}.
We say that a-Weyl’s theorem holds for T ∈ B(X) if

σap(T) \ σSF−
+ (T) = Ea

0(T),

where Ea
0(T) is the set of isolated points of σap(T) which are eigenvalues of finite

multiplicity, and that a-Browder’s theorem holds for T ∈ B(X) if

σap(T) \ σSF−
+ (T) = πa

0 (T).

In [10, 20], it is shown that :

a-Weyl’s theorem ⇒ Weyl’s theorem ⇒ Browder’s theorem,

a-Weyl’s theorem ⇒ a-Browder’s theorem ⇒ Browder’s theorem.

The investigation of operators obeying Weyl’s theorem, a-Weyl’s theorem,
Browder’s theorem or a-Browder’s theorem was studied by many mathematicians [7,
8, 9, 10, 11, 12, 14, 15, 18, 20, 22] and the references cited therein.

For a bounded linear operator T and a nonnegative integer n define Tn to be
the restriction of T to R(Tn) viewed as a map from R(Tn) into R(Tn) (in particular
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T0 = T). If for some integer n the range space R(Tn) is closed and Tn is an upper
(resp. a lower) semi-Fredholm operator, then T is called an upper (resp. lower) semi-
B-Fredholm operator. In this case the index of T is defined as the index of the semi-
B-Fredholm operator Tn, see [4]. Moreover if Tn is a Fredholm operator, then T is
called a B-Fredholm operator. A semi-B-Fredholm operator is an upper or a lower
semi-B-Fredholm operator. An operator T ∈ L(X) is said to be a B-Weyl operator if it
is a B-Fredholm operator of index zero. The B-Weyl spectrum σBW (T) of T is defined
by

σBW (T) = {λ ∈ � : T − λI is not a B-Weyl operator}.
We say that generalized Weyl’s theorem holds for T if

σ (T) \ σBW (T) = E(T),

where E(T) is the set of all isolated eigenvalues of T , and generalized Browder’s theorem
holds for T if

σ (T) \ σBW (T) = π (T),

where π (T) is the set of all poles of T . Similarly, let SBF+(X) be the class of all upper
semi-B-Fredholm operators, and SBF−

+ (X) the class of all T ∈ SBF+(X) such that
ind(T) ≤ 0. Also let

σSBF−
+ (T) = {λ ∈ � : T − λ is not in SBF−

+ (X)},

called the semi-essential approximate point spectrum, see [4]. We say that T obeys
generalized a-Weyl’s theorem if

σSBF−
+ (T) = σap(T) \ Ea(T),

where Ea(T) is the set of all eigenvalues of T which are isolated in σap(T) ([4 Definition
2.13]). From [4], we know that

generalized a-Weyl’s theorem ⇒ generalized Weyl’s theorem ⇒ Weyl’s theorem,
generalized a-Weyl’s theorem ⇒ a-Weyl’s theorem.

We say that T obeys generalized a-Browder’s theorem if

σSBF−
+ (T) = σap(T) \ πa(T).

Generalized Weyl’s theorem has been studied in [4]. In particular it is shown
that generalized Weyl’s theorem implies Weyl’s theorem. It has been extended from
normal operators to hyponormal operators [3], to p-hyponormal and M-hyponormal
operators by Cao et al [6] and to a large class of operators satisfying the SVEP by [1]
and [23]. In [4], it is shown that

generalized Browder’s theorem ⇒ Browder’s theorem,

generalized a-Browder’s theorem ⇒ a-Browder’s theorem.

In [4] the authors asked:
PROBLEM 1. Does there exist an operator satisfying Browder’s theorem but not

generalized Browder’s theorem?
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PROBLEM 2. Does there exist an operator satisfying a-Browder’s theorem but not
generalized a-Browder’s theorem?

