# THE NUMBER OF PAIRS OF GENERALI'ZED INTEGERS <br> WITH L.C.M. $\leqq x$ 

D. SURYANARAYANA and V. SIVA RAMA PRASAD

(Received 4 February 1970)

Communicated by E. S. Barnes

## 1. Introduction

Generalized integers are defined in [2] as follows: Suppose there is given a finite or infinite sequence $\{p\}$ of real numbers which are called generalized primes such that $1<p_{1}<p_{2}<\cdots$. Form the set $\{l\}$ of all possible $p$-products, i.e. the products of the form $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots$, where $\alpha_{1}, \alpha_{2}, \cdots$ are integers $\geqq 0$ of which all but a finite number are 0 . Call these numbers generalized integers and suppose that no two generalized integers are equal if their $\alpha$ 's are different. Then arrange $\{l\}$ in an increasing sequence $1=l_{1}<l_{2}<l_{3}<\cdots<l_{n}<\cdots$.

Let $x$ be any real number $\geqq 1$ and let $[x]$ denote the number of generalized integers $\leqq x$. We assume throughout the paper that

$$
\begin{equation*}
[x]=x+0\left(x^{\alpha}\right), \text { where } 0 \leqq \alpha<1 \tag{1.1}
\end{equation*}
$$

This assumption is fundamental and under this assumption it has been shown by Horadam ([4], theorem 1) that the number of generalized primes is infinite. Generalized primes were first introduced by Beurling [1], who proved using an assumption equivalent to (1.1) that

$$
\begin{equation*}
\zeta(s)=\prod_{r=1}^{\infty}\left(\frac{1}{1-p_{r}^{-s}}\right), \text { where } \zeta(s)=\sum_{n=1}^{\infty} \frac{1}{l_{n}^{s}},(s>1) \tag{1.2}
\end{equation*}
$$

A generalized integer $d$ is called a divisor of $l_{n}$ if there exists a $\delta \in\{l\}$ such that $d \delta=l_{n}$. Let $\left(l_{r}, l_{s}\right)$ and $\left[l_{r}, l_{s}\right]$ respectively denote the greatest common divisor and the least common multiple of $l_{r}$ and $l_{s}$. A divisor $d$ of $l_{n}$ is called unitary if $d \delta=l_{n}$ and $(d, \delta)=1$. Let $\tau^{*}\left(l_{n}\right)$ and $t\left(l_{n}\right)$ denote respectively the number of unitary divisors of $l_{n}$ and number of ordered pairs of generalized integers $l_{r}$ and $l_{s}$ with $\left[l_{r}, l_{s}\right]=l_{n}$. It is clear that $\tau^{*}\left(l_{n}\right)=2^{r}$, where $r$ is the number of distinct generalized prime divisors of $l_{n}$. Also, $t\left(l_{n}\right)=\sum_{d \mid l_{n}} \tau^{*}(d)$ as indicated in [6], so that $t\left(l_{n}\right)=\tau\left(l_{n}^{2}\right)$, where $\tau\left(l_{n}\right)$ is the number of divisors of $l_{n}$. Let $\theta(x)$ denote the number of ordered pairs of generalized integers with l.c.m. $\leqq x$. Clearly $\theta(x)=\sum_{l_{n} \leqq x} t\left(l_{n}\right)$. It has been recently shown by Horadam [6] using an estimate for $\sum_{l_{n} \leqq x} \tau^{*}\left(l_{n}\right)$ obtained by her in [5] that

$$
\begin{equation*}
\theta(x)=\frac{x \log ^{2} x}{2 \zeta(2)}+\left(\frac{3 \gamma_{1}-1}{\zeta(2)}-\frac{2 \zeta^{\prime}(2)}{\zeta^{2}(2)}\right) x \log x+O(x) \tag{1.3}
\end{equation*}
$$

where $\gamma_{1}$ is the constant given in (2.1) below and $\zeta^{\prime}(s)$ is the derivative of $\zeta(s)$.
The object of the present paper is to give a more exact estimation of $\theta(x)$ (see theorem 3.2 below) with an error term equal to $0\left(x^{(2+\alpha) / 3} \log x\right)$.

