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NON-MINIMAL TREE ACTIONS AND THE EXISTENCE OF
NON-UNIFORM TREE LATTICES

LISA CARBONE

A uniform tree is a tree that covers a finite connected graph. Let X be any
locally finite tree. Then G = Aut (X) is a locally compact group. We show that
if X is uniform, and if the restriction of G to the unique minimal G-invariant
subtree Xo C X is not discrete then G contains non-uniform lattices; that is,
discrete subgroups F for which T\G is not compact, yet carries a finite G-invariant
measure. This proves a conjecture of Bass and Lubotzky for the existence of non-
uniform lattices on uniform trees.

0. INTRODUCTION

Let X be a locally finite tree and let G = Aut (X). Then G is naturally a locally
compact group ([3, 4]). For a discrete subgroup F ^ G, the vertex stabilizers Tx,
x e VX, are finite groups [3]. Let V(F\A") be the vertex set of the quotient graph
T\X. As in [3] and [4] we call V an X -lattice, or a tree lattice if

voi(r\\*)= £ ]£,

is finite, and a uniform X -lattice if T\X is a finite graph, non-uniform otherwise.
Following [3] we call X uniform if X is the universal cover of a finite connected

graph. We call X rigid if G — kvX{X) is discrete, and X is minimal if G acts
minimally on X, that is, there is no proper G-invariant subtree [4]. If X is uniform
then there is always a unique minimal G-invariant subtree XQ C X ([4, (5.7), (5.11),
(9.7)]). We call X virtually rigid if Xo is rigid.

The following results of Bass and Tits [5] and Bass and Lubotzky [4] indicate that
uniform trees with discrete groups of automorphisms cannot give rise to non-uniform
lattices.
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PROPOSITION 0 . 1 . ([5, (5.5)].) Let X be a locally Mite tree. If X is uniform

and rigid then all X -lattices are uniform.

PROPOSITION 0 . 2 . ([4, (3.7)].) Let X be a locally finite tree. If X is uniform

and virtually rigid then all X -lattices are uniform.

In analogy with Borel's classical theorem establishing the co-existence of uniform
and non-uniform lattices in connected non-compact semisimple Lie groups, Bass and
Lubotzky conjectured that under some natural assumptions G — Aut (X) contains both

uniform and non-uniform lattices ([4, Chapter 7,8]). In particular, they conjectured that
when G contains uniform lattices, the only obstruction to the existence of non-uniform
lattices is virtual rigidity of X ([4, Chapter 7,8]). Here we present a proof of this
conjecture. We use a theorem of Bass and Kulkarni [3] which states that G = Aut (X)

contains a uniform lattice if and only if X is uniform. Our main theorem is the following.

THEOREM 0 . 3 . If X is uniform and not virtually rigid then G contains a non-

uniform X-lattice.

In [6], the author proved Theorem 0.3 for minimal actions assuming also the (nec-
essary) Bass-Tits criterion for non-discreteness of G ([5, (5.5)]), which is equivalent to
non-rigidity of X. That is, in [6] the author proved:

THEOREM 0 . 4 . ([6].) Let X be a uniform tree, and let G = Au t (X) . If G is

not discrete and acts minimally on X, then there is a non-uniform X-lattice T ^ G.

Here we no longer assume that G acts minimally. Suppose that X is a uniform
tree and let Xo C X be the unique minimal G-invariant subtree of X, also a uniform
tree. Let Go = Aut (X) |A- 0 • In ([8]) we showed that Go = Aut(J\T0). If X is not
virtually rigid, that is Xo is not rigid, then by Theorem 0.4 Go contains a non-uniform
Xo-lattice I V Thus our task is to show that Fo extends to a non-uniform X-lattice
r < G = Aut (X). This is achieved by Theorems 3.1 and 3.4 in Section 3.

Theorems 0.3 and 0.4 together give a complete proof of the Bass-Lubotzky con-
jecture for the existence of non-uniform lattices on uniform trees ([4, Chapter 7,8]).
Together with [2], and with [9] and [10] where we address the Bass-Lubotzky exis-
tence question in the case that X is not uniform, we have answered the Bass-Lubotzky
conjectures in full. We refer the reader to [7] for an overview of the Bass-Lubotzky
conjectures and their proofs.

