GENERATORS FOR SIMPLE GROUPS

ROBERT STEINBERG

1. Introduction. The list of known finite simple groups other than the cyclic, alternating, and Mathieu groups consists of the classical groups which are (projective) unimodular, orthogonal, symplectic, and unitary groups, the exceptional groups which are the direct analogues of the exceptional Lie groups, and certain twisted types which are constructed with the aid of Lie theory (see §§ 3 and 4 below). In this article, it is proved that each of these groups is generated by two of its elements. It is possible that one of the generators can be chosen of order 2 , as is the case for the projective unimodular group (1), or even that one of the generators can be chosen as an arbitrary element other than the identity, as is the case for the alternating groups. Either of these results, if true, would quite likely require methods much more detailed than those used here.

As a model on which the construction for all groups is based, the situation is now described for the group G of $(n+1)$ th order unimodular matrices taken modulo the scalar multiples of the identity. Let k be a generator of the multiplicative group K^{*} of the finite field $K ; h$ the diagonal matrix with entries $k, k^{-1}, 1,1, \ldots ; x$ the matrix with 1 in all diagonal positions and the (1,2) position and 0 in all other positions; and w the matrix with 1 in the $(i, i+1)$ position for $1 \leqslant i \leqslant n,(-1)^{n}$ in the $(n+1,1)$ position, and 0 elsewhere. Then if K has more than three elements, G is generated by the elements represented by h and $x w$, while if K has two or three elements, x and w will do.

The two-element generation of all of the above groups is covered by 3.11, 3.13, 3.14 and 4.1 below.

With the exception of the complex field, all fields considered in this paper are assumed to be finite.
2. Roots and reflections. Let $\sum=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a simple (also called fundamental) system of roots corresponding to a simple Lie algebra over the complex field. Throughout the paper we assume that the elements of \sum for the various possible root systems are so labelled that $(a, a)=2$ and $(a, b)=0$ for each pair of roots in \sum with the following exceptions:

```
\(A_{n}:\left(a_{i}, a_{i+1}\right)=-1\) for \(1 \leqslant i \leqslant n-1\)
\(B_{n}:\left(a_{1}, a_{1}\right)=1,\left(a_{i}, a_{i+1}\right)=-1\) for \(1 \leqslant i \leqslant n-1\)
\(C_{n}:\left(a_{i}, a_{i}\right)=1\) and \(\left(a_{i}, a_{i+1}\right)=-1 / 2\) for \(1 \leqslant i \leqslant n-2\),
    \(\left(a_{n-1}, a_{n-1}\right)=-\left(a_{n-1}, a_{n}\right)=1\)
```

Received January 10, 1961.
$D_{n}:\left(a_{1}, a_{3}\right)=\left(a_{i}, a_{i+1}\right)=-1$ for $2 \leqslant i \leqslant n-1$
$E_{n}:\left(a_{i}, a_{i+1}\right)=\left(a_{n-3}, a_{n}\right)=-1$ for $1 \leqslant i \leqslant n-2$
$F_{4}:\left(a_{1}, a_{1}\right)=\left(a_{2}, a_{2}\right)=1,\left(a_{1}, a_{2}\right)=-1 / 2,\left(a_{2}, a_{3}\right)=\left(a_{3}, a_{4}\right)=-1$
$G_{2}:\left(a_{1}, a_{1}\right)=2 / 3,\left(a_{1}, a_{2}\right)=-1$.
Whenever it is convenient, the notation a, b, \ldots is also used for a_{1}, a_{2}, \ldots The reflections w_{r} reversing the various roots r generate a finite group W (the Weyl group) which is at the same time generated by the reflections w_{i} corresponding to the simple roots a_{i}. As is well known, any two roots of the same length are congruent under W.
2.1 Let $w=w_{1} w_{2} \ldots w_{n}$ (operations from right to left). (a) W is generated by w and w_{1} with the exceptions: type $B_{n}(n \geqslant 3)$ or D_{n} (n even) when w, w_{1} and w_{2} will do, $C_{n}(n \geqslant 3)$ when w, w_{n-1} and w_{n} will do, F_{4} when w, w_{2} and w_{3} will do. (b) W contains the central reflection -1 (defined by $(-1) r=-r$ for each r in $\left.\sum\right)$ if W is not of type $A_{n}(n \geqslant 2), D_{n}(n$ odd $)$ or E_{6}. (c) If -1 is in W, it is a power of w.