## 2. Auxiliary results

The following elementary estimates given by Horadam in [3] and [6] are needed in our present discussion. These estimates can be proved by using Abel's transformation as described in [3] and (1.1).

$$
\begin{equation*}
\sum_{l_{n} \leqq x} \frac{1}{l_{n}}=\log x+\gamma_{1}+O\left(x^{\alpha-1}\right) \tag{2.1}
\end{equation*}
$$

where $\gamma_{1}$ is a constant.

$$
\begin{align*}
& \sum_{l_{n} \leq x} \frac{1}{l_{n}^{\beta}}=O\left(x^{1-\beta}\right), \text { if } \beta<1  \tag{2.2}\\
& \sum_{l_{n}>x} \frac{1}{l_{n}^{2}}=O\left(\frac{1}{x}\right)  \tag{2.3}\\
& \sum_{l_{n}>x} \frac{\log l_{n}}{l_{n}^{2}}=O\left(\frac{\log x}{x}\right)  \tag{2.4}\\
& \sum_{l_{n}>x} \frac{\log ^{2} l_{n}}{l_{n}^{2}}=O\left(\frac{\log ^{2} x}{x}\right) \tag{2.5}
\end{align*}
$$

$$
\begin{equation*}
\sum_{l_{n} \leq x} \frac{\log l_{n}}{l_{n}}=\frac{1}{2} \log ^{2} x+\delta_{1}+O\left(x^{\alpha-1} \log x\right) \tag{2.6}
\end{equation*}
$$

where $\delta_{1}$ is a constant.
Further, we need the following:
Lemma 2.1. ([3], lemma 2.2). If $f\left(l_{n}\right)=\sum_{d \delta=l_{n}} g(d) h(\delta)$ and $G(x)=\sum_{l_{n} \leq x} g\left(l_{n}\right)$, $H(x)=\sum_{l_{n} \leqq x} h\left(l_{n}\right)$, then for all $x_{1}, x_{2}$ satisfying $x_{1} x_{2}=x$,

$$
\sum_{l_{n} \leq x} f\left(l_{n}\right)=\sum_{l_{n} \leq x_{1}} g\left(l_{n}\right) H\left(\frac{x}{l_{n}}\right)+\sum_{l_{n} \leq x_{2}} h\left(l_{n}\right) G\left(\frac{x}{l_{n}}\right)-G\left(x_{1}\right) H\left(x_{2}\right) .
$$

Lemma 2.2.

$$
\begin{equation*}
T(x)=\sum_{l_{n} \leqq x} \tau\left(l_{n}\right)=x\left(\log x+2 r_{1}-1\right)+O\left(x^{(1+\alpha) / 2}\right) \tag{2.7}
\end{equation*}
$$

Proof. Taking $g\left(l_{n}\right)=h\left(l_{n}\right)=1, x_{1}=x_{2}=\sqrt{ } x$ in lemma 2.1, we get (2.7) by making use of (1.1), (2.1) and (2.2).

Lemma 2.3.

$$
\begin{equation*}
\sum_{l_{n} \leqq x} \frac{\tau\left(l_{n}\right)}{l_{n}}=\frac{1}{2} \log ^{2} x+2 \gamma_{1} \log x+\gamma_{1}^{2}-2 \delta_{1}+O\left(x^{(\alpha-1) / 2} \log x\right) . \tag{2.8}
\end{equation*}
$$

Proof. Taking $g\left(l_{n}\right)=h\left(l_{n}\right)=1 / l_{n}, x_{1}=x_{2}=\sqrt{ } x$ is lemma 2.1, we get (2.8) by making use of (2.1), (2.2) and (2.6).

Lemma 2.4. If $\tau_{3}\left(l_{n}\right)$ denotes the number of ordered triads $\left(l_{r}, l_{s}, l_{t}\right)$ of generalized integers such that $l_{r} l_{s} l_{t}=l_{n}$, then

$$
\begin{align*}
\sum_{l_{n} \leqq x} \tau_{3}\left(l_{n}\right)=\frac{x}{2} \log ^{2} x+\left(3 \gamma_{1}-1\right) x \log x & +\left(3 \gamma_{1}^{2}-3 \gamma_{1}-3 \delta_{1}+1\right) x  \tag{2.9}\\
& +O\left(x^{(2+\alpha) / 3} \log x\right)
\end{align*}
$$

