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1. Let ï be a completely regular Hausdorff space and C(36) the algebra of 
continuous real-valued functions on 3£. In attempts to characterize abstractly 
those algebras that are isomorphic to C(3£) for some 36, one produces subalgebras 
of C(36) which: (a) contain the constant functions, (b) separate points and 
closed sets in 36, (c) are closed under uniform convergence, and (d) are closed 
under inversion in C(3£) (see, for example, (2 ; 5 )). We call such a subalgebra of 
C(3£) an Algebra on 36. (Since these are the only algebras to be discussed here, 
no misunderstanding should arise.) 

In general, an Algebra on 36 need not be all of C(36) ; both (2) and (5) 
contain examples of Algebras on the discrete space of cardinal c that are not 
isomorphic to C(g)) for any space §). The example appearing in (2) is easily 
described: it is the algebra of Baire functions on the real line, viewed as an 
Algebra on the real line with the discrete topology. 

In (5), Isbell proved that the only Algebra on a o--compact, locally compact 
space 36 is C(36). In (6), Mrôwka announced that this conclusion holds, in fact, 
for all Lindelôf spaces. (This result is also readily derived from (2, Theorem 
5.4).) 

In (4), Hewitt proved that 36 is almost compact (i.e., card (036 — 36) < 1 ; 
see also 6 / of (1)) if and only if C*(36) (the algebra of bounded functions in 
C(3£)) contains no proper subalgebra which: (a) contains the constant functions 
(b) separates points and closed sets in 36, and (c) is closed under uniform 
convergence. An almost compact space is pseudocompact (i.e., C* = C), and 
for pseudocompact 36, Hewitt's subalgebras of C(36) are precisely the Algebras 
on 36. 

Thus, if 36 is either Lindelôf or almost compact, then the only Algebra on 36 is 
C(36). In this note, we prove the converse of this statement and the equivalence 
of "C(36) is the only Algebra on 36" to each of several other conditions. 

Certain aspects of this work overlap with some unpublished work of R. L. 
Blair. In particular, condition (5) in the theorem of §3 has been considered 
by him; see also §4.3. We are indebted to Blair for interesting discussions on 
these matters. 

2. We collect here the background information that will be needed. Most of 
the notation and terminology is as in (1 ). All topological spaces are assumed 
to be completely regular Hausdorff. 
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2.1. For / G C(X), 3(f) denotes {x Ç X:/(x) = 0}, and coz / denotes 
Ï — c3(f). A zero set (A cozero set) in X is a set 3(f) ( a set coz/) for some 
/ € C(36). 

Let -4 be a subfamily of C(3£). Then 4̂ is said to separate points and closed 
sets in X if for any closed set g and p G 3Ê — §, there i s / £ -4 with g C $( / ) 
and p € coz / . We say that 4̂ is closed under inversion in C(X) if / € 4̂ and 
3(f) = 0 imply 1// 6 A. 

Let X be a subspace of §). Then, 36 is said to be C-embedded (respectively, 
C*-embedded) in §) if, g iven / G C(X) (f Ç C*(X)), there is g Ç C(g)) whose 
restriction to X i s / . X is C*-embedded in g) if and only if any two disjoint zero 
sets in 36 have disjoint closures in §). We say that 36 is z-ernbedded in §) if, given 
a zero set 3 in 36» there is a zero set 3 ' in §D with 3 ' ^ 36 = 3- Evidently, a 
C*-embedding is a z-embedding. 

2.2. A space that contains 36 densely will be called merely an extension of 36. 
Two extensions of 36 are said to be equivalent if they are homeomorphic via a 
map that leaves 36 pointwise fixed. Throughout, all statements about the 
uniqueness of extensions will be in this sense (i.e., up to equivalence). Similarly, 
two extensions will be called different if they are not equivalent. 

If g) is an extension of 36, then C(§)) may be regarded as a subalgebra of 
C(36): t h o s e / £ C(X) with continuous extensions over g). We shall not dis
tinguish notationally between C(§)) and the associated subalgebra of C(36). 
It is easy to see that C(§)) is closed under inversion in C(36) if and only if 
every non-void Gg-set in §) meets 36—as we shall say, X is Gt-dense in §). Thus, 
C(§D) is an Algebra on 36 if and only if X is Gg-dense in §) (the other conditions 
prevailing automatically). 