Proof. Let V be the subgroup of W generated by the given elements. If W is of type A_{n}, then V contains each $w_{i}=w^{i-1} w_{1} w^{1-i}$, hence all of W. If W is of type B_{2} or G_{2}, then V contains w_{1} and $w_{2}=w_{1} w$, hence all of W. If W is of type $B_{n}(n \geqslant 3), V$ contains w_{1} and each $w_{i}=w^{i-2} w_{2} w^{2-i}$ for $2 \leqslant i \leqslant n$, hence all of W. If W is of type $C_{n}(n \geqslant 3)$, the situation is similar. If W is of type D_{n}, V contains w_{2} even if n is odd since then $w_{2}=w^{n-1} w_{1} w^{1-n}$; thus V contains $w_{3}=w_{2} w w_{1} w^{-1} w_{2}, w_{i}=w^{i-3} w_{3} w^{3-i}$ for $3 \leqslant i \leqslant n$, hence all of W. If W is of type E_{n}, V contains $w_{i}=w^{i-1} w_{1} w^{1-i}$ for $1 \leqslant i \leqslant n-3$, then $w_{n-2}=w_{n-3} w^{-2} w_{1} w^{2} w_{n-3}, w_{n-1}=w w_{n-2} w^{-1}$ and $w_{n}=w_{n-1} \ldots w_{2} w_{1} w$, hence all of W. Finally, if W is of type F_{4}, V contains $w_{2}, w_{1}=w^{-1} w_{2} w, w_{3}$ and $w_{4}=$ $w w_{3} w^{-1}$, hence all of W. Thus (a) is true. Now if w_{0} is the element of W such that $w_{0} \sum=-\sum$, then $-w_{0}$ is an orthogonal transformation which permutes the roots of \sum. If \sum is not of type A_{n}, D_{n} or E_{6}, the only possibility is that $-w_{0}$ is the identity, whence $-1=w_{0}$ is in W. If W is of type $D_{n}(n$ even), one can verify that $w^{n-1} a_{i}=-a_{i}$ for each i, whence $-1=w^{n-1}$ is in W. Thus (b) is proved. For the proof of (c), see 4.1 and 4.5 of (6).
3. The normal types. Following Chevalley, let us consider a Cartan decomposition of a simple Lie algebra over the complex field, choose a generating set $\left\{X_{r}, H_{r} \mid r=\operatorname{root}\right\}$ to fulfil the conditions of Theorem 1 of (2) (so that the structural constants are all integers), transfer the base field to a finite field K, and then define $x_{r}(k)=\exp \left(\operatorname{ad} k X_{r}\right)$ for each root r and each k in $K, \mathfrak{X}_{r}=\left\{x_{r}(k) \mid k\right.$ in $\left.K\right\}$, and G as the group generated by all \mathfrak{X}_{r}. Excluding the cases in which the corresponding simple system of roots \sum is of type A_{1}, B_{2} or G_{2} and K has two elements and the case in which \sum is of type A_{1} and K has three elements, we obtain a simple group G and call it a normal type. Henceforth we also exclude explicit mention of the group G of type C_{n} con-
structed over a field of characteristic 2 since it is isomorphic to the corresponding group of type B_{n}.

The following properties are shared by the normal types.

3.1. G is generated by those \mathfrak{X}_{r} for which $\pm r$ is in \sum.

3.2. If r and s are roots such that $r+s$ is not a root, then \mathfrak{X}_{r} and \mathfrak{X}_{s} commute elementwise.
3.3. Let r and s be roots such that $r+s$ is a root and $(r+s, r+s)=e(r, r)$ $=e(s, s)$ with $e \geqslant 1$. Then there holds the commutator relation $\left(x_{r}(k), x_{s}(l)\right)=$ $x_{r+s}(\epsilon e k l)$ with $\epsilon= \pm 1$ depending only on r and s.
3.4. For each root r and each k in K^{*}, the multiplicative group of K, there exists $h=h_{r, k}$ in G such that $h x_{s}(l) h^{-1}=x_{s}\left(k^{2(s, r) /(r, r)} l\right)$ for each root s and each l in K. The elements $h_{r, k}$ generate an Abelian subgroup 5.

