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On the Dispersive Estimate for the Dirichlet
Schrodinger Propagator and Applications
to Energy Critical NLS

Dong Li, Guixiang Xu, and Xiaoyi Zhang

Abstract. 'We consider the obstacle problem for the Schrodinger evolution in the exterior of the unit
ball with Dirichlet boundary condition. Under radial symmetry we compute explicitly the funda-
mental solution for the linear Dirichlet Schrodinger propagator ¢4 and give a robust algorithm to
prove sharp L' — L°° dispersive estimates. We showcase the analysis in dimensions n = 5,7. As
an application, we obtain global well-posedness and scattering for defocusing energy-critical NLS on
Q = R"\B(0, 1) with Dirichlet boundary condition and radial data in these dimensions.

1 Introduction

In this paper, we consider the obstacle problem for the Schrodinger equation in the
exterior of the unit ball. Let @ = R"\B(0,1) = {x € R" : |x| > 1}. We are
concerned with the following defocusing energy-critical NLS in {2:

iOu+ Au = |u|%2u = F(u), (t,x) € R xQ,

u(tvx)hR{X(?Q == 07 u(va) = uO(x)'

(1.1)

Here the dimension 7 is at least 3, and we assume the initial data satisfies uy € H{ (€2).
Equation (1.1) has a natural conserved energy

n—

E(u(t))::/Q(%Wu(t,xn%r 2|u(t,x)|,l%) i,

n

and the name “defocusing” corresponds to the “+” sign in the above expression. The

. « " » . . 4 . .
special “energy-critical” nonlinearity F(u) = |u|"2u comes from a certain scaling
analogy when we consider the general problem

i0u+ Au = |u|fu
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4

posed on the whole space R x R". In that situation, p = =5

such that the scaling transformation

is the unique exponent

X (£, %) == AT a0, \x), A >0,

leaves the energy

E(u(t)) = /Rn(§|Vu(t7x)‘2+ 012

invariant. Of course, the scaling symmetry breaks down in the obstacle problem
(1.1), but we will adopt the same terminologies as in the whole space case.

The energy-critical NLS has a long history and has been intensively studied in the
last decade or so. Starting from Bourgain’s breakthrough work [6], the large data
theory for the Cauchy problem on R x R”, n > 3 has been successfully worked
out in both focusing (F(u) = —|u|"%2u) and defocusing cases [8,17,20]. At the
time of this writing, the only unsolved case is the focusing problem in dimensions
d = 3,4 for general nonradial data. For the obstacle problem, the understanding of
energy-critical NLS posed on exterior domains is still quite unsatisfactory. Roughly
speaking, the main difficulty comes from two aspects. First of all, at the linear level,
the L' — L dispersive estimate for the obstacle problem is difficult to establish
in general, and the space-time Strichartz estimates are often more limited than the
usual Euclidean case (cf. [4,5]). Secondly, concerning the nonlinear evolution, the
frequency analysis is much more involved, and many technical tools have to be re-
built for the obstacle case due to lack of translation invariance or scale invariance.
For Strichartz estimates of wave and Schrodinger propagators on exterior domains
or more general Riemannian manifolds, we refer to [1-3, 11,12, 18] and references
therein.

In the recent work [16], the authors made a first step and proved the global well-
posedness and scattering of (1.1) under the radial assumption in dimension n = 3.
It was first noticed that in the obstacle case, Sobolev spaces defined via the usual
Laplacian A and the Dirichlet Laplacian Ap are not always equivalent unless one
works with LP(R"),1 < p < n. For p > n, counterexamples can be constructed
by modifying the eigenfunctions of the Dirichlet Laplacian. This is the first evidence
of the subtle difference between the obstacle case and the whole space case. In a
subsequent paper [14], Killip, Visan, and Zhang proved the equivalence between two
Sobolev spaces and established general harmonic analysis tools in the general non-
radial setting on the exterior domain of a strictly convex obstacle. In a later work,
Killip, Visan and Zhang [15] settled energy-critical NLS in the case n = 3 for general
non-radial data outside a strictly convex obstacle. The case n = 4 is announced in
the preprint [9]. The general case in high dimensions still remains open at the time
of this writing. The purpose of this work is to extend the analysis of [16] to general
dimensions under the radial assumption. In light of the approach in [16], one of the
main technical issues in high dimensions is to prove the sharp L! — L*° dispersive
estimate. In dimension n = 3, the situation is fairly simple, as the radial Dirichlet
Laplacian has eigenfunctions of the form