1. T R E E LATTICES, EDGE-INDEXED GRAPHS, VOLUMES AND COVERINGS

Let F be a group acting without inversions on a tree X. The fundamental theorem
of Bass and Serre ([1, 12]) states that T is encoded (up to isomorphism) in a 'quotient
graph of groups' A = F \ \ X ([1, 12]). Conversely a graph of groups A gives rise to a
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group F — TTI(A,a) , a € VA, acting on a tree X = (A,a) without inversions, and the
vertex stabilizers Tx, x € VX, are (conjugate to) the vertex groups of A ([1, 12]).

Now assume that X is locally finite, and that F acts on X with quotient graph
of groups A — T\\X. Then A naturally gives rise to an 'edge-indexed' graph (A, i),
defined as follows. The graph A is the underlying graph of A with vertex set VA,
edge set EA, initial and terminal functions do,d\ : EA \—> VA which pick out the
endpoints of an edge and with fixed point free involution - : EA \—> EA which
reverses the orientation. The indexing i : EA \—• Z > 0 of (A, i) is defined to be the
group theoretic index

i(e) = [Adoe :ae(Ae)],

where
a n d Me = A

are the vertex and edge groups of A, and ae : Ae "-+ Aaoe are the boundary monomor-
phisms of A. We write (A,i) — /(A) when i(e) = \Aaoe '• &e(Ae)\ for data

{•4a> Ae = As, de'-Ae'-* AaQe}

from A. Conversely, an edge-indexed graph (A,i) is defined to be a graph A and an
assignment i : EA i—> Z> 0 of a positive integer to each oriented edge. Then (A, i)
determines a universal covering tree X = (A,i) up to isomorphism ([3, 4]), and every
edge-indexed graph arises from a tree action [4]. Here we assume i(e) is finite for each
e S EA. Under this assumption the universal covering tree X = (A, i) is locally finite
([3, 4]).

Given an edge-indexed graph (A, i), a graph of groups A such that I (A.) = (A, i),
is called a grouping of {A, i). We call A a finite grouping if the vertex groups Aa

are finite and a faithful grouping if A is a faithful graph of groups, that is if n\ (A, a),
a £ VA acts faithfully o n X = (A, a) [3]. If A is not faithful, then a faithful quotient
of A always exists ([1]).

LEMMA 1 . 1 . ([3, 4].) Let {A,i) be an edge-indexed graph and let A be a finite

faithful grouping of (A,i). Then for a G VA, T — TTI(A,a) is a discrete subgroup of

G = Aut {X), where X = {A, i).

For an edge e in (A, i), define:

If 7 = (ei, . . . ,en) is a path, set A(7) — A(ei) . . . A(en). An indexed graph (A,i) is
then called unimodular if A(7) = 1 for all closed paths 7 in A. This is equivalent to
unimodularity of G = Aut(X) where X — (A,i) [3].
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Assume now that (A, i) is unimodular. Pick a base point a<j G VA, and define,

for a € VA,

Nao{a) = -r— (= A(7) for any path 7 from a0 to a) 6 Q>0-
L\OQ

For e € EA, set

Following ([4, (2.6)]), we say that (A, i) has bounded denominators if {Nao (e) | e 6
has bounded denominators, that is, if for some integer D > 0, D-Nao takes only integer
values on edges. This condition is automatic if A is finite, and since

N -Aa°Na i ~ Ad! a o '

this condition is independent of a0 S VA. As in [3] the functions TV : A —> Q£o as
above are called vertex orderings of (A,i). We call AT integral if for all e € EA, we
have N(do{e))/i(e) € Z and hence /V(a) e Z f o r a e F i .

THEOREM 1 .2 . ([3, (2.4)].) The following conditions on an edge-indexed graph
(A, i) are equivalent.

(a) (A, i) admits a finite (faithful) grouping.
(b) (A, i) is unimodular and has bounded denominators.
(c) (A, i) admits an integral vertex ordering.

We define the volume of an indexed graph (A,i) at a basepoint ao € VA:

Then

as in ([4, Chapter 2]). We write Vo\(A,i) < 00 if Vola (A,i) < 00 for some, and hence
every a € VA.