Among the extensions of a given space 36 are two of special interest: the 
Stone-Cech compactification $6, characterized as that compact extension 
in which X is C*-embedded (i.e., C*(X) = C(/336)) and the Hewitt real-
compactification i>36, characterized as that realcompact extension in which 36 is 
C-embedded (i.e., C(X) = C(vT£)). Of course, 36 is Gs-dense in u36. (See (1, 
Chapters 6 and 8). 

2.3. We now summarize the pertinent information from (5). 
If A is an Algebra on 36, then A determines two extensions of 36: a compact 

one, $£>(A*), characterized among compact extensions by the property 
C(&(A*)) = A*, and a realcompact extension, &(A). Let COZ({Q(A*), 36) 
denote the collection of cozero sets in §(^4*) that contain X. Then, for each 
© (E coz($(4*), X), 0© = $04*) ; moreover, 

A = U{C(©): © Ç coz(£G4*),X)} 

and 

$(A) = H{©: © 6 coz(<pG4*),X)}. 
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Thus, 36 is Gs-dense in !Q(A), and A may be regarded as an Algebra on &(A). 
While A and C(&(A)) may differ (as in the examples mentioned in §1), if 
A is isomorphic to any C($), then A = C($(A)). 

II A and B are distinct Algebras on £, then &(A*) and §(5*) are distinct 
(so that i l* ^ 5*, as well). Of course, $(C*(X)) = 0X and £(C(36)) = uï. 
Hence, in order that the Algebra A on 36 coincide with C(X), it is necessary 
and sufficient that §(A*) = 036. 

3. THEOREM. For any (completely regular Hausdorff) space H, the following 
conditions are equivalent: 

(1) The only Algebra on 36 is C(36). 
(2) The only realcompact space in which X is Gs-dense is u3£. 
(3) i>36 is Lindelôf, card(u36 — 36) < 1, awd u36 is the only space in which X is 

Gs-dense with these two properties. 
(4) Either 36 is Lindelôf or 36 w almost compact. 
(5) Every embedding of 36 is a z-embedding. 

Proof. (1) implies (2). If g) is a realcompact space in which 36 is Gs-dense 
and if §) 5* u36, then C(§)) is an Algebra on 36 that is different from C(X). 

(2) implies (3). Assume (2). In (7), Mrôwka proves that a space is Lindelôf 
if and only if it is Gs-dense in no proper superspace. Hence, if u36 is not Lindelôf, 
then there is a space §), properly containing u36, in which i>36 is Gs-dense. 
Evidently, 36 is Gs-dense in u$ and, moreover, u36 and i>§) are different extensions 
of 2 (e.g., C(i$) 5* G(u36)), contradicting (2). 

Thus, u36 is Lindelôf. If card(u36 — 36) > 1, pick two distinct points of vTL — 36, 
and let £) denote the quotient of u36 obtained by identifying them. The quotient 
mapping is not one-to-one, so that g) and u36 are different. §) is Lindelôf (being 
the continuous image of u36) and contains 36 Gs-densely (since u36 does). Again, 
(2) is contradicted, so card(u36 — 36) < 1. 

If X is Lindelôf, then the remaining statement of (3) follows by Mrowka's 
theorem quoted above. If 36 is not Lindelôf, it is Gs-dense in any Lindelôf 
superspace §) with card(g) — 36) = 1. (Otherwise, 36 would be an Fff in §), and 
hence Lindelôf.) By (2), §) = u36. 

(3) implies (4). Assume (3), and suppose that 36 is not Lindelôf. Since i>36 — X 
is a singleton, say {po}, 036 = u36 if and only if 36 is almost compact. Suppose, 
therefore, that there is pi G 036 — u36. Consider the subspace 36 VJ {p0, pi} of 
036, and let §) denote the quotient of this space obtained by identifying po 
and pi. Now, §) is Lindelôf, since it is the continuous image of a Lindelôf 
space ; since X is not Lindelôf, it is Gs-dense in §). Finally, u36 and g) are different 
extensions of 36: for example, 36 is clearly not C-embedded in §). Thus, (3) is 
contradicted. 