sin A\(r — 1)

(12) (;5)\(7‘) = f) r>1,

|u(t,x)|P+2) dx
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which solve the equation
AD(ﬁ)\ + )\Zq‘b)\ =0.
The Dirichlet Schrodinger propagator can then be written as

o0 : -
("0 (r,5,1) = Const-/ sin A(r — 1) sin A(s — 1)e_iAz
0 r N

A\, rs> 1.

Comparing the above expression with the usual radial Schrodinger propagator on
R x R3,
°° sin Ar sin As

) \2
(e”AW’) (r,s,t) = Const-/ . TE_M "d\, 15>0,
0

one quickly finds that

(€)Y (r— 1,5 — 1,1)

‘ (eitA”)(r, s, t)‘ :‘ w
rs

§|(eiIA’”")(r— Ls—1,0)| S [t 732, rs>1,t#0.

Here we have invoked the usual dispersive estimate for the radial Schrédinger prop-
agator ¢4,

In dimension n > 4, the eigenfunctions no longer have the simple form (1.2).
They are certain combinations of Bessel functions with suitable normalizations.

The main body of this work is to give a robust construction that computes the
sharp dispersive bounds for general dimensions. To showcase the theory, we carry out
the explicit computations in dimensions n = 5 and # = 7. In some sense, dimension
n = 5 is the first case that requires a qualitatively different computation than n = 3.
On the other hand, dimension n = 7 is most representative of all dimensions and has
some important differences from n = 3, 5. Besides the cumbersome numerology, the
general case for n > 4 requires some careful combinatorics that we plan to address
in the future. The results obtained in this work are the following.

Proposition 1.1 (Dispersive estimate) Fort # 0 and under the radial assumption

we have for dimensionsn = 5,7,
(€"20)(r,s, 0 < Cn|t|7§, rs>1,

where C, is some constant depending on the dimension.

Using Proposition 1.1 and an argument from [6, 16, 19], we obtain the following
theorem.

Theorem 1.2 Letn = 5,7 and Q = R" \ B(0,1). Let uy € H}(S2) be spherically
symmetric. Then there exists a unique solution u € C?H} to (1.1), and

[Jul 2D it < C(luollsy o) -

tx

Moreover, there exist unique radial functions vy € H}(S2) such that
lim [|u(t) — €"2Pvi| g = 0.
im {fu(r) +lm©

Here, Ap is the Dirichlet Laplacian, and ™" is the free propagator.
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Notation

Wewrite X <Y orY 2 Xtoindicate X < CY for some harmless constant C > 0. We
use the notation X ~ Y whenever X <Y < X. For any positive number 1 < a < oo,
we let @’ = a/(a — 1) denote the conjugate of 4, so that 1/a + 1/a’ = 1.

We will use the notation O(Y) to denote any quantity X such that [X| < Y. Of
course the implied constants will be clear from the context.

Let I C R be a time interval. We write L{L(I x ) to denote the Banach space
endowed with the norm

a/r 1/q
lullporraxe = </1</Q M(t,x)l'dx> dt) ,

with the usual modifications when g or r are equal to infinity. When q = r we
abbreviate L{L{ as L{ .. We shall write u € L Li(I x Q) if u € L{L (] x Q) for any
compact | C I.