If A is a finite grouping of (A,i), then we have ([4, (2.6.15)]):

which is automatically finite if Vol (A, i) < 00.
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We now describe a method for constructing X -lattices which follows naturally
from the fundamental theory of Bass and Serre, and was first suggested in [3]. We
begin with an edge-indexed graph (A, i). Then (A, i) determines its universal cover-
ing tree X = (A,i) up to isomorphism ([4, Chapter 2]). If (A,i) is unimodular and
has bounded denominators, then by Theorem 1.2 we can find a finite (faithful) group-
ing A of (A,i). By Lemma (1.1), F = TTI(A,ao) , ao € VA, is a discrete subgroup
of G = A u t ( X ) . If further (A,i) has finite volume, then A S T\\X has finite vol-
ume Vol(A) = V o l ( F \ \ X ) . It follows that F — TTI(A, ao) is an X-lattice, uniform if
A = F\X is a finite graph, non-uniform otherwise.

A covering p : (B,j) —> (A,i) of edge-indexed graphs ([4, (2.5)]), is a graph
morphism p : B —> A such that for all e € EA, do(e) = a, and b € p~1(a), we have

i(e)= T.

where p(b) : -E(f (6) —> E$(a) is the local map on the star £o(^) of a vertex v, that is,
the set of edges with initial vertex v. If b € VB, p(b) = a € VA, then we can identify

so that the diagram of natural projections

X
VB PA

s \
B - ^ A

commutes. Let G(B,j) = {g G G | g opB = pB} and ^(,4^) = {g € G | g opA = pA}
be the groups of deck transformations of (B,j) and (A,i) respectively. If p : (B,j)
—> (A,i) is a covering of edge-indexed graphs, then we have G(B,J) ^ G(A,I) ([4,
Chapter 2]). If A is a grouping of (A,i) and I is a grouping of (B,j) then by ([4,
Chapter 2]) we have

7ri(A,a) ^ G(A,i) and TTI(1,6) ^ G(B,j)-

2. EXISTENCE AND STRUCTURE OF UNIQUE MINIMAL SUBTREE AND ITS QUOTIENT

Let X be a locally finite tree, and let G = Aut (X). We recall that X is minimal
if there is no proper G -invariant subtree. The following gives an existence theorem for
minimal invariant subtrees of X.
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PROPOSITION 2 . 1 . ([4, (5.5), (5.11), (9.7)].) Let X be a tree and let

G = Aut (X). If X is a uniform tree then there is a unique minimal G-invariant

subtree XQ ^ X. Moreover the (hyperbolic) length function l(G) ^ 0, and ifT is any

X-lattice, l(T) / 0 and XG = Xr.

In this section we describe minimality of a group action H ^ G = Aut (X) in

terms of its edge-indexed quotient graph, (A, i) = I(H\\X), as in [4] and [8].

Let (A, i) be any edge-indexed graph. We say that (A, i) is minimal if (A, i) is the

edge-indexed quotient of a minimal tree action. A vertex a € VA is called a terminal

vertex of (A, i) if deg(A ^ (a) = 1, where

and E0(a) — {e € .EM | doe = a} . A terminal vertex in (A,i) is then a geometrically
terminal vertex in the graph A, that is, there is a unique edge e with doe = a. The
following gives a geometric characterisation of a minimal edge-indexed graph.

PROPOSITION 2 . 2 . ([8]) Let T be a group acting without inversions on a tree

X with quotient graph of groups A = F\ \X and edge-indexed quotient graph (A, i)

= J(A).

(1) If (A,i) is minimal then (A,i) has no terminal vertices.

(2) If (A, i) is finite and has no terminal vertices then (A, i) is minimal.

Let (T, i) be an edge-indexed graph. As in ([4, 11]) say that (T, i) is a dominant

rooted edge-indexed tree if T is a tree and there is a vertex a € VT such that for all
eeET

d(doe,a) > d(die,a) =>• i(e) = 1.

We call such a vertex a € VT a dominant root of (T, i) and we write (T, i, a) when

(T, i) is a dominant edge-indexed tree rooted at a € VT.

THEOREM 2 . 3 . ([8]) Let (A,i) be a finite edge-indexed graph. Then

(1) (A, i) contains a unique minimal connected subgraph (A0,i0).

