BuLL. AUSTRAL. MATH. Soc. 34G99, 47THO5, 47H06
VoL. 54 (1996) [317-327]

SOME EXISTENCE THEOREMS FOR DIFFERENTIAL INCLUSIONS
IN HILBERT SPACES

SHIH-SEN CHANG, YU-QING CHEN AND BYUNG S0O LEE

Some existence theorem for solutions of two kinds of differential inclusions with
monotone type mappings in Hilbert spaces are given.

1. INTRODUCTION AND PRELIMINARIES

Monotone mappings are an important class of noncompact mappings. They have
been widely used in the theory of differential equations. In 1965, Browder [5] first
proved an existence theorem for periodic solutions of a differential equation involving
a monotone mapping in Hilbert space. The existence problem for solutions of various
single-valued and multi-valued differential equations involving monotone mappings has
been considered by many authors (see, for example, (2, 3, 4, 7, 8, 9, 10, 11, 12, 13,
14]).

The purpose of this paper is to study the existence problem for solutions of two
kinds of differential inclusions in Hilbert space. In Section 2 we shall first consider the

following differential inclusion:

{ z'(t) € —Az(t),
z(0) =z,

in a separable Hilbert space, where A is a multi-valued (§), mapping introduced in
[15, 16]. Then we consider the following differential inclusion:

{ z'(t) € —Mz(t) — Az(t),
E(O) = Zo,

where M is a maximal monotone mapping and 4 is a (§), mapping.
In Section 3, we shall stndy the following differential equation:

{z'(t) = ~Pz(t),
z(0) = =z,
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where P is a pseudomonotone mapping, and the following differential inclusion:

{ z'(t) € —Mz(t) — Pz(t),
z(0) = zo,

where M is a maximal monotone mapping and P is pseudomonotone.
Throughout this paper, H is a real Hilbert space, “—” and “—” represent weak
convergence and strong convergence in H respectively.

For the sake of convenience, we first recall some definitions.

DEFINITION 1: Let A: D(A) C H — 2H be a multi-valued mapping. A is said to
be an (S), mapping, if it satisfies the following conditions:
(A,) For any z € D(A), Az is nonempty, bounded, closed, and convex;
(A2) For any finite dimensional subspace F of H, such that F N D(A) #
0, A |p: F — 2" is upper semi-continuous with respect to the weak

topology;
(As) If {zn.} C D(A) is any sequence with z, — zo, fn € Az, and

lim sup (fr, zn — zo) < 0,
mn—o0

then z, — z¢ and {f,} has a subsequence {fa,} such that f, — fo €
Aﬂ!o .

DEFINITION 2: Let P: D(P) C H — H be a mapping. P is said to be pseu-
domonotone, if , — ¢ € D(P) and limsup (Pz,, z, — zo) < 0, then
n—00

(Pzo, ¢o — y) < limsup (Pz,, z, — y) for all y € D(P).

n—o0

Let M: D(M) ¢ H — 27 be a maximal monotone mapping, then M) =
(M~ + I )_1 denotes the Yosida approximation of M, and Ry = I — AM, denotes
the resolvent of M) .

The following results are well known.
LEMMA 1.1. Let M: D(M) C H —» H be a maximal monotone mapping.
(1) I A: D(A)C H — 2H is an (S), mapping, then M+ A: D(A) C H —

2¥ is an (S), mapping.

(2 ¥ P D(PYy ¢ H — H is a pseudomonotone mapping, then
M + P: D(P) — H is a pseudomonotone mapping.
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LEMMA 1.2. Let M: D(M) ¢ H — H be a maximal monotone mapping,
zo € D(M) and {z,} C H be a sequence. If £, — z¢, then we have

liglj;:p I Maza| < feiﬁzo 1fll for all A > 0.

LEMMA 1.3. (1) Let A: D(A) C H — 2" be a multivalued (S), mapping and
{z,} C D(A) be a sequence. If z, — o, then we have

lim sup (fn, Tn — 20) 2 0,

n—oco

where f, € Az, n=1,2,....
(2) Let P: D(P) C H — H be a pseudomonotone mapping and {z,} C D(P) be
any sequence such that z, — 2o € D(P). Then

liminf (Pzn, 2, — o) 2 0.

n—ro0

LEMMA 1.4. (18] Let M: D(M) C H — 2 be a maximal monotone mapping.
Then the mapping M: L%([0, T}, H) — L*([0, T}, H) defined by

(Mz)(t) = Mz(t), for almost all t € [0, T], =(-) € L*([0, T}, H)

is still a maximal monotone mapping.

2. DIFFERENTIAL INCLUSIONS WITH (S), MAPPINGS

In this section, H is always a real separable Hilbert space and all the notation is
the same as in Section 1.