The rest of this paper is organized as follows. In Sections 2 and 3, we prove the
dispersive estimate for dimensions n = 5 and 7 respectively. In Section 4, we recall
some basic facts about the Littlewood—Paley operators, Bernstein inequalities, and
LP-based Sobolev spaces on exterior domains. In Section 5, we complete the nonlin-
ear analysis and finish the proof of Theorem 1.2.

2 Fundamental Solution and the Dispersive Estimate for n = 5

In dimension n = 5, we consider the radial eigenfunctions of the Dirichlet Laplacian
on the exterior domain B(0, l)c:

Ady+ Aoy =0, X>0.

Using the Sommerfeld radiation condition, ¢, (r) is given by

oN(r) = %(W —cos(A(r—1)+ a)) .
Here a € [0, 7/2) satisfies
. A 1
(2.1) sing = ———, cosa =

V1+ A2 VIt

To show that ¢, (r) constitute a complete basis, we first prove the following reso-
lution of identity.

Lemma 2.1

= /°° PA(r)Pa(s) dX = %5(r—s), r,s> 1.
T J o r

Proof Using the elementary trigonometric identities, we write

4
AN = 335 T
j=1
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where
1 cos(A(r —s)) — cos(A(r +s—2) + 2a)
Il(ra S) = )
rs A2
1 —sin(A(r — s)) + sin(A(r + s — 2) + 2a)
I(rs) = —; N )
1sin(A(r —s)) +sin(A(r+s—2) + 2a)
13(7‘, S) = —; Y )

Iy(r,s) = cos()\(r — s)) + cos()\(r +s—2)+ Za) .
Observe that
—shL, = 0,(rsIy), —rl3 = Oy(rsly), Iy = On(rsly).
Now define

(2.2) Fi(rs) — /00 cos(A(r —s)) — cos(A(r+s—2) + 2a)

. 3 A
and we can write
1 1 1 1
2 2 [ os©n= (LR 1o - an o).
Tres rs N r

We first compute (2.2). Indeed, using (2.1) we expand (2.2) as

Filrs) = /00 cos(A(r —s)) — cos(A(r+s —;)) 1+)\2 +sin(A(r+s—2))-2 1+/\2 I
> cos(A\(r —s)) — 1 —cos(A(r+s—2))
= /_OO # aX + / 2 d\
* cos(A(r+s—2))  sin(A(r+s—2))

We need to use the following basic integral identities for x € R:

/ cos(Ax) — d/\ rlxl, / cos(Ax) d)\:ﬂ'e_lx‘,

oo A2 1+ A2
o0 : )\ X
[m ;(1%;2) dx = 7r/0 e dy = m(1— eilx‘) sign(x).
Here sign(x) is given by
1, ifx >0,
sign(x) = < 0, ifx =0,
-1, ifx<oO.

Noting that 7, s > 1, we have
Fi(rs)=m(—|r—s|+(r+s=2)+2) =a( —|r—s[+r+5).

Plugging this into (2.3), we obtain

l/ ¢A(r)¢x(5)d/\:%5(r—s). n
T J—c0
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Next we prove the dispersive estimate. Recall the definition of Fourier transform:

Fof(A) = \/Z/ (1) f(r)r* dr.
0

Then F is an isometric map from L*([1, 0o); r*dr) to L*([0, c0); dA) with the inverse

transform given by
2 o0
Fog(r) = \/;/ DA(r)g(A) dA.
0

The fundamental solution can be written as
whﬂmwzﬁ@”%wmnz/ K(r,s,1) f(s)s* ds,
0
where 5 oo
K1) = 2 / (N3 d.
™ Jo

We will prove the following important decay estimate.

