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SOME EXISTENCE THEOREMS FOR DIFFERENTIAL INCLUSIONS
IN HILBERT SPACES

SHIH-SEN CHANG, YU-QING CHEN AND BYUNG SOO LEE

Some existence theorem for solutions of two kinds of differential inclusions with
monotone type mappings in Hilbert spaces are given.

1. INTRODUCTION AND PRELIMINARIES

Monotone mappings are an important class of noncompact mappings. They have
been widely used in the theory of differential equations. In 1965, Browder [5] first
proved an existence theorem for periodic solutions of a differential equation involving
a monotone mapping in Hilbert space. The existence problem for solutions of various
single-valued and multi-valued differential equations involving monotone mappings has
been considered by many authors (see, for example, [2, 3, 4, 7, 8, 9, 10, 11, 12, 13,
14]).

The purpose of this paper is to study the existence problem for solutions of two
kinds of differential inclusions in Hilbert space. In Section 2 we shall first consider the
following differential inclusion:

f x'{t) e -Ax(t),

\ as(O) = x0

in a separable Hilbert space, where A is a multi-valued (5)+ mapping introduced in
[15, 16]. Then we consider the following differential inclusion:

f x'(t)e -Mx(t) - Ax(t),

\x(0) = x0,

where M is a maximal monotone mapping and A is a (S), mapping.
In Section 3, we shall study the following differential equation:

(x'(t) = -Px(t),

\x{0)=xo,
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where P is a pseudomonotone mapping, and the following differential inclusion:

j x'(t) E -Mx(t) - Px(t),

\x(0) = x0,

where M is a maximal monotone mapping and P is pseudomonotone.
Throughout this paper, H is a real Hilbert space, "—>•" and "—>" represent weak

convergence and strong convergence in H respectively.
For the sake of convenience, we first recall some definitions.

DEFINITION 1: Let A: D(A) C H -> 2H be a multi-valued mapping. A is said to
be an (S)+ mapping, if it satisfies the following conditions:

(Ai) For any x £ D(A), Ax is nonempty, bounded, closed, and convex;
(A2) For any finite dimensional subspace F of H, such that F H D(A) ^

0, A \p: F —> 2 is upper semi-continuous with respect to the weak
topology;

(A3 ) If {xn} C D(A) is any sequence with xn —<• XQ , fn G Axn and

limsup(/n, xn - x0) < 0,
n—ioo

then xn —* xo and {/n} has a subsequence {fnk} such that /njb —' /o G
Axo •

DEFINITION 2: Let P: D(P) C H -+ H be a mapping. P is said to be pseu-
domonotone, if xn —>• xo E D{P) and limsup(Pa;n, xn — xo) Sj 0, then

n-*oo

(Px0, x0 —y) < limsup (Pxn, xn - y) for all y £ D{P).
n—»oo

Let M: D(M) C H —» 2W be a maximal monotone mapping, then M\ =
( M - 1 + A/) denotes the Yosida approximation of M, and i2* = / — AM* denotes
the resolvent of

The following results are well known.

LEMMA 1 . 1 . Let M: D(M) C H —> H be a, maximal monotone mapping.

(1) It A: D(A) C H -> 2H is an (5)+ mapping, then Mx + A: D(A) C E -»
2W is an (5)+ mapping.

(2) If P : D(P) C J -^ H is a pseudomonotone mapping, then
Mx + P: D(P) —» 1? is a pseudomonotone mapping.
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[3] Differential inclusions 319

LEMMA 1 . 2 . Let M: D(M) C B —» B be a maximal monotone mapping,
xo G D(M) and {xn} C H be a sequence. If xn —> xo, then we have

limsup | |MAxn| | < inf | | / | | for all A > 0.
n—oo f€Mx0

LEMMA 1 . 3 . (1) Let A: D(A) C f f - » 2 H be a multivalued (S)+ mapping and

{xn} C D{A) be a sequence. If xn -^ xo , then we have

limsup(/n, xn-x0) ^ 0,
n—>oo

where / „ G Axn, n = 1, 2,

(2j Let P : D{P) C H —> H be a pseudomonotone mapping and {xn} C D{P) be

any sequence such that xn —>• xo G D{P) • Then

liminf (Pxn, xn — x0) ^ 0.
n—>oo

LEMMA 1 . 4 . [18] Let M: D(M) c S - » 2 f l be a maximal monotone mapping.

Then the mapping M: L2([0, T], H) -> L2([0, T], H) defined by

{Mx){t) = Mx{t), for almost all t G [0, T], x{-) G L2([Q, T], H)

is still a maximal monotone mapping.