Proof. We have $\tau_{3}\left(l_{n}\right)=\sum_{l_{r} l_{s} l_{t}=l_{n}}=\sum_{d \delta=l_{n}} \tau(d)$. Taking $g\left(l_{n}\right)=\tau\left(l_{n}\right)$, $h\left(l_{n}\right)=1, x_{1}=x^{\frac{3}{3}}, x_{2}=x^{\frac{3}{3}}$ in lemma 2.1 we get by lemma 2.2, (2.1) and (1.1),

$$
\begin{aligned}
& \sum_{l_{n} \leqq x} \tau_{3}\left(l_{n}\right)=\sum_{l_{n} \leqq x^{\frac{3}{3}}} \tau\left(l_{n}\right)\left[\frac{x}{l_{n}}\right]+\sum_{l_{n} \leqq x^{\frac{3}{3}}} T\left(\frac{x}{l_{n}}\right)-T\left(x^{\frac{3}{3}}\right)\left[x^{\frac{1}{3}}\right] \\
& =\sum_{l_{n} \leqq x^{\frac{3}{3}}} \tau\left(l_{n}\right)\left\{\frac{x}{l_{n}}+O\left(\frac{x^{\alpha}}{l_{n}^{\alpha}}\right)\right\}+\sum_{l_{n} \leqq x^{\frac{3}{3}}}\left\{\frac{x}{l_{n}}\left(\log \frac{x}{l_{n}}+2 \gamma_{1}-1\right)+O\left(\frac{x^{(1+\alpha) / 2}}{l_{n}^{(1+\alpha) / 2}}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =x \sum_{l_{n} \leqq x^{\frac{3}{3}}} \frac{\tau\left(l_{n}\right)}{l_{n}}+O\left(x^{\alpha} \sum_{l_{n} \leqq x^{\frac{3}{3}}} \frac{\tau\left(l_{n}\right)}{l_{n}^{\alpha}}\right)+x\left(\log x+2 \gamma_{1}-1\right) \sum_{l_{n} \leqq x^{\frac{1}{3}}} \frac{1}{l_{n}} \\
& -x \sum_{l_{n} \leqq x^{\frac{3}{3}}} \frac{\log l_{n}}{l_{n}}+O\left(x^{(1+\alpha) / 2} \sum_{l_{n} \leqq x^{\frac{j}{3}}} \frac{1}{l_{n}^{(1+\alpha) / 2}}\right) \\
& -x\left(\frac{2}{3} \log x+2 \gamma_{1}-1\right)+O\left(x^{(2+\alpha) / 3} \log x\right) .
\end{aligned}
$$

We have by (2.2) and (2.1),

$$
\begin{aligned}
\sum_{l_{n} \leq x^{\frac{3}{3}}} \frac{\tau\left(l_{n}\right)}{l_{n}^{\alpha}} & =\sum_{l_{n} \leq x^{\frac{3}{3}}} \sum_{d \delta=l_{n}} \frac{1}{d^{\alpha} \delta^{\alpha}}=\sum_{d \delta \leqq x^{\frac{2}{3}}} \frac{1}{d^{\alpha} \delta^{\alpha}}=\sum_{d \leq x^{\frac{3}{3}}} \frac{1}{d^{\alpha}} \sum_{\delta \leqq x^{\frac{3}{3} / d}} \frac{1}{\delta^{\alpha}} \\
& =O\left(\sum_{d \leq x^{\frac{2}{3}}} \frac{1}{d^{\alpha}}\left(\frac{x^{\frac{2}{3}}}{d}\right)^{1-\alpha}\right)=O\left(x^{(2-2 \alpha) / 3} \sum_{d \leq x^{\frac{3}{3}}} \frac{1}{d}\right) \\
& =O\left(x^{(2-2 \alpha) / 3} \log x\right) .
\end{aligned}
$$

Also, by (2.2)

$$
\sum_{l_{n} \leq x^{\frac{1}{3}}} \frac{1}{l_{n}^{(1+\alpha) / 2}}=O\left(x^{(1-\alpha) / 6}\right)
$$

Hence by lemma 2.3 and (2.6),

$$
\begin{aligned}
\sum_{l_{n} \leq x} \tau_{3}\left(l_{n}\right)= & x\left\{\frac{1}{2}\left(\frac{2}{3}\right)^{2} \log ^{2} x+\frac{4 \gamma_{1}}{3} \log x+\gamma_{1}^{2}-2 \delta_{1}+O\left(x^{(\alpha-1) / 3} \log x\right)\right\} \\
& +x\left(\log x+2 \gamma_{1}-1\right)\left\{\frac{1}{3} \log x+\gamma_{1}+O\left(x^{(\alpha-1) / 3}\right)\right\} \\
& -x\left\{\frac{1}{2}\left(\frac{1}{3}\right)^{2} \log ^{2} x+\delta_{1}+O\left(x^{(\alpha-1) / 3} \log x\right)\right\} \\
& -x\left(\frac{2}{3} \log x+2 \gamma_{1}-1\right)+O\left(x^{(2+\alpha) / 3} \log x\right) \\
= & \frac{x}{2} \log ^{2} x+\left(3 \gamma_{1}-1\right) x \log x+\left(3 \gamma_{1}^{2}-3 \gamma_{1}-3 \delta_{1}+1\right) x+O\left(x^{(2+\alpha) / 3} \log x\right) .
\end{aligned}
$$