In this note we answer their two problems negatively by showing that generalized
Browder’s (resp. a-Browder’s) theorem holds for a Banach space operator if and only
if Browder’s (resp. a-Browder’s) theorem does. We also give condition under which
generalized Weyl’s (resp. a-Weyl’s) theorem is equivalent to Weyl’s (resp. a-Weyl’s)
theorem.

2. Main results. In [4, Theorem 3.15] it is show that generalized Browder’s
theorem implies Browder’s theorem and the authors asked if there exists some operator
which obeys Browder’s theorem but not generalized Browder’s theorem (Problem 1 of
[4]). In the following we answer this negatively.

THEOREM 2.1. Let T ∈ B(X). Then the following are equivalent:
(i) Browder’s theorem holds for T;

(ii) generalized Browder’s theorem holds for T.

Proof. (i) ⇒ (ii) : By [4, Theorem 3.15].
(ii) ⇒ (i) : Assume that Browder’s theorem holds for T . Then

σ (T) \ σw(T) = π0(T). (2.1)

Let λ ∈ σ (T) \ σBW (T). Then T − λ is a B-Fredholm operator of index zero. For some
integer n large enough, T − (λ + 1

n ) is a Fredholm of index zero (see [5], Corollary 3.2 ]).
That is λ + 1

n /∈ σw(T). Hence by (2.1), λ + 1
n ∈ π0(T). Thus T − (λ + 1

n ) is a Fredholm
operator of index zero with finite ascent and descent. Hence by [13, Theorem 4.7] we
have p(T − λ) = q(T − λ) < ∞. Hence λ ∈ π (T).

Conversely assume that λ ∈ π (T). Then from [2, Theorem 2.3], T − λ is a
B-Fredholm operator of index zero. Thus π (T) ⊆ σ (T) \ σBW (T) and so we have
σ (T) \ σBW (T) = π (T). Therefore generalized Browder’s theorem holds for T . �

The following corollary gives a necessarily and sufficient condition that generalized
Weyl’s theorem and Weyl’s theorem are equivalent.

COROLLARY 2.1. Let T ∈ B(X). Then the following are equivalent:
(i) generalized Weyl’s theorem holds for T ;

(ii) generalized Browder’s theorem holds for T and E(T) = π (T);
(iii) Weyl’s theorem holds for T and E(T) = π (T);
(iv) Browder’s theorem holds for T and E(T) = π (T).

Proof. The equivalence between (i) and (ii) is given in [2, Corollary 2.6]. (ii) is
equivalent to (iv) by Theorem 2.1. Since Weyl’s theorem implies Browder’s theorem
then (iii) implies (iv). Now (i) implies (iii) by [2, Theorem 2.5] and [4, Theo-
rem 3.9]. �

A bounded linear operator T is called isoloid if every isolated point of σ (T) is an
eigenvalue of T . Let H(σ (T)) denote the space of all analytic functions in an open
neighborhood of σ (T). The first part of the following corollary was established in [1,
Proposition 2.10]. However the arguments are different.
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COROLLARY 2.2. Let T ∈ B(X). If T or T∗ has the SVEP and E(T) = π (T) then
T satisfies Weyl’s and generalized Weyl’s theorem. If in addition, T is isoloid then f (T)
satisfies Weyl’s and generalized Weyl’s theorem for every f ∈ H(σ (T)).

Proof. If T or T∗ has the SVEP then it follows from [18, Theorem 2.9] that T
satifies Browder’s theorem. Hence we deduce from Corollary 2.1 that T satisfies Weyl’s
and generalized Weyl’s theorem. Now if in addition T is isoloid then it follows from
[23, Theorem 2.2] that f (T) satisfies Weyl’s and generalized Weyl’s theorem for every
f ∈ H(σ (T)). �

Theorem 3.13 of [4] shows that if T satisfies generalized a-Browder’s theorem then
it satisfies a-Browder’s theorem. Problem 2 in [4] asked if the converse is not true. In
the following theorem we show that there is equivalence.

THEOREM 2.2. Let T ∈ B(X). Then the following are equivalent:
(i) a-Browder’s theorem holds for T.