2. DIFFERENTIAL INCLUSIONS WITH (S) + MAPPINGS

In this section, H is always a real separable Hilbert space and all the notation is

the same as in Section 1.

We have the following results:

THEOREM 2 . 1 . Let A: D(A) C H -> 2 H be a multi-valued ( 5 ) + mapping,

XQ G int(D(A)) be a given point and A be locally bounded around xo • Then there

exist r > 0, and M > 0 such that the following differential inclusion

(E2 1) [x'(t)e-Ax(t), x(t)GB(xo,r), t G [0, r/M]

1 *(0) = xo

has at least one solution in D(A).

THEOREM 2 . 2 . Let M: D(M) C B -» 2H be a maximal monotone mapping,

A: D{A) C B -» 2H be an ( 5 ) + mapping and x0 G D(M) D D{A) be a given point.

If there exist an r > 0 and a closed ball B(xo, r) C D{A) such that

- /2 , xi - x2) ^ -A;||xi - x2| |2 for all Xi £ B(x0, r), fc G Axif
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wiere i = 1, 2 and k > 0 is a constant, then there exists 60 > 0 suci t i a t t i e following
differential inclusion

(x'(t)e-Mx(t)-Ax(t), x(t)£D(M)nD(A), te[0,60],

\ x(0) = x0

has exactly one solution.

REMARK. In this paper a solution x(t) of (E2.1) or (E2.2) means that x(t) is absolutely
continuous and difFerentiable for almost all t and it satisfies (E2.1) or (E2.2) for almost
all t.

PROOF OF THEOREM 2.1: Since A is locally bounded around xo, there exist

M > 0 and r > 0 such that B(x0, r) C D(A) and

< M for all x G ^(xo, r ) , / G As.

Since H is separable, let {ei, e2, . . .} be an orthogonal basis of H, and jffn =
span{ei, e2, . . . e n } , which is the subspace generated by {ei, e2, . . . , e n } , n = 1, 2,
Without loss of generality we can assume that xo G Hn, n = 1, 2, Let Pn: H —* Hn

be the projection, and so it is a linear continuous compact mapping. By [1], we know
that the following inclusion

(x'(t)e-PnAx(*), te[0,r/M)

1 *(0) - x0

has a solution xn(t): [0, r/M] —» -B(xoj r ) H fl^n- It is obvious that

(2.1) | | x ^ ( f ) | | < M for almost all t G [0, r /M] , n = 1, 2, . . . .

Therefore {xi,(t)} C i°°([0, r/M], H) and it contains a weakly convergent subsequence
(which without loss of generality we still denote by {zj,(t)}) such that x'n{t) —*• y(t) G
L1^, r/M], H). For each v G H let

then 5 l ( ) G £°°([0, r/M], H). Since

x'n(s)ds,
Jo

),v) = {x0,v)+ f (x'n{s),gt{s))ds^{xo,v)+ f (y(s),v)ds
Jo Jo
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in H. This implies that {a;n(i)} converges weakly in H to x(t) = xo + (w) Jo y(s) da,

where "(w) Jo " represents weak integration in H, and x(t) is weakly differentiate for

almost all t £ [0, r/M}.

Next, we prove that xn(t) —» x(t) as n - > o o .

In fact, since x'n(t) £ — PnAxn(t), by Lemma 1.3(1), we have

(2.2) lim sup ( ^ ( i ) , xn(t) - x(t)) ^ 0 for almost all t G [0, r/M].
n—*oo

Letting Gn{t) - \\xn(t) - x(t)\\, we have

(2.3) D-GnW = Hmsup <W + Q-<W) ^ « ( « ) - « ' ( « W O - «W).
h->0- h Crn(f)

In view of (2.2) and (2.3) we have

hmsupGn{t)D~Gn{t) ^ 0, for almost all t € [0, r/M}.
n—+oo

This implies that xn(t) -* x(t) for almost all t £ [0, r/M].

Now for /„(<) € Axn{t), x'n(t) = -Pnfn{t) for almost all t £ [0, r/M]. By (2.1)
we have

lim (x'n(i), xn(t) - x(t)) = - lim (/B(t), xn(t) - Pnx{t)) = 0,
n—•oo 7i—>oo

for almost all t £ [0, r/M}.

Therefore we have

lim (fn(t), xn(t) - x{t)) = 0, for almost all t £ [0, r/M].

Since A is an ( 5 ) + mapping, { / n (0} ^ a s a subsequence {fnk(t)} such that fnk{t)
f(t) £ As( i ) . Therefore we have

Xnk(i) = xo + / -Pn.kfnk(s)ds -^ x0 + / -f{s)ds.
Jo Jo

In view of xnk(t) —> s(<)> f°r almost all t £ [0, r/M]. Therefore we have

Xnk(i)-**o+ I -f(s)ds = x(t),
Jo

and so x'(t) = - / ( t ) £ ->lz(t), for almost all t £ [0, r /M].