Hence lemma 2.4 follows.
Lemma 2.5. If $g\left(l_{n}\right)$ and $h\left(l_{n}\right)$ are multiplicative functions, then

$$
f\left(l_{n}\right)=\sum_{d^{2} \mid l_{n}} g(d) h\left(\frac{l_{n}}{d^{2}}\right)
$$

is also multiplicative.
Proof. This can be proved exactly in the same way as the corresponding result for natural numbers proved in ([7], lemma 2.4 for $k=2$ ).

## 3. Asymptotic formula for $\boldsymbol{\theta}(\boldsymbol{x})$

Let $\mu\left(l_{n}\right)$ be the Möbius function for generalized integers defined by Horadam [2] as follows: $\mu\left(l_{n}\right)=0$ if $l_{n}$ has a square factor; $\mu\left(l_{n}\right)=(-1)^{r}$, where $r$ is the number of distinct generalized prime factors of $l_{n}$ and $l_{n}$ has no square factor; $\mu(1)=1$. It is clear that $\mu\left(l_{n}\right)$ is multiplicative.

Lemma 3.1. ([3], (2.1)). If $s>1$,

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\mu\left(l_{n}\right)}{l_{n}^{s}}=\frac{1}{\zeta(s)} \tag{3.1}
\end{equation*}
$$

Lemma 3.2. If $s>1$,

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\mu\left(l_{n}\right) \log l_{n}}{l_{n}^{s}}=-\eta^{\prime}(s) \tag{3.2}
\end{equation*}
$$

where $\eta^{\prime}(s)$ is the derivative of $\eta(s)=1 / \zeta(s)$.
Proof. Since the series in (3.2) is uniformly convergent for $s \geqq 1+\varepsilon>1$, we obtain (3.2) by term-wise differentiation of the series in (3.1) with respect to $s$.

Lemma 3.3. If $s>1$,

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\mu\left(l_{n}\right) \log ^{2} l_{n}}{l_{n}^{s}}=\eta^{\prime \prime}(s) \tag{3.3}
\end{equation*}
$$

where $\eta^{\prime \prime}(s)$ is the second derivative of $\eta(s)$.

Proof. This follows by term-wise differentiation of the series in (3.2). We now prove the following:

Theorem 3.1.

$$
t\left(l_{n}\right)=\sum_{d^{2} l_{n}} \mu(d) \tau_{3}\left(\frac{l_{n}}{d^{2}}\right)
$$

Proof. Since $\mu\left(l_{n}\right)$ is multiplicative and $\tau_{3}\left(l_{n}\right)=\sum_{d \mid l_{n}} \tau(d)$ is multiplicative, it follows by lemma 2.5 that the function on the right side of the theorem is multiplicative. Also, $t\left(l_{n}\right)=\tau\left(l_{n}^{2}\right)$ is multiplicative. Hence, it is enough, if we prove the theorem for $l_{n}=p^{\nu}$, where $p$ is a generalized prime and this can be done by making use of

$$
\tau_{3}\left(p^{v}\right)=\sum_{d \mid p^{v}} \tau(d)=\frac{(v+1)(v+2)}{2}
$$

and $t\left(p^{v}\right)=2 v+1$.
Theorem 3.2.

$$
\begin{align*}
\theta(x)= & \frac{x \log ^{2} x}{2 \zeta(2)}+\left(\frac{3 \gamma_{1}-1}{\zeta(2)}+2 \eta^{\prime}(2)\right) x \log x  \tag{3.4}\\
& +\left\{\frac{3 \gamma_{1}^{2}-3 \gamma_{1}-3 \delta_{1}+1}{\zeta(2)}+2\left(3 \gamma_{1}-1\right) \eta^{\prime}(2)+2 \eta^{\prime \prime}(2)\right\} x \\
& +O\left(x^{(2+\alpha) / 3} \log x\right)
\end{align*}
$$

where $\gamma_{1}$ and $\delta_{1}$ are constants given in (2.1) and (2.6), $\eta^{\prime}(2)$ and $\eta^{\prime \prime}(2)$ are the values of the first and second derivatives of $\eta(s)=1 / \zeta(s)$ at $s=2$.