For each h in $\mathfrak{5}$, we also use h to denote the character on the roots defined by $h x_{s}(1) h^{-1}=x_{s}(h(s))$. Thus $h x_{s}(l) h^{-1}=x_{s}(h(s) l)$ for every root s and every l in K.
3.5. For each w in W, there is $\omega(w)$ in G such that $\omega(w) x_{r}(k) \omega(w)^{-1}=x_{w r}(\epsilon k)$ for each k in K and each root r with $\epsilon= \pm 1$ independent of k.
3.6. $\mathfrak{W} \omega(W)$ is a group \mathfrak{W} which contains \mathfrak{y} as a normal subgroup and $\omega(W)$ as a system of coset representatives relative to $\mathfrak{5}$. Further, the map $w \rightarrow \mathfrak{F} \omega(w)$ is an isomorphism of W on $\mathfrak{W} / \mathfrak{F}$.
3.7. For each positive root r, we can (and do) choose $\omega\left(w_{r}\right)=x_{r}(1) x_{-r}(-1) x_{r}(1)$.

For the proof of these results, see (2).
3.8. If G is a normal type, then G is generated by any system of coset representations for \mathfrak{W} over \mathfrak{W} together with \mathfrak{X}_{a} except when G is of type B_{n} over a field of characteristic 2 , or of type F_{4} over a field of characteristic 2 , or of type G_{2} over a field of characteristic 3, in which case " \mathfrak{X}_{a} " is to be replaced by " \mathfrak{X}_{a} and \mathfrak{X}_{b} ", or " \mathfrak{X}_{b} and \mathfrak{X}_{c} ", or " \mathfrak{X}_{a} and \mathfrak{X}_{b} ", respectively.

Proof. Since W is transitive on roots of the same length, the result is clear from 3.4, 3.5 and 3.6 if all roots have the same length. For the same reason if G is of type B_{n}, a system of representatives for \mathfrak{W} over \mathfrak{F} and \mathfrak{X}_{a} and \mathfrak{X}_{b} generate G. But if the characteristic is not 2 in the latter case, then \mathfrak{X}_{b} may be omitted since the other elements generate $\mathfrak{X}_{-a}, \mathfrak{X}_{a+b}$ and then $\left(\mathfrak{X}_{-a}, \mathfrak{X}_{a+b}\right)$ $=\mathfrak{X}_{b}$ by 3.3 with $e=2$. The argument is similar in the other exceptional cases.
3.9. Let r be a root, l in K^{*}, and h in \mathfrak{S} such that $h(r)$ is either a generator or the square of a generator of K^{*}. Then h and $x_{r}(l)$ generate \mathfrak{X}_{r}.

Proof. By repeated conjugation by h, we get from $x_{r}(l)$ all elements of the form $x_{r}\left(l k^{2}\right)$, and then by multiplication, $x_{r}\left(l \sum k_{i}{ }^{2}\right)$. The numbers inside the
last brackets form an additive subgroup which contains more than half the elements of K, hence must be K.
3.10. Let r be a root, w in W, and h in \mathfrak{S} such that $h(r)$ and $h\left(w^{-1} r\right)$ are generators or squares of generators of K^{*} and different from 1 . Then h and $x_{r}(1) \omega(w)$ generate \mathfrak{X}_{τ} and $\omega(w)$.

Proof. Set $h(r)=k, h\left(\left(w^{-1} r\right)=l, x_{r}(1) \omega(w)=x\right.$. Then $y=x h x^{-1}=$ $x_{r}(1-l) h_{1}$ with h_{1} in $\mathfrak{5}$ by 3.4 and 3.5. Since $\left.(y, h)=x_{r}(1-l)(1-k)\right)$ $=x_{r}(m)$ with $m \neq 0$, the desired result follows from 3.9.