(4) implies (5). By Lemma 5.3 of (2), every embedding of a Lindelôf 
space is a z-embedding. Also, every embedding of an almost compact space is a 
C*-embedding ( 1 , 6 / ) , hence a s-embedding. 
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(5) implies (1). Assume (5), and let A be an Algebra on X. We show that X 
is C*-embedded in §(A*). Thus, §(A*) = #6, and A = C(ï) follows (by 2.3). 

It suffices to show that if 3 i a n d 32 are disjoint zero sets in 36, then 3 i H 32 
= 0, where the bar denotes closure in &(A*). By (5), choose/* 6 C($£>(A*)) = 
,4* with 3(A) r\ 1 = Su for i = 1, 2. Now 3(/ i 2 +/2 2) = 3(fi) H 3(/2) is 
disjoint from X, so coz(/i2 + /22) is C*-embedded in §(^4*). (See 2.3.) Let 3 '* 
denote the zero set (in coz(/i2 + / 2

2 ) ) of /*2/(/i2 +h2), for i = 1, 2^ Then 
3 ' i ^ 3X2 = 0, so that S'i H 3 ' 2 = 0. For i = 1, 2, gz Ç 3'*, so 3 i H 3 2 = 0 
as well. 

4. Remarks, 

4.1. The proof that (5) implies (1) is essentially the method employed in the 
proof of Lemma 5.2 of (2). Virtually the same argument reappears in the 
proof of Lemma 2.4 of (3). 

4.2 Consider the following condition on 36. 
(30 u3£ is Lindelôf and card(u36 — 36) < 1. Condition (3') does not imply (3), 

as is shown by the following example. 
Let coi denote the first uncountable ordinal, W* the space of all ordinal 

numbers < coi in the order topology (see (1, 5.11)), and let §) denote the dis
crete union of countably many copies of W*. Let ï denote the subspace of g) 
obtained by deleting coi from one of the copies of W*. Evidently, v% = §), but 
36 is neither Lindelôf nor almost compact. 

4.3. I t can be shown that (3') is equivalent to the following condition: 
Of any pair of disjoint zero sets inH, at least one is Lindelôf. (This has also been 
observed by R. L. Blair.) Upon replacing "Lindelôf" by "compact" in this 
statement, Hewitt's definition of "almost compact" is obtained. 

4.4. If vH is Lindelôf, then each Algebra on 36 is a C(§)). To prove this assertion, 
we note the 

LEMMA. U36 is Lindelôf if and only if each realcompact space in which 36 
is Gh-dense is the continuous image of u36 by a mapping that leaves 36 pointwise 
fixed. 

Proof. If u36 is not Lindelôf, then we may pick a realcompact space g) which 
contains u36 as a proper, Go-dense subspace, as in the proof that (2) implies (3). 
It is easily seen that §) is not a continuous image of u36 as prescribed. Conversely, 
if F is a realcompact space in which 36 is Gg-dense, let c denote the Stone 
extension of the identity map on 36 over #6 onto /3g). (See (1, Theorem 6.5)). 
Then, as is easily checked, c[v%] C §). But, if u36 is Lindelôf, then c[u36] is 
Lindelôf, and can be Gô-dense in no proper superspace. Hence, c[vS] = §). This 
completes the proof of the lemma. 

To prove 4.4, note that if i>36 is Lindelôf and A is an Algebra on 36, then 
A is an Algebra on &(A) and f£>(A) is Lindelôf, by the lemma. But then A = 
C(& (A)), by the theorem. 
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It seems likely that the converse of 4.4 holds, and even that the following 
apparently stronger statement is true: if 36 is realcompact but not Lindelof, 
then there is an Algebra A on 36, different from C(36), with S}(A) = 36. But we 
have been unable to prove this. 
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