Lemma 2.2
s.up}K(ns7 t)’ <72, t#£o.
rs>1

Proof Proceeding similarly as in Lemma 2.1, we define

Glrs.t) = / cos(A(r —s)) — cosg)\(r +s5s—2)+2a) o—it\ ix,
0 A
and we can write
1 1 1
K(5,0) = — 5 (-G = 0,6 ~0.G+9,G).
wrist \rs s r
To continue, we need to compute the explicit expression of G. Note that
o AMr—s)—1 _..p
(2.4) G(r,s,t) = / cosMr—9) - 1 - N =L i gy
0 A
N / 1 —cos(A(r+s— 2))671”2 i\
2
0
+2/°° cos(A\(r+s—2)) it )
0 1+ A2
 sin(A(r+s — 2)) il
+2 —————¢ " d\.
/0 AL+ A2)

From the fundamental solution of 1D Schrédinger equation and the Fundamental
Theorem of Calculus, we have

/ cos(Ax)e ™ d) = \/?e.‘“2
0
/ Sll’l()\X) zt)\z \/7/ 6‘“ d}/7
o0 1—cos()\x) s / / Z i/x s
/ =/ e dady = || = 0 (x — y)e dy,
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and (here * denotes the usual spatial convolution on R)

cos(Ax) e\’ /OO iAx p—it\? /Oo i 1
2 =
/0 1+>\2 d\ = N X\ | = _Ooe Y dX ) (x)
/™ e e iap?
4it / 4y,
e Sln()\X) lt/\z / / Iyl 4
2 /0 X1+ 4it e Ve dady.

Inserting the above expressions into (2.4), we have

T r—s i r+s—2 iy
G(r,s,t) = 411‘(_/ (r—s—y)ery-i-/ (r+s—2—ylew dy
0

+/ - ,(m 2= iras—2—y)% dy+/ —|J’|/ i— y) dzdy)
p 4
=14/ I
\/ it ; o

and therefore

(25) K(r,s,1) = r252’/41 Z — - 73 - 78 +0,) I

We now compute each summand as follows:

(2.6) (% — lar — 103 + a,s) L

:_(l_fa _ 8s+8,5) /Or_s(r—s—y)e'ifz dy

rs

r—s 5 r—s .2 r—s .5
r—s iy 1 iy 1 iy
=— e dy+ — e dy+— e d

rs /0 Y rs/o Y Y 5/0 Y

1 [T 2 i(r—s)?
- - e dy+e @
rJo

12t iv—9? ir—92 2t ir—s?
= ——e # 4+e & =(—+1)e & .
rs 1 1rs

By the same token, we have

(2.7) (% _ la, _ las +0,)

1 r+s—2 i
(,_,3_,3 +ars)/ (r+s—2—y)e¥ dy
0

rs

r+s—2 r+s—2 ﬁ 1 r+s—2 ﬁ 1 r+s—2 ﬁ
_ e dy — — yew dy — — es dy
rs 0 rs Jo s Jo

1 2 iyt i(res—2)2
R e 4 d}/ + e 4t
0

r
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2 T2 2t itres—2) i(res—2)?
=—_= e dy——e % +e #
rs Jo irs

i(r4s—2)? 2t 2 [T e
= & 1-— P e d)/
irs rs Jo

To compute the contribution from I3, I we need the following three estimates. First
we have

o
(2.8) / Ve
—o0
i e iy iy?
:g?/ eilﬂe 2 T d}/
—o0

S ([ [ ) o5

241
—e4r(2+ )+o(" )
t t2

Secondly, we have

(2. 9)/ sign(y) e Iyl dy

—e# sign(y) e”e™ 2w dy

— 00

o oo oo —; ;2
= el‘lxr{/ sign(y) e dy +/ sign(y) eilyl(% + %) dy}

— 00 — 00
2 +1

(=)
t2

. 2
1 2 x“+1

:f—eTx-I-O( )
t t2

Finally, we have

(2.10)