We can now prove our first principal result.
3.11. Let G be a normal type, but assume that G is not of type D_{n} (n even), or of type B_{n} or F_{4} if the underlying field K is of characteristic 2 , or of type G_{2} if K is of characteristic 3 . Let k be a generator of $K^{*}, a=a_{1}, h=h_{a, k}$ except that for type $B_{n} h=h_{r, k}$ with $r=2 a_{1}+a_{2}+\ldots+a_{n}$, and $w=w_{1} w_{2} \ldots w_{n}$. Then G is generated by h and $x_{a}(1) \omega(w)$ if K has more than three elements and by $x_{a}(1)$ and $\omega(w)$ if K has not.

Proof. Let F be the group generated by the given elements. By 3.10, F contains \mathfrak{X}_{a} and $\omega(w)$. By 2.1, 3.5, 3.6 and 3.8 , it suffices to prove that F also contains an element congruent to $\omega\left(w_{1}\right) \bmod \mathfrak{F}$, unless G is of type B_{n}, C_{n}, or F_{4} in which respective cases elements must be produced which are congruent to $\omega\left(w_{1}\right)$ and $\omega\left(w_{2}\right)$, to $\omega\left(w_{n-1}\right)$ and $\omega\left(w_{n}\right)$, or to $\omega\left(w_{2}\right)$ and $\omega\left(w_{3}\right)$. If G is of type A_{n}, F contains $\mathfrak{X}_{a}, \mathfrak{X}_{b}=\omega(w) \mathfrak{X}_{a} \omega(w)^{-1}, \ldots$, and then by commutation, \mathfrak{X}_{r} with $r=a+b+\ldots$ and $\mathfrak{X}_{-a}=\omega(w) \mathfrak{X}_{r} \omega(w)^{-1}$, hence also $\omega\left(w_{a}\right)=\omega\left(w_{1}\right)$ by 3.7. If G is of type B_{n}, F contains $\mathfrak{X}_{a}, \mathfrak{X}_{a+b}=\omega(w) \mathfrak{X}_{a} \omega(w)^{-1}, \mathfrak{X}_{2 a+b}=\left(\mathfrak{X}_{a}\right.$, $\left.\mathfrak{X}_{a+b}\right)$ by 3.3 , and \mathfrak{X}_{-a} and $\mathfrak{X}_{-2 a-b}$ by 2.1 and 3.5, thus also $\omega\left(w_{a}\right)$ and $\omega\left(w_{2 a+b}\right)$ by 3.7 , and $\omega\left(w_{a}\right) \omega\left(w_{2 a+b}\right) \omega\left(w_{a}\right)^{-1}$ which is congruent to $\omega\left(w_{b}\right) \bmod \mathfrak{F}$. If G is of type C_{n}, set $s=a_{1}+a_{2}+\ldots+a_{n-1}, t=a_{n-1}, u=a_{n}$. Then F contains \mathfrak{X}_{r} for $r=a_{1}, a_{2}, \ldots, a_{n-1}$ and then for $r=s$, the first by conjugation of \mathfrak{X}_{a} by $\omega(w)$ and the second by commutation. Thus F also contains $\omega(w)^{-1} \mathfrak{X}_{s} \omega(w)=$ $\mathfrak{X}_{-t-u}, \mathfrak{X}_{-u}=\left(\mathfrak{X}_{t}, \mathfrak{X}_{-t-u}\right), \mathfrak{X}_{-t}$ and \mathfrak{X}_{u} by 2.1 and 3.5 , and then $\omega\left(w_{t}\right)=\omega\left(w_{n-1}\right)$ and $\omega\left(w_{u}\right)=\omega\left(w_{n}\right)$ by 3.7. If G is of type D_{n} (n odd), F contains $\mathfrak{X}_{a}, \mathfrak{X}_{b+c}=$ $\omega(w) \mathfrak{X}_{a} \omega(w)^{-1}, \mathfrak{X}_{-b}=\omega(w)^{n-1} \mathfrak{X}_{a} \omega(w)^{1-n}, \mathfrak{X}_{-a-c}=\omega(w) \mathfrak{X}_{-b} \omega(w)^{-1}, \mathfrak{X}_{c}=\left(\mathfrak{X}_{b+c}\right.$, $\left.\mathfrak{X}_{-b}\right), \mathfrak{X}_{-a}=\left(\mathfrak{X}_{c}, \mathfrak{X}_{-a-c}\right)$, hence also $\omega\left(w_{a}\right)$ by 3.7 . If G is of type E_{6}, F contains \mathfrak{X}_{a} and $\mathfrak{X}_{-a}=\left(\omega(w)^{4} \mathfrak{X}_{a} \omega(w)^{-4}, \omega(w)^{8} \mathfrak{X}_{a} \omega(w)^{-8}\right)$, hence also $\omega\left(w_{a}\right)$ by 3.7. If G is of type E_{7} or E_{8}, F contains \mathfrak{X}_{-a} by 2.1 and 3.5 , hence also $\omega\left(w_{a}\right)$ by 3.7. If G is of type F_{4}, F contains $\mathfrak{X}_{b}=\omega(w) \mathfrak{X}_{a} \omega(w)^{-1}, \mathfrak{X}_{a+b+c}=\omega(w) \mathfrak{X}_{b} \omega(w)^{-1}$, \mathfrak{X}_{-a} and \mathfrak{X}_{-b} by 2.1 and $3.5, \mathfrak{X}_{-a-b}=\left(\mathfrak{X}_{-a}, \mathfrak{X}_{-b}\right), \mathfrak{X}_{c}=\left(\mathfrak{X}_{a+b+c}, \mathfrak{X}_{-a-b}\right)$ by 3.3 with $e=2, \mathfrak{X}_{-c}$ by 2.1 and 3.5 , and then $\omega\left(w_{b}\right)$ and $\omega\left(w_{c}\right)$ by 3.7. Finally, if G is of type G_{2}, F contains \mathfrak{X}_{a} and \mathfrak{X}_{-a} by 2.1 and 3.5 , and then $\omega\left(w_{a}\right)$ by 3.7.