(2) (A, i) has the form

(A,i) = (AQ,i0)U

where (Tj,ij,aj) are finite dominant-rooted edge-indexed trees with root vertices

aj € A, j = 1 . . . n, A C VAQ and (Ao, io) has no terminal vertices.

Note that for (A, i) as in Theorem 2.3 the covering tree X = (A, i) has the form
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where j — I.. .n, k ^ 1, Xo = (Ao, i0), p is the covering map and pyTjA = Tj ([8]).

3. EXISTENCE OF NON-UNIFORM LATTICES

Let X be a locally finite tree. Let H ^ G = Aut (X) and let GH — {g € G \
pog = p} be the deck transformation group of H, where p : X —> H\X is the quotient
morphism. Let (A,i) = I(H\\X). Then G(A,i) = GH- Let {Ao,io) be the unique
minimal subgraph of (A, i) as in Theorem 2.3. Let Xo C X be the unique minimal
subtree of X. Then by [8], Xo = (Ao,io) and H acts minimally on Xo. Our main
theorem is the following.

THEOREM 3 . 1 . Let X be a uniform tree and let H < G = Aut (X). Let
XQ C X be the unique minimal G-invariant subtree of X. Let Go = Aut (X) |x 0

= Aut (Xo), (A,i) — I(H\\X), and let (Ao,io) be the unique minimal subgraph of
(A, i). Assume that Go is not discrete (XQ is not rigid). Then

(i) There is a non-uniform Xo-lattice To ^ G(A0,io) ^ Go-
(ii) To extends to a non-uniform X -lattice T ^ G ^ j ) ^ G = Aut (X).

The author proved (i) of Theorem 3.1 in [6] where the assumptions on X and G
were restated as combinatorial conditions on (A,i). It remains to prove (ii). We shall
give a constructive proof of (ii) by constructing the appropriate (infinite) edge-indexed
graph [B,j) and taking a finite faithful grouping B of (B,j) of finite volume so that
TTI(B, b) is a lattice, for b € VB. In order to do this we describe the combinatorial
restatement of the assumptions of Theorem 3.1 used in [6].

By [3] we have the following equivalent conditions:

(1) X is a uniform tree.

(2) There is a uniform X-lattice A ^ GH = ^(A.i) •
(3) (A, i) is unimodular and finite.
(4) H is unimodular and H\X is finite, where H denotes the closure of H.

Similarly we have the following equivalent conditions:

( l ) 0 Xo Q X is uniform.

(2)0 There is a uniform Xo-lattice Ao ^ G(A0,i0)-

(3)0 (Ao,io) is unimodular and finite.

The assumption that Xo is not rigid (Go is not discrete) is equivalent (by [5]) to
the assumption that (A0,i0) is 'non-discretely ramified1. As in ([4, 5]) we say that an
edge-indexed graph (A, i) is non-discretely ramified if:

there exists e € EA such that i(e) ^ 3, or i(e) — 2 and e is not separating,

or i(e) = 2, and (A\(e),i) is either a ramified tree, or an unramified graph,
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where
(A,(e),i) = {veVA\ d{v,dx(e)) > d(v,do(e))}.

If (A,i) is minimal this simplifies to:

there exists e 6 EA such that i(e) ^ 3, or i(e) = 2 and doe is not a

geometrically terminal vertex.

Let (A, i) be a finite edge-indexed graph. We say that (A, i) is virtually discretely

ramified if the unique minimal subgraph {AQ, io) is discretely ramified. We can now
describe our combinatorial restatement of (i) of Theorem 3.1 proven in [6].

THEOREM 3 . 2 . ([6]) Let Xo be a uniform tree, let Ho < Go = Aut (Xo) and
let (Ao,io) — I{HQ\\XO) • If Ho acts minimally on Xo and is not discrete (XQ is not
rigid) then there is a non-uniform Xo-lattice To ^ ^(A0,i0) ^ Go • Equivalently, assume
that {Ao,io) is finite, unimodular, minimal and non-discretely ramified. Then (Ao,io)
has a covering p0 : (Bo, jo) —• (-^o,*o) such that (Bo, jo) is infinite, unimodular, has
finite volume and bounded denominators.