/ ef‘ﬂ/ 61(24}')
—00 0
:/ ef‘)’|/ e%eiy ;Zizy dzdy
_ / . Iy\/ - dzdy+/ . \yl/ i2 iy? 21zydd (x +1)
X +1
:2/ e4r dz + - /e4r dz+O( )
0 tJo t2
* i j 3+1
= /eT dz+£x+O<x )
o t 12
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Now, plugging (2.8), (2.9) with x = r + s — 2, we estimate
(2.11)

1
(— — 76' — 73 +8r5)13

rs
l o0 i(rhs— 2-
:(7_,(9_ as+ars)/ IS g
rs e
1 o rts—2—y) 1 1 e i(rs—2—y)?
_ 1 m#df(#,)/ i iyl et
p Lwe e y ST 700( sign(y)) e Ve y
+/ (1-256(y) e ¥l = dy
1 © i(rs— 2 y 1 1 o0 i(r+s— z »?
= 1+—) —ble dy +< + )/ Ve d
( p /_OO ) sign(y) e~ y
. 2ei(7+s4t—2)

1 i(res—2)? i 1 1 s 22
:(1+—)e a (2+7)—(7+7)e f(r+s—2)
rs t r S
i(rrs—2)% 1’2 +52
— e +O( )
t2

i(ris—2)% 1 1 1 1 { 2+2
em{<1+)(2+1)<+)(r+52)12}+0(r S).
rs t ros t t2

For 1, we need to use (2.8) through (2.10). This gives

(2.12) (z—fa —fa +a,5)14

i(z— o0 i(rts—2—y)?
:7/ e"y'/ e - dzdy — (1+1)/ eI T dy
s ) _oo 0 S r —00

(r+s—2—y)?

—/ sign(y) eIl T dy

1 AR i 11\ w22 i
=— 2/ e dz+-(r+s—2) —(7+7)e%(2+7)
rs 0 t s r t

l i(rts— 2)

+-e # (r+s—2)+O(r +e )
t 12

Collecting the estimates (2.6)-(2.12), we get

4

Z(*— - as+a,s)1k

=1

2t i(r—s)?2 i(res—2) 2t 2 2 iy?
=(1+—)e @ +e = 1——) —— e dy
irs irs rs Jo
ires—2)? 1 1 1 1 1
+e # ((1-1——)(24-7)—(7+7>(r+5—2)7—2)
rs t ros t

2 [T ir+s—2
+ = e dz+-——=
0 t
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i(rts—2)2 1 1 1 1
te (7(7+7)(2+ )+—(r+572))
s T t t

2+ s
+O( )
t2
20N\ =92 ir+s—2
= (1'1‘,*)6 T E e —
irs rs
i(rrs—2)2 2t 1 1 1 1
+e%{l—,——2+(2+—)(1+——7—7)
irs t rs r s
i 1 1
+—[r+s—2— (7+7) (r+s—2)}}
t ros
2., 2
r“+s
+O< )
t2
i(res—2)? 2t i(r—5)% —i(r+s—2)? Ir+Ss—2 —ites—2? 2t
— e 4 {(14—7)3 ar +-—©¢ ar - —
irs t s irs
1 1 1
—1+2(1+——7—7)
rs r s
i 1 1 1 1 1
G ()
t rs r s r S
2,0
+o(r * )
tZ
Using the Taylor expansion, we compute
4
1 1 1
Z(* - 7ar - 785 +ars) Ik
—\rs s r

i(rts—2)? 2 2
=€ 4 {t(777)+1+
1rs 1rs

1 1 1
+2(1+——7——)
rs r N

2t i(r —s)* —i(r+s—2)>? )
irs 4t

_I_l'[(r—s)z—(r+s—2)2

. ((r—s)z—(r-i-s—z)z)2
t

4 16rs
r+s—2 1 1 1 1 1
+7+1+——7—7+(r+s—2)(1—7—7)}}
rs rs r N r S
r?+ s

+O< 7 )
B J IR W
+il[_(r— D(s = Drs+(r—=1)*(s = 1)
trs
+r+5—2+(r—1)(5—1)+(7+5_2)(75_r_5)}}
+O(r2:;52)
~o( 5.
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Here, note that in obtaining the last equality, we have used the fact that the terms in
the first block (enclosed in the curly bracket) all vanish due to massive cancellations.
This together with (2.5) finally yields the desired estimate

sup [K(r,s,1)] < |t|_5/2. [ |
rs>1

Lemma 2.2 immediately implies the following corollary.