In order to treat the normal types excluded by 3.11, we require the following statement.
3.12. Assume that r and s are roots such that \mathfrak{X}_{r} and \mathfrak{X}_{s} commute elementwise,
and that w in W and h in \mathfrak{S} are such that $h(r)=1$ and, setting $h(s)=k, h\left(w^{-1} r\right)$ $=l, h\left(w^{-1} s\right)=m, h(w r)=n$, that each of k, l, m, n is either a generator or the square of a generator of K^{*} and different from 1 . Then h and $x=x_{r}(1) x_{s}(1) \omega(w)$ generate $\mathfrak{X}_{r}, \mathfrak{X}_{s}$ and $\omega(w)$.

Proof. If F is the subgroup generated by h and x, then F contains $y=x h x^{-1}$ $=x_{r}(1-l) x_{s}(1-m) h_{1}$ with h_{1} in \mathfrak{F}, then also $(y, h)=x_{s}((1-m)(1-k))$ and all of \mathfrak{X}_{s} by 3.9. Thus F contains $t=x_{r}(1) \omega(w), h_{2}=t^{-1} h t=\omega(w)^{-1} h \omega(w)$ with $h_{2}(r)=h(w r)=n$ by 3.4 and $3.5, u=t h t^{-1}=x_{r}(1 .-l) h_{1}$, and $x_{r}((1-l)(1 .-. n))=\left(u, h_{2}\right)$, thus all of \mathfrak{X}_{r} by 3.9 (with h replaced by h_{2}).

We can now give two-element generations for the remaining normal types.
3.13. Let G be of normal type D_{n} (n even), k a generator of K^{*}, and set $h=h_{b, k}$ and $w=w_{1} w_{2} \ldots w_{n}$. Then h and $x_{-a}(1) x_{c}(1) \omega(w)$ generate G if K has more than 2 elements, while $x_{a}(1) x_{c}(1)$ and $\omega(w)$ do if K has not.