If instead Xo is the unique minimal invariant subtree of a uniform tree X, we

obtain:

COROLLARY 3 . 3 . Let X be a uniform tree and let H ^ G = Aut (X). Let

Xo C X be the unique minimal G-invariant subtree of X, also a uniform tree. Let

Go = A\it(X)\Xo = Aut(Xo), (A,i) = I(H\\X), and let (A0,i0) be the unique

minimal subgraph of (A, i). If XQ is not rigid then there is a non-uniform Xo-lattice

To ^ (̂-4o,»o) ^ ^o- Equivalently, assume that (A0,i0) is finite, unimodular, minimal

and non-discretely ramified. Then (A0,i0) has a covering po : {Bo, jo) —> (Ao,io) such

that (Bo, jo) is infinite, unimodular, has finite volume and bounded denominators.

It remains to show that To extends to a non-uniform X-lattice F ^ G(A,i) ^ G.
We achieve this with the following theorem. Our strategy is to start with a minimal
edge-indexed graph (Bo,jo) that admits a non-uniform lattice, and extend this to a
non-minimal edge-indexed graph (B,j) that also admits a non-uniform lattice.

THEOREM 3 . 4 . Let (Ao,io) be an edge-indexed graph that is finite, unimodular,

minimal and non-discretely ramified. Let p0 : (Bo, jo) —• {Ao,io) be a covering such

that (Bo, jo) is infinite, unimodular, has finite volume and bounded denominators.

Let (A,i) be obtained from (Ao,io) by attaching to vertices ajt G A, k = l...n,

A C VA0 finite dominant-rooted edge-indexed trees (Tk, ifc, afc), k = 1 . . . n. Let (B,j)

be obtained from (Bo,jo) by attaching to each bl
k € po"

1(afc) a copy of (Tk,ik,ak),

k = 1,. ..,n, t > 0, denoted (Tk,u,afc). Then there is a covering p : (B,j) —> (A,i)

such that (B,j) is infinite, unimodular, has finite volume and bounded denominators.
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PROOF: The existence of a covering po : (Bo, jo) —> (Ao,io) is guaranteed by
Theorem 3.2, and po extends to p : (B,j) —¥ (A, i) in such a way that

P\(Bo,jo)=Po and p[Tk,ik,akj = (Tk,ik,ak).

Moreover (B, j) is automatically infinite. Since we are attaching finite trees (Tk, ik, ak),
k — 1,... , n, to (Ao,io) at single vertices, (A,i) is unimodular, and since (Bo, jo) is
unimodular, it follows that (B,j) is unimodular. Let

Vk=Vo\Vk(Tk,ik,ak), fc = l , . . . , n .

Let V = max{Vl,V2,..., Vn}. Choose b0 6 VB0 and let Vo = Volbo (Bo, jo) • Then

^ (A«/A6o)
p l ( « l )

f- (

. . . . . . . v.

= VVb

< oo

Hence (B, j) has finite volume. Let b0 € VB0. Then

has bounded denominators, since (So, jo) has bounded denominators. Consider

Then the denominator of (Aufc)/(A60) is bounded, since vk € VBo, and the denom-
inator of (Ay)/(Aujt) can increase only by a bounded amount for y € p ^ 1 ^ ) , since
Tk is finite for each k = 1, . . . , n. It follows that (B,j) has bounded denominators. D

COROLLARY 3 . 5 . In the setting of Theorem 3.4, there is a non-uniform lattice

PROOF: Since (B,j) is unimodular and has bounded denominators, by Theorem
1.2 (B, j) admits a finite faithful grouping B. Let b € VB, p(b) = a € VA, and set

r = 7r!(B,&) andX = (A,i,a) = (B,j,b).
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Then T ^ G(B,J) ^ ^(A,i) ^ G = Aut (X). By Lemma (1.1), F is a discrete subgroup
of G. Since Vo\(B,j) < oo,

Vol (B) = Vol (T\\X) < oo.

Thus F is an X-lattice, non-uniform since (B,j) is infinite. D

The subgroup T ^ G is the non-uniform lattice, conjectured to exist in ([4, Chapter
7, 8]) and our proofs of Theorems 0.3 and 3.1 are complete.
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