Proof. We have by theorem 3.1 and lemma 2.4,

$$
\begin{aligned}
\theta(x)= & \sum_{l_{n} \leq x} t\left(l_{n}\right)=\sum_{l_{n} \leq x} \sum_{d^{2} \delta=l_{n}} \mu(d) \tau_{3}(\delta)=\sum_{d^{2} \delta \leq x} \mu(d) \tau_{3}(\delta) \\
= & \sum_{d \leq \sqrt{ } x} \mu(d) \sum_{\delta \leq \sqrt{ } x} \mu(d)\left\{\frac{x}{2 d^{2}} \tau_{3}(\delta) \log ^{2}\left(\frac{x}{d^{2}}\right)+\left(3 \gamma_{1}-1\right) \frac{x}{d^{2}} \log \frac{x}{d^{2}}+\left(3 \gamma_{1}^{2}-3 \gamma_{1}-3 \delta_{1}+1\right) \frac{x}{d^{2}}\right. \\
& \left.+O\left(\frac{x^{(2+\alpha) / 3}}{d^{(4+2 \alpha) / 3}} \log \frac{x}{d^{2}}\right)\right\} \\
= & \left\{\frac{x}{2} \log ^{2} x+\left(3 \gamma_{1}-1\right) x \log x+\left(3 \gamma_{1}^{2}-3 \gamma_{1}-3 \delta_{1}+1\right) x\right\} \sum_{l_{n} \leq \sqrt{ } x} \frac{\mu\left(l_{n}\right)}{l_{n}^{2}} \\
& -2 x\left(\log x+3 \gamma_{1}-1\right) \sum_{l_{n} \leqq \sqrt{x}} \frac{\mu\left(l_{n}\right) \log l_{n}}{l_{n}^{2}} \\
& +2 x \sum_{l_{n} \leq \sqrt{ } x} \frac{\mu\left(l_{n}\right) \log ^{2} l_{n}}{l_{n}^{2}}+O\left(x^{(2+\alpha) / 3} \log x\right) .
\end{aligned}
$$

Hence, by lemmas 3.1, 3.2, 3.3 for $s=2$ and (2.3), (2.4), (2.5), we have

$$
\begin{aligned}
\theta(x)= & \left\{\frac{x}{2} \log ^{2} x+\left(3 \gamma_{1}-1\right) x \log x+\left(3 \gamma_{1}^{2}-3 \gamma_{1}-3 \delta_{1}+1\right) x\right\}\left\{\frac{1}{\zeta(2)}+O\left(\frac{1}{\sqrt{x}}\right)\right\} \\
& -2 x\left(\log x+3 \gamma_{1}-1\right)\left\{-\eta^{\prime}(2)+O\left(\frac{\log x}{\sqrt{x}}\right)\right\} \\
& +2 x\left\{\eta^{\prime \prime}(2)+O\left(\frac{\log ^{2} x}{\sqrt{x}}\right)\right\}+O\left(x^{(2+\alpha) / 3} \log x\right) \\
= & \frac{x \log ^{2} x}{2 \zeta(2)}+\left(\frac{3 \gamma_{1}-1}{\zeta(2)}+2 \eta^{\prime}(2)\right) x \log x \\
& +\left\{\frac{3 \gamma_{1}^{2}-3 \gamma_{1}-3 \delta_{1}+1}{\zeta(2)}+2\left(3 \gamma_{1}-1\right) \eta^{\prime}(2)+2 \eta^{\prime \prime}(2)\right\} x \\
& +O\left(x^{(2+\alpha) / 3} \log x\right) .
\end{aligned}
$$

Thus theorem 3.2 is proved.

## References

[1] A. Beurling, 'Analyse de la loé asymptotique de la distribution des nombres premiers généralisés', Acta Mathematica, 68 (1937), 255-291.
[2] E. M. Horadam, 'Arithmetical functions of generalized primes', Amer. Math. Monthly, 68 (1961), 626-629.
[3] E. M. Horadam, 'The Euler $p$-function for generalized integers', Proc. Amer. Math. Soc., 14 (1963), 754-762.
[4] E. M. Horadam, 'The order of Arithmetical functions of generalized integers', Amer. Math. Monthly, 70 (1963), 506-512.
[5] E. M. Horadam, The number of unitary divisors of a generalized integer', Amer. Math. Monthly, 71 (1964), 893-895.
[6] E. M. Horadam, 'On the number of pairs of generalized integers with least common multiple not exceeding $x^{\prime}$, Amer. Math. Monthly, 74 (1967), 811-812.
[7] D. Suryanarayana, 'The number of $k$-ary divisors of an integer', Monatsh. Math., 72 (1968), 445-450.

Department of Mathematics
Andhra University
Waltair, A.P. India