(ii) generalized a-Browder’s theorem holds for T.

Proof. (i) ⇒ (ii) : Theorem 3.13 of [4].
(ii) ⇒ (i): Assume that a-Browder’s theorem holds for T . Then

σap(T) \ σSF−
+ (T) = πa

0 (T). (2.2)

Let λ ∈ σap(T) \ σSBF−
+ (T); then T − λ is an upper semi-B-Fredholm and ind(T − λ) ≤

0. For n large enough, it follows from [5, Corollary 3.2] that T − (λ + 1
n ) is an upper

semi-Fredholm operator and ind(T − (λ + 1
n )) ≤ 0. Then from (2.2), λ + 1

n belongs to
πa

0 (T). In particular, p(T − (λ + 1
n )) < ∞. Hence p(T − λ) < ∞ by Theorem 4.7 of

[13]. Now, since T − λ is semi-B-Fredholm, then there exists an integer m such that
R((T − λ)m) is closed and (T − λ) |R((T−λ)m) is Fredholm. From the proof of Proposition
2.1 of [5], we conclude that we can assume that m ≥ p(T − λ). Since we have R(T −
λ) + N((T − λ)i+1) = R(T − λ) + N((T − λ)i) for every i ≥ p(T − λ) and R((T − λ)m)
is closed, then by [17, Lemma 17], we get that R((T − λ)p(T−λ)+1) is closed. Finally,
λ ∈ πa(T). Thus

σap(T) \ σSBF−
+ (T) ⊆ πa(T).

For the reverse inclusion. If λ ∈ πa(T), then by [4, Remark 2.7] λ is isolated in σap(T)
and from [4, Theorem 2.8] T − λ /∈ σSBF−

+ (T). Thus λ ∈ σap(T) \ σSBF−
+ (T). Finally,

σap(T) \ σSBF−
+ (T) = πa(T). Thus generalized a-Browder’s theorem holds for T. �

The following corollary gives a necessary and sufficient condition that generalized
a-Weyl’s theorem and a-Weyl’s theorem are equivalent.

COROLLARY 2.3. Let T ∈ B(X). Then the following are equivalent:
(i) generalized a-Weyl’s theorem holds for T.

(ii) generalized a-Browder’s theorem holds for T and Ea(T) = πa(T).
(iii) a-Weyl’s theorem holds for T and Ea(T) = πa(T).
(iv) a-Browder’s theorem holds for T and Ea(T) = πa(T).

Proof. (ii) is equivalent to (iv) by Theorem 2.2. The equivalence between (i) and
(ii) follow from [4, Corollary 3.2]. Since a-Weyl’s theorem implies a-Browder’s theorem
(see [4, Corollary 3.5]), then (iii) implies (iv). By Theorem 3.11 and Corollary 3.2 of
[4], we get (i) implies (iii). �
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A bounded linear operator T is called a-isoloid if every isolated point of σap(T) is
an eigenvalue of T . Note that every a-isoloid operator is isoloid and the converse is
not true in general.

COROLLARY 2.4. Let T ∈ B(X). If T or T∗ has the SVEP and Ea(T) = πa(T) then
T satisfies a-Weyl’s and generalized a-Weyl’s theorem. If in addition, T is a-isoloid then
f (T) satisfies a-Weyl’s and generalized a-Weyl’s theorem for every f ∈ H(σ (T)).

Proof. If T or T∗ has the SVEP then a-Browder’s theorem holds for T (see [19,
Proposition 2.3]). Then the first part follows form Corollary 2.3. The second from [23,
Theorem 2.4]. �

ADDED IN PROOF. M. Berkani has informed us that in his forthcoming paper.
‘On the equivalence of Weyl’s and generalized Weyl’s theorem,’ Acta Math. Sinica, to
appear, he has proved the equivalence between (i) and (iii) in Corollaries 2.1 and 2.3.
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