Proof. Let F be the group generated by the given elements. If K has two elements, then F contains $x_{a+c}(1)=\left(x_{a}(1) x_{c}(1)\right)^{2}, x_{b}(1)=\omega(w)^{-1} x_{a+c}(1) \omega(w)$, $x_{b+c}(1)=\left(\left(x_{a}(1) x_{c}(1)\right)^{-1}, x_{b}(1)\right), x_{a}(1)=\omega(w)^{-1} x_{b+c}(1) \omega(w)$, hence $x_{-b}(1)$ and $x_{-a}(1)$ by 2.1 and $3.5, \omega\left(w_{a}\right)$ and $\omega\left(w_{b}\right)$ by 3.7 , and all of G by $2.1,3.5$ and 3.8. If K has more than two elements, F contains $\mathfrak{X}_{-a}, \mathfrak{X}_{c}$ and $\omega(w)$ by 3.12 with $r=-a$ and $s=c$, hence also $\mathfrak{X}_{-b-c}=\omega(w) \mathfrak{X}_{-a} \omega(w)^{-1}, \mathfrak{X}_{-b}=\left(\mathfrak{X}_{-b-c}, \mathfrak{X}_{c}\right)$, and then all of G just as before.
3.14. Let G be of normal type B_{n}, F_{4}, G_{2}, and in these respective cases let K be of characteristic 2, 2, 3, and define $r=b+c+\ldots, s=-a ; r=c, s=-b$; $r=b, s=-a$. Let k be a generator of $K^{*}, t=r-2 s, h=h_{t, k}$ and $w=$ $w_{1} w_{2} \ldots w_{n}$. Then G is generated by h and $x_{r}(1) x_{s}(1) \omega(w)$ if K has more than two elements and by $x_{r}(1) x_{s}(1)$ and $\omega(w)$ if it has not.

Proof. Let F be the group generated by the given elements. If K has more than two elements, F contains $\mathfrak{X}_{r}, \mathfrak{X}_{s}$ and $\omega(w)$ by 3.12 . Thus if G is of type F_{4} or G_{2}, F contains $\mathfrak{X}_{-r}, \mathfrak{X}_{-s}, \omega\left(w_{r}\right)$ and $\omega\left(w_{s}\right)$ by $2.1,3.5$ and 3.7 , thus all of G by 3.5 and 3.8 ; whereas if G is of type B_{n}, F contains \mathfrak{X}_{-a}, then $\omega\left(w_{a}\right)$ by 2.1 , 3.5 and 3.7, then $\mathfrak{X}_{-b}=\omega\left(w_{a}\right) \omega(w) \mathfrak{X}_{\tau} \omega(w)^{-1} \omega\left(w_{a}\right)^{-1}$, thus all of G as before. If K has two elements, and G is of type B_{n}, then $n \geqslant 3$, and F contains $x=$ $x_{r}(1) x_{s}(1), x_{b}(1)=\left(x,\left(\omega(w)^{n} x \omega(w)^{-n},\left(x, \omega(w)^{n+1} x \omega(w)^{-n-1}\right)\right)\right)$, thus $x_{c}(1)=$ $\omega(w) x_{b}(1) \omega(w)^{-1}, \ldots$, by commutation $x_{r}(1)$, then $x_{s}(1)=x_{-a}(1)$ and again all of G by $2.1,3.5$ and 3.8 ; whereas if G is of type F_{4}, F contains $x=x_{-b}(1)$ $x_{c}(1), \quad y=x_{c+d}(1)=\left(x, \quad\left(\omega(w)^{-2} x \omega(w)^{2}, \quad \omega(w) x \omega(w)^{-1}\right)\right), \quad x_{c}(1)=$ $\left(\omega(w)^{2} y_{\omega}(w)^{-2}, \omega(w)^{-3} y_{\omega}(w)^{3}\right), x_{-b}(1)=x x_{c}(1)$ and all of G once again.
4. The twisted types. Each of the groups yet to be considered occurs as a subgroup of a normal type and will be treated as such. Let the simple root system \sum possess a permutation $r \rightarrow \bar{r}$ such that $(\bar{r}, \bar{s})=(r, s)$ for each pair r, s in \sum, and let the field K possess an automorphism $k \rightarrow \bar{k}$ of the same
period. Then the normal type G constructed from \sum and K has an automorphism α such that $x_{a}(k)^{\alpha}=x_{\bar{a}}(\bar{k})$ whenever $\pm a$ is in \sum and k is in K. We then define: \mathfrak{U} (respectively \mathfrak{B}) is the subgroup of G generated by those \mathfrak{X}_{r} for which r is positive (respectively negative), \mathfrak{U}^{1} (respectively \mathfrak{B}^{1}) is the subgroup of \mathfrak{U} (respectively \mathfrak{B}) consisting of the elements invariant under α, and G^{1} is the group generated by \mathfrak{U}^{1} and \mathfrak{B}^{1}. If the period of α is 2 , the groups G^{1} obtained in this way are $A_{n}{ }^{1}(n \geqslant 2), D_{n}{ }^{1}(n \geqslant 4)$ and $E_{6}{ }^{1}$ (in the notation of (7) and (8); see also (3), (11), (12), while if it is 3 , one obtains $D_{4}{ }^{2}$, a second subgroup of D_{4}; these groups are all simple except for the type $A_{2}{ }^{1}$ over a field of four elements. Next, the normal type C_{2} over a field of $2^{2 f+1}=2 e^{2}$ elements has an automorphism α such that $x_{a}(k)^{\alpha}=x_{b}\left(k^{2 e}\right)$ and $x_{b}(k)^{\alpha}=x_{a}\left(k^{e}\right)$ with similar equations for $-a$ and $-b$ (5, Exposés 21 to 24), and one constructs as before a subgroup G^{1} (see also (10)). A similar construction is possible if the normal type is F_{4} over a field of $2^{2 f+1}$ elements or G_{2} over a field of $3^{2 f+1}$ elements (see 4). If $f \geqslant 1$, we get simple groups $C_{2}{ }^{1}, F_{4}{ }^{1}$ and $G_{2}{ }^{1}$ in this way and call them, as well as the other simple groups constructed in this paragraph, twisted types.