This completes the proof. D
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PROOF OF THEOREM 2.2: It is easy to see that A + kl is monotone in B(x0, r).
Hence A is locally bounded around x0 and M\ = ( M " 1 + A/ ) " 1 is bounded in H.

By Theorem 2.1 there exist Ti > 0 and L\ > 0 such that the following differential
inclusion

\\'x(t+h)-xx(t)\\±\\xx(t

(E2 4)
\x(0) = zo

has a solution xx(t). Since

\\±
^ {x'x(t +h)- x'x(t), xx{t +h)- xx(i)) ^ k \\xx(t + h)- xx{t)\\2 ,

we have

| | * A ( * + h ) - x x ( t ) \ \ 2 < e2^-^ \\xx(U + h ) - * A ( < I ) | | 2 , 0 <h<t^ £-,

(2.4) Lx

\\x'x(t)\\
2 < e " ^ " * 1 ' K ( * i ) | | 2 , 0 < < ! < < < - p - .

For 0 < tj < t < n/Lx, tj -» 0+ and /A(*,-) 6 i4*A(*i),

z'A(<,-) = -Mxxx(ij) - fx(tj), i = 1,2, . . . .

By (2.4) we have

(2.5) ||*'A(0H < e^-^XWMxxxitj)]] + \\fx(ii)\\), J = 1, 2, . . . .

Since lim xx(tj) = xo, by Lemma 1.2, there exists an N > 0 such that
j—oo

(2.6) ||z'A(<)IKe*ri/Z/A#.

Let [0, 6.x) be the maximal interval on which the equation (E2.4) has a solution. Let
6 = inf SX- Now we prove that 6 > 0. Suppose 5 = 0. Then there exists {A }̂ such

that 8XJ —> 0+ as j —> +oo. By (2.6) it is easy to see that

(2.7) hm

Since

| | *y 0 <<<«*,., *,- 6 (0, <), i = 1, 2, . . . ,
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by (2.7) and (2.8) we have

(2.9) n = J m ^ . ( O - i o l ^ l ^ , . ^ ) ! - * V tjE (0,5x^,3=1,2,....

In view of (2.6), from (2.9) we have

ri ^ lim
j—>oc

a contradiction. Therefore we have

6 = inf 6x > 0.

, • = 0,

Now for given So £ (0, 6), by (2.6) we have

(2.10) I|S'A(*)II < ek6°N, VA > 0, 0 ^ t < 60.

By taking r\ small enough we can assume that A is bounded on B(XQ, r{). Hence
there exists an N\ > 0 such that

(2.11) ||/A(*)|| < Nu V/A(0 G Axx(t), A > 0.

By using (2.10) and (2.11), we have

(2.12) \\Mxxx(i)\\ ^ ekS°N + N1,te[0, 50], VA > 0.

It is easy to check

\\xM(t) - ^ , (011 j t \\xXx{i) - * A , ( 0 I I < "Ai \\MXlxXl(t)\\
2 - A2 \\MX2xx2(t)\\

2

+ (Ai + A 2 ) ( M A X X A I ( < ) , M A 2 X A 2 ( < ) ) + A; ||ajAl(t) - xx7(t)f , Aj > 0, A2 > 0,

and so

(2.13) " * 1 V ' '
Ai > 0, A2 > 0, t e [0, So].

Therefore we have
lim

Letting lim x\(t) = x(t), by (2.6) and (2.12) we may assume that
X-> o+

m{t).
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Since

(Mxxx(t) - g, Rxxx{t) -z)>O,VzE D(M), g £ Mz,

we have
(m(t)-g,x(t)-z)>0, Vz e D{M), g e Mz.

This implies that x(t) £ D(M) and m(t) £ Mx(t). On the other hand, there

exists fx{t) £ Ax\(t) such that x'x(t) = —M\x\(t) — f\(t). Hence we have

lim (fx(t),xx(t)-x{t)) = 0,
X—>0 +

and so

t t
Since x\(t) = x0 + J x'x(s) ds —^ xg + Jy(s)ds, we have

o o

xx(t) -> x0 + / y(s) ds = x(t)
Jo

and so

* A ( 0 = 2/(0 6 -Mx(t) - Ax(t), t G [0, So].