We have the following results:

THEOREM 2.1. Let A: D(A) C H — 2¥ be a multi-valued (S), mapping,
zo € int(D(A)) be a given point and A be locally bounded around z,. Then there
exist > 0, and M > 0 such that the following differential inclusion

(E2.1) { 2'(t) € —Az(t), 2(t) € B(zo,7), t€[0,r/M)]

z(0) = o
has at least one solution in D(A4).

THEOREM 2.2. Let M: D(M) C H — 2H be a maximal monotone mapping,
A: D(A) C H — 2" be an (S), mapping and zo € D(M) N D(A) be a given point.
If there exist an r > 0 and a closed ball B(zo, r) C D(A) such that

(fi — f, 21 — 22) > —k||z1 — 23||® for all z; € B(zo, r), f; € Az,
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where 1 =1, 2 and k > 0 is a constant, then there exists §y > 0 such that the following
differential inclusion

(E2.2) { z'(t) € —Maz(t) — Az(t), =(t) € D(M)N D(4), tel0,&],

z(0) = z¢
has exactly one solution.

REMARK. In this paper a solution z(t) of (E2.1) or (E2.2) means that z(t) is absolutely
continuous and differentiable for almost all ¢ and it satisfies (E2.1) or (E2.2) for almost
all ¢.

PRrOOF OF THEOREM 2.1: Since A is locally bounded around =z, there exist
M >0 and r > 0 such'that Bz, r) C D(A) and

Il < M for all z € B(zo, 7), [ € Az.

Since H is separable, let {e;, ez, ...} be an orthogonal basis of H, and H, =
span{ey, €3, ...e,}, which is the subspace generated by {e;, €2, ..., en},n=1,2, ....
Without loss of generality we can assumethat g € H,,n=1,2,.... Let P,: H —» H,
be the projection, and so it is a linear continuous compact mapping. By [1], we know
that the following inclusion

(E2.3)

{z'(t) € —P,Az(t), te€|0,r/M)]
z(0) =z

has a solution z,(t): [0, r/M] — B(zo, r) N H,. It is obvious that
(2.1) llzn(8)]| < M for almostall t € [0, 7/M], n=1,2,....

Therefore {z!,(t)} C L>=([0, r/M], H) and it contains a weakly convergent subsequence
(which without loss of generality we still denote by {z],(¢)}) such that z},(t) — y(t) €
L([0, r/M], H). For each v € H let

Y R s €0, 1,
gt(-")— 0, 3€(t,r/M],

then g:(-) € L*=([0, r/M], H). Since

zn(t) = 2o +/0 z,,(s) ds,
(za(2), v) = (0, v) +/) (z5(38), 9¢(s)) ds — (2o, v) +/; (y(s), v) ds
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in H. This implies that {z,(¢)} converges weakly in H to z(t) = zo + (w) fut y(s) ds,
where “(w) fot " represents weak integration in H, and z(t) is weakly differentiable for
almost all ¢ € [0, r/M].

Next, we prove that z,(t) — z(t) as n — oo.

In fact, since z],(t) € —PnAz.(t), by Lemma 1.3(1), we have

(2.2) lim sup (z,,(2), zn(t) — z(t)) < 0 for almost all t € [0, r/M].

Letting Go(t) = ||zn(t) — z(¢)||, we have

- 1 Gn(t +h) = Ga(?) _ (24(2) — 2'(2), 2a(t) — 2(2))
(2.3) D™G.(t) = h;?_lj)lip 3 < R D) .

In view of (2.2) and (2.3) we have

lim sup GA(t)D ™ Gn(t) £ 0, for almost all t € [0, r/M].

n—oo

This implies that z,(t) — z(t) for almost all ¢ € [0, »/M].
Now for fo(t) € Azn(t), z.,(t) = —Pnfa(t) for almost all ¢t € [0, r/M]. By (2.1)

we have

Jim (54(0), 2a(8) ~ 2(0)) = ~ Jim_ (fa(t), 2a(t) ~ Po2(8) =0,
for almost all ¢ € [0, r/M].

Therefore we have
Lm (fn(t), zn(t) — 2(t)) =0, for almost all ¢ € [0, »/M].

Since A is an (S§), mapping, {fa(2)} has a subsequence {fn,(¢)} such that f,, (¢) —
f(t) € Az(t). Therefore we have

t t
Zn, (1) = 2o +/ —Py,, fn,(8)ds — zo +/ —f(s) ds.

0 0

In view of z,,(t) — z(t), for almost all t € [0, r/M]. Therefore we have
t
zq, (1) — 2o +/ —f(s)ds = z(t),
0
and so 2'(t) = —f(t) € —Az(t), for almost all ¢ € [0, r/M].