For each twisted type, a simple set (of roots) is one which contains a simple root, is closed under addition and the permutation $a \rightarrow \bar{a}$ used in the construction, and is minimal relative to these properties. We label the various simple sets S_{i} thus:

```
\(A_{2 n}{ }^{1}: \quad S_{1}=\left\{a_{n}, a_{n+1}, a_{n}+a_{n+1}\right\}, S_{i}=\left\{a_{n+1-i}, a_{n+i}\right\}, 2 \leqslant i \leqslant n\)
\(A_{2 n-1}{ }^{1}: S_{i}=\left\{a_{i}, a_{2 n-i}\right\}, S_{n}=\left\{a_{n}\right\}, 1 \leqslant i \leqslant n-1\)
\(D_{n}{ }^{1}: \quad S_{1}=\left\{a_{1}, a_{2}\right\}, S_{i}=\left\{a_{i+1}\right\}, 2 \leqslant i \leqslant n-1\)
\(E_{6}{ }^{1}: \quad S_{1}=\left\{a_{1}, a_{5}\right\}, S_{2}=\left\{a_{2}, a_{4}\right\}, S_{3}=\left\{a_{3}\right\}, S_{4}=\left\{a_{6}\right\}\)
\(D_{4}{ }^{2}: \quad S_{1}=\left\{a_{1}, a_{2}, a_{4}\right\}, S_{2}=\left\{a_{3}\right\}\)
\(C_{2}{ }^{1}: \quad S_{1}=\{a, b, a+b, 2 a+b\}\)
\(F_{4}{ }^{1}: \quad S_{1}=\{b, c, b+c, 2 b+c\}, S_{2}=\{a, d\}\)
\(G_{2}{ }^{1}: \quad S_{1}=\{a, b, a+b, 2 a+b, 3 a+b, 3 a+2 b\}\).
```