Corollary 2.3

| eitAl’f||Lx°°(Q> S| fHLL(Q)'

3 Fundamental Solution and the Dispersive Estimate for n = 7

3.1

In dimension n = 7, we consider the radial eigenfunctions of Dirichlet Laplacian on
the exterior domain B(0, l)C:
Ay + Xy =0, A>0.
Using the Sommerfeld radiation condition, ¢, (r) is given by
1 ~ 1/2
631 = 5 (HPOHD ) = HO P 0n) 002 (a) 7,

where

L2 €%5(=3 + 3iz+ 2%) L2 e (=3 = 3iz+2Z2)
H(2) =iy| - ———7——, HY(@)=-i\/= :
b T 25/2 ) T 25/2

A A°
a(A\) = = .
(F—12+ (g)z (A = 3)2 + (3))?

Dispersive Estimate

We first prove the dispersive estimate. Recall the definition of Fourier transform:

Fof(N) = \/Z / (P f(P1° dr.
0

Then F, is an isometric map Fo: L? ([1, 00); r°dr) — L*([0, 00); d\) with the in-
verse transform given by

Fog(r) = \/z/o DA(r)g(A) dA.

The fundamental solution can be written as
("2 f)(r,t) = rJ‘"{{(fiszfrof)(f) = / K(r,s,t)f(5)s® ds
0

where

2 o0 2
K(rs,0)= 2 / or(NDr(s)e™ dA.
0
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We write the kernel K(r, s, t) = (¢""2)(r,s,t) as

Const
(rs)?

x (HP OVHY (As) — HPHP (As)) (A2 (s)2a(N)e N d.

K(r,s,t) = / - (HPWHY () — HP WHP (M)
0 2 2 2 2

Using this expansion, we then obtain
(H?(A)Hg)(m) — H%”(A)H%z)()\r))
X (H?(A)H?()\s) - H(%”()\)H(;)()\s)) (A2 (As)'/2
4efi(2+r+s)/\\/g\/a\/a
7.[-21,353)\10
x (=€ (=3 +3iA + A)(=3 — 3irA + *)\%)
+eM(=3 = 3N+ A1) (=3 + 3ir\ + r2\?))
x (=€ (=3 43I\ + \)(=3 — 3ish + °)\%)
+ €M (=3 = 3iA + A)(=3 + 3ish + A7) .

Denote x; = r +s — 2, x = r — s; we then expand the above expression as

8 8

4 i E . i\x E :

W (el)\x+ Ak(l}\)k — e A Bk(l}\)k +C. C) 3
k=0 k=0

where C. C. denotes the complex conjugate terms (of the first two terms), and
Ao =81, A, = —i(162i — 8lir — 81is),
Ay = 135 — 162r + 27r* — 162s + 81rs + 2757,
As = i(—54i + 135ir — 54ir* + 135is — 162irs + 27ir’s — 54is> + 27irs?),
Ay =9 — 54r + 451 — 54s + 1357s — 54r%s + 455* — 54rs* + 91252,
As = —i(—9ir + 18ir* — 9is + 54irs — 45ir’s + 18is* — 45irs® + 18ir’s?),
Ag = 3r* + 9rs — 18r%s + 35 — 18rs* + 15r252,
Ay = i(3irts + 3irs® — 6ir’s?), Ag = r’s%,
By =81, B; = —i(—81lir + 81is),
B, = =27 +27r* — 81rs + 275%,
B = i(—27ir + 27is — 27ir*s + 27irs®),
By =9 —9r +27rs — 95° + 9r252,
Bs = —i(—9ir + 9is — 9ir’s + 9irs?),
Bg = 3r* — 9rs + 3% — 3122,
B, = i(=3ir’s + 3irs®), Bs = 1’s%.