This completes the proof. 0
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PROOF OF THEOREM 2.2: It is easy to see that A + kI is monotone in B(zg, 7).
Hence A is locally bounded around zy and M, = (M‘1 + z\I)_1 is bounded in H.
By Theorem 2.1 there exist ; > 0 and Lx > 0 such that the following differential

inclusion

(E2.4) {”'(t) € ~Mja(t) - Az(t), o(t) € B(zo, 11), t € [0, 71 /L]

2(0) =Ty
has a solution z(t). Since

l2a(t+ B) = 22(D) 3 llea(t + B) — (0]
< (S5t 4 B) = 2 (0), 2a(t +h) — 2a(1)) < klea(t + ) — 22O,

we have
loa(t + B) = 2a()* < 7 flza(ts +h) — @), 0 <ty <t < £,
. leA@)IF < 24 (L)*, 0<ty <t< L—
For 0 <t; <t<7i/Lx, tj — 0% and fi(t;) € Aza(t;),
zh(¢;) = —Mza(t;) — AHt), 7=1,2,....
By (2.4) we have
(2.5) ()l < S (I Maza ) + 1 HE), G=1,2,....

Since Hm z(t;) = 2o, by Lemma 1.2, there exists an N > 0 such that
j—oo

(2.6) 23]l < e*/EAN.

Let [0, 65) be the maximal interval on which the equation (E2.4) has a solution. Let

§ = o(ir;f<1 8. Now we prove that § > 0. Suppose § = 0. Then there exists {A;} such

that 65, — 0% as j — +oo. By (2.6) it is easy to see that

(2.7) t—»laii?—o zx;(t) € 8B(zo, ™), 1=1,2,....
Since
o Tmn - f0-n] < ]

< “a:;j(t,-)“&ﬁ 0<t<br, t;€(0,2), 5=1,2...,
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by (2.7) and (2.8) we have

(29) m= lm H%.(t) - 20“ < Hz;j(t,-)H x5 ti € (0, JAJ.),]' =1,2,....
7

In view of (2.6), from {2.9) we have

r1 £ lim ”:zz'kj(t,)” 6x; =0,

j—oo
a contradiction. Therefore we have

6= 1nf 6, >0.
021

Now for given &y € (0, §), by (2.6) we have
(2.10) lzh ()} < e¥oN, VYA >0, 0<t< 6.

By taking r; small enough we can assume that A is bounded on B(zg, r1). Hence
there exists an N; > 0 such that

(2.11) A2 (B)]] < N1, VAa(t) € Aza(t), A > 0.
By using (2.10) and (2.11), we have
(2.12) |Maza(2)]| < e¥° N 4+ Ny, t €0, &], YA > 0.
It is easy to check
ll2a; (2) = za, (£)]] % ll22; (8) = 223, ()} < =21 [ Moz, (D]1” = Az [| M, 25, ()|
+ (1 + X)(My, 25, (2), Ma, 22, (1)) + k|2, (8) — 2, ()75 A1 >0, X2 > 0,
and so

1
ll2a (2) = 23, (D)1 < MG X2)(e* N + Np)* (¥ — 1),
A>0, A2 >0, te|0, 8.

(2.13)

Therefore we have
i —z,(®)|* = 0.
N ORI
Letting lim+ z)(t) = z(t), by (2.6) and (2.12) we may assume that
A—0

z5(t) = y(), Maza(t) — m(1).
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Since

(Mxza(t) — g, Raza(t) —2) 2 0,Vz € D(M), g € Mz,
we have
(m(t) —g,z(t) —2) 20, Vze D(M), g€ M=.
This implies that z(t) € D(M) and m(t) € Mz(t). On the other hand, there
exists fa(t) € Az (t) such that z4(t) = —Myza(t) — fa(t). Hence we have
Jim (73(2), 22(8) — o(0) =0,

and so

(@) = £(2) = —y(t) —m(t) € Ax(2).

t ¢
Since zx(t) = zo + [z\(s)ds — zo + [ y(s) ds, we have
0 0

za(t) — zo +/0 y(s) ds = (1)
and so
zh(t) = y(t) € —Mz(t) — Az(t), t € [0, 6o

The uniqueness of this solution is obvious. This completes the proof. 1]

3. DIFFERENTIAL EQUATIONS WITH PSEUDOMONOTONE MAPPINGS
In this section, H is assumed to be a real Hilbert space. We have the following
results:

THEOREM 3.1. Let P: D(P)C H — H be a continuous pseudomonotone map-
ping, and zq € int D(P) be a given point. Then there exist » > 0 and M > 0 such

that the following differential equation
z'(t) = —Pz(t), z(t) € B(zg,r)r € [0, r/M
©51) (1) = ~Pa(t), o(t) € Blaw, )7 € [0, v/M]
I(O) = Ty

has a solution.