The uniqueness of this solution is obvious. This completes the proof. D

3. DIFFERENTIAL EQUATIONS WITH PSEUDOMONOTONE MAPPINGS

In this section, H is assumed to be a real Hilbert space. We have the following
results:

THEOREM 3 . 1 . Let P: D(P) C H —> H be a continuous pseudomonotone map-

ping, and XQ G int D(P) be a given point. Then there exist r > 0 and M > 0 such

that the following differential equation

f x'(t) = -Px{t), x(t) € B(x^~r) r £ [0, r/M]
( E 3 1 ) 1 , (0 ) = x0

has a solution.

THEOREM 3 . 2 . Let P: D{P) C H —> H be a continuous pseudomonotone

mapping, M: D(M) C H —» 2H be a maximal monotone mapping and xo £

D(M) ("I int D{P). Suppose further that there exists r > 0 such that

(Pxi — Px2, Xi — x2) ^ — k \\xi — x2\\ for all xi, x2 £ B(x0, r),

where k is a constant. Then there exists So > 0 such that the following differential

inclusion

(x'{t)e-Mx(t)-Px(t), te[o,S0]

\ *(0) = x0

has exactly one solution.
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REMARK. A solution of (E3.2) has the same meaning as in Section 2.

PROOF OF THEOREM 3.1: Since P is continuous at so , there exist r > 0 and M >

0 such that ||Pa;|| < M/2 for all x 6 B(xo,r). By [9, Theorem 1.1 in Section 1], for
each e > 0 there exists a continuous differential function xe(t): [0, r / ( (M/2) •+• e)] —»
B(xo, r) such that the following

(E3.3)
x'e(t) = -Px.(t) + y,(t), t e [0, r / ( f + e))

{ x.(0) = x0

holds for some function j/e(t) with ||3/«(t)|| < £•

It is easy to see that a^(-) 6 L°°([0, r/M], H) for all e ^ M / 2 . Therefore we can
assume that x'e{-) converges weakly in i 1 ( [0 , r/M], H) to y(-) as e —» 0+ . Hence we
have

xc(t) - x{t) = xo+ (w) f y{s) ds, t e [0, r /M] ,
Jo

t
where "(w)J" represents weak integration in H. Besides, it is easy to see that x(t) is

o
weakly differentiate for almost all t E [0, r/M]. Let x'(t) denotes its weak derivative.

Since

~ \\x.(t) - x{t)\\2 = (-Px.{t) + »«(t) - *'(*), x.{t) - x(t))t

by Lemma 1.3 (2) we have

lim -£|Mt)-*(i)f <0.
e—o+ at

Therefore we have xc(t) —> x(t). Since P is continuous, we obtain

xe(t) = xQ+ I x'e(s) ds -» x(i) = xo

This completes the proof. U

PROOF OF THEOREM 3.2: By using Lemma 1.1 (2) we know that M\+P: D(P) -»
^ is a continuous pseudomonotone mapping. By Theorem 3.1 there exist i"i > 0 and
S\ > 0 such that the following differential equation

f x'{t) = -Mxx(t) - Px(t), t e [0, 6x]

1 *(0) = x0

has a solution x\(t): [0, 8\] —* B(xo, ri). Since

& at
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there exists N > 0 such that

(3.1) \Wx(t)\\ < eM*N, t £ [0, 6x], A > 0.

Let [0, T]X) be the maximal interval on which (E3.3) has a solution. We can prove that
•q — inf 7]x > 0. Given 60 £ (0, rj), by (3.1) we get

(3.2) \\x\{t)\\ ^ ekS°N, VA > 0, t € [0, *„].

Take T\ small enough such that P is bounded in J3(a;o> T\). Hence both Pxx(t) and
M\x\(t) are uniformly bounded for all A > 0 and all t £ [0, SQ]. Therefore we have

l ( i ) , MXixXa(t)) + k \\xXl{t) ~ *A2(t)||2, Aj > 0, A2 > 0.

This imphes that lim xx(t) = x(t). By the continuity of P, we have Pxx{t) —+ Px(t).

On the other hand we may assume that Mxxx(-) converges weakly in L2([0, So], H)
to v{) G £2([0, *o], H). It follows from Lemma 1.4 that v(t) € Mx(t), for almost all
t £ [0, So] and

xx{t) = x0 + I x'x(s)ds-+x0+ / (~v(a:) - Px(s))da.
Jo Jo

This implies that

xx(t) -» *(<) = xo+ f {-v{s) - Px(s))ds,
Jo

that is, z'(i) € - M i ( t ) - Px(i), t 6 [0, 50] -
The uniqueness of the solution is easy to prove.
This completes the proof. u

REMARK. Examples of (S)+ mappings and pseudomonotone mappings can be found
in [17].
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