Denote _
a(\) 1

AN =55 = e
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We now simplify the expression for K and write

(3.1) K(r,s,t) =

% A(N)e— Nt /. 8 .
Const / (Ne <e1)\x+ ZAk(i/\)k Y. ZBk(i)\)k +C. C.> a.
0 k=0

5 1
(rs) A Pt

Formally, the integrand in the above expression has a singularity near A = 0 of order
A~ However, as we show below, the coefficients A, By for 0 < k < 2 exhibit very
nice cancellation properties, and terms of O(A~¥) will never appear. Note also that,
due to conjugation, for odd k only sin Ax; and sin Ax appear; for even k, only cos Ax,
and cos Ax appear. Using this parity property, we can extend the integral of A in (3.1)
to the whole real axis. By a tedious cancellation, it is not difficult to check that the
following lemma holds true for any A € R.

Lemma 3.1 The coefficients Ay, By, 0 < k < 2 obey the relation

(Axy)?
2

40(1 )+ AN Ax) + A0 =

2
BO<1 - (A;) ) + B, (i) (iAx) + By(i))2.

Using Lemma 3.1, we can decompose the sum in (3.1) as

C i 8
(32) K(r,s,1) = (%zt (Y sieoa— Y s+ ..
k=0 k=0
where
1 [e'S) 7i/\2tA A Y ) 2
(33) SO(x+)27T/OOe)\4()(COS(AX+)1+( );) ) d)\7

1 [ e NtAN)
S1(xy) = = /_oo T()(sm()\m) — )\x+) dA,

1 [ e INTA(N
So(xy) = 3 /_Oo T()(l - cos(/\x+)) dh,

1 00 =it A ()
S3(xy) = E/ f()

L[ e=iNTAN) cos(hes )iFN d), k= 4,6, 8,
Smﬂ{?Lm (M) cos(x.)

£ [ e MAN sinO )i AN, k=57,

— 00

sin(Ax;) dA,

— 0o

A similar expression holds for Si(x) with variable x.
It is not difficult to check that as functions of x,, we have

(3.4) Sk (%) = Oy, (Sk(xy)), fork=0,1,2,...,7.
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Therefore we shall first derive the expression for So(x, ). By (3.3), we have

0o —iNt

(3.5) Solxs) = % / (cos()\x+)—l+%/\2xi> [AQ\) — A0)] dA

. A(0) [ i cos(Axy) — 1+ IX%x2 "
2 M ’

— 00

We first consider (3.6). Recall that

1™ e 1
— e " eos(Ay) dh = —e i,
21 J_ 4t

Integrating repeatedly in y gives us the identities

(3.7) ! —iNe Sm(Ay Yan= /L / o
27 4mit
1 [ 1 — cos()\ /
E —i\t )/) 47” / (y,z)etlr dz
1 ik Ay —sin(\y) sm()\y) / /y (y 72)2
2T Arit
1 e cos()\y) —1+1A%2 I / /y (y — 2)3 ,
2m “V arit

Hence by (3.7), we have

! - (xJr —2)3 %

For (3.5), we write
9
AN —A0) = </\4+3/\2+9 1)
B l( A . % )
N M43X24+9 M 4+3X2+9
1 4 1 2
= ——MA) — ZA2A(N).
9>\ N 3>\ N

(3.6)

Therefore,
11 > —i\t 1,5
(8)  (5=—35- | e (cos()\er) — 1+ SN )A()\) X
—0o0
11 [ _pcos(Axg)—1
(3.9) “33 ) MR A dA
11 & |
(3.10) -3 e A ‘ExiA()\) dA.
Now