For each simple set S_{i}, let $w_{i}{ }^{1}$ be the unique element of W which maps S_{i} on $-S_{i}$ and is in the group generated by those w_{r} for which r is in S_{i} (cf. 7, 2.2), and then set $w=w_{1}{ }^{1} w_{2}{ }^{1} \ldots$ Further, define h thus: if k is a generator of K^{*} and r is a simple root in S_{1}, then $h=h_{r, k} h_{r, k}{ }^{\alpha}$ unless the type is $D_{4}{ }^{2}$ in which case $h=h_{r, k} h_{r, k}{ }^{\alpha} h_{r, k}{ }^{\alpha \alpha}$. Finally, define x thus: for type $A_{2 n-1^{1}}$, $D_{n}{ }^{1}$ or $E_{6}{ }^{1}, x=x_{a}(1) x_{a}(1)^{\alpha}$ with $a=a_{1}$; for type $D_{4}{ }^{2}, x=x_{a}(1) x_{a}(1)^{\alpha} x_{a}(1)^{\alpha \alpha}$ with $a=a_{1}$; for type $A_{2 n}{ }^{1}, x=x_{r}(1) x_{s}(1) x_{r+s}(k)$ with $r=a_{n}, s=a_{n+1}$ and $k+\bar{k}=1$ (this is ($1 \mid k$) in (9)); for type $C_{2}{ }^{1}, x=x_{a}(1) x_{b}(1) x_{2 a+b}(1)$ (this is $S(1,0)$ in (10)); for type $F_{4}{ }^{1}, x=x_{b}(1) x_{c}(1) x_{2 b+c}(1)$; for type $G_{2}{ }^{1}, x=x_{a}(1)$ $x_{b}(1) x_{a+b}(1) x_{2 a+b}(1)$ (this is $\alpha(1)$ in (4)). We can now state our results on the generation of the twisted types.
4.1. Let G^{1} be a twisted type and let w, h and x be defined as in the preceding paragraphs. Then G^{1} is generated by h and $x \omega(w)$.

The properties 2.1 and 3.1 to 3.7 for the normal types have analogues for the twisted types (see $\mathbf{7}$ and $\mathbf{4}$). For this reason, a proof of 4.1 can be patterned after that of 3.11. The details are omitted.

Added in proof. Since the preparation of this paper, I have learned that the symplectic groups (groups of type C_{n} in the above notation) have been considered by several other authors. In (13) and (14) a two element generation is given in case the underlying field has a prime number of elements, and in (15) the general case is dealt with.

References

1. A. A. Albert and J. Thompson, Illinois J. Math., 3 (1959), 421.
2. C. Chevalley, Sur certains groupes simples, Tôhoku Math. J., 7 (1955), 14.
3. D. Hertzig, On simple algebraic groups, Short communications, Int. Cong. Math. (Edinburgh, 1958).
4. R. Ree, A family of simple groups associated with the simple Lie algebra of type G_{2}, Bull. Amer. Math. Soc., 66 (1960), 508.
5. Séminaire C. Chevalley, Classification des groupes de Lie algébriques (Paris, 1956-8).
6. R. Steinberg, Finite reflection groups, Trans. Amer. Math. Soc., 91 (1959), 493.
7. -_ Variations on a theme of Chevalley, Pacific J. Math., 9 (1959), 875.
8. -_ The simplicity of certain groups, Pacific J. Math., 10 (1960), 1039.
9. -_ Automorphisms of finite linear groups, Can. J. Math., 12 (1960), 606.
10. M. Suzuki, A new type of simple groups of finite order, Proc. Nat. Acad. Sci., 46 (1960), 868.
11. J. Tits, Les "formes réelles" des groupes de type E_{6}, Séminaire Bourbaki, Exposé 162 (Paris, 1958).
12. - Sur la trialité et certains groupes qui s'en déduisent, Publ. Math. Inst. Hautes Etudes Sci., 2 (1959), 14.
13. T. G. Room and R. J. Smith, A generation of the symplectic group, Quart. J. Math., 9 (1958), 177.
14. T. G. Room, The generation by two operators of the symplectic group over $G F(2)$, J. Austr. Math. Soc., 1 (1959), 38.
15. P. F. G. Stanek, Two element generation of the symplectic group, Bull. Amer. Math. Soc., 67 (1961), 225.

University of California