THEOREM 3.2. Let P: D(P) C H — H be a continuous pseudomonotone
mapping, M: D(M) ¢ H — 2H be a maximal monotone mapping and zo, €
D(M) Nint D(P). Suppose further that there exists r > 0 such that

(P:El —_ P:Bg, ) — 2:2) 2 —k ”231 o 1:2”2 fOI' a.II Ty, 22 € B(:Do, ’l‘),
where k is a constant. Then there exists 8o > 0 such that the following differential

inclusion

(E3.2) { z'(t) € ~Ma(t)— Pz(t), t€ |0, &)

2(0) =29

has exactly one solution.
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REMARK. A solution of (E3.2) has the same meaning as in Section 2.

PROOF OF THEOREM 3.1: Since P is continuous at z,, there exist » > 0 and M >
0 such that ||Pz|| < M/2 for all z € B(zq, ). By [9, Theorem 1.1 in Section 1], for
each ¢ > 0 there exists a continuous differential function z.(t): [0, 7/((M/2) + €)] —

B(zy, ) such that the following

{ zL(t) = —Pze(t) + pe(t), t € [0, 7/ (X +¢)]

E3.
(E3.3) z.(0) = zo

holds for some function y.(t) with ||y.(¢)|| < €.
It is easy to see that z(-) € L*([0, r/M], H) for all ¢ < M/2. Therefore we can
assume that z!(-) converges weakly in L'({0, r/M], H) to y(-) as ¢ — 0*. Hence we

have
ze(t) = a(t) = 20 + (w) / y(s)ds, e [0, /M),

t
where “(w) [” represents weak integration in H. Besides, it is easy to see that z(t) is
0
weakly differentiable for almost all t € [0, »/M]. Let z'(t) denotes its weak derivative.

Since
2 ne(®) — 2O = (~Pae(t) + elt) — 2'(1), () — 2(1)),

by Lemma 1.3 (2) we have
lim_ 2 Jlz.(2) - 2(t)|* <0
cor di e =

Therefore we have z.(t) — z(t). Since P is continuous, we obtain

t

z.(t) = zo + /ot z'(s)ds — z(t) = zo +/0 z'(s) ds.

This completes the proof. a

PROOF OF THEOREM 3.2: By using Lemma 1.1 (2) we know that M+P: D(P) —
H is a continuous pseudomonotone mapping. By Theorem 3.1 there exist r; > 0 and
85 > 0 such that the following differential equation

{ z'(t) = —Myz(t) — Pz(t), te€ |0, )
2(0) =z,

has a solution zx(t): [0, §,] — B(=zo, r1). Since

1d

33 Iza(t +h) ~ 2A()I* < Ellza(t + ) — za(@)lf?

https://doi.org/10.1017/50004972700017780 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700017780

326 S-S. Chang, Y-Q. Chen and B.S. Lee (10]

there exists N > 0 such that
(3.1) Iz ()| < e*®AN, t € [0, 6,], A> 0.

Let [0, 72) be the maximal interval on which (E3.3) has a solution. We can prove that

n= o<il}\f<1 72 > 0. Given § € (0, 1), by (3.1) we get

(3.2) 25()]| < XN, VA> 0, t € [0, &).

Take r; small enough such that P is bounded in B(zo, r1). Hence both Pz;(t) and
Mz () are uniformly bounded for all A > 0 and all ¢ € [0, §]. Therefore we have

22y (£) = 2, (I < =21 | Mz, (DI = A2 | M3, (1))

()‘1 + ’\2)(M>\1 T, (t), MAzz)‘z (t)) +k ”zh (t) — T (t)llz » A1 >0, A2 >0.

N =

d
dit
+

This implies that >‘h'm+ za(t) = z(t). By the continuity of P, we have Pz,(t) — Pz(t).
—0

On the other hand we may assume that Mxz(-) converges weakly in L*([0, &), H)
to v(-) € L?([0, 6o], H). It follows from Lemma 1.4 that v(t) € Mz(t), for almost all
t € [0, 8] and

t

2(t) = 2o +/0 2 (s) ds — 2o +/0 (=v(z) — Pa(s)) ds.

This implies that

22() — 2(t) = 2o +/0 (=u(s) = Pa(s)) ds,

that is, z'(t) € —Mz(t) — Pz(t), t € [0, o).
The uniqueness of the solution is easy to prove.

This completes the proof. 0
REMARK. Examples of (§), mappings and pseudomonotone mappings can be found
in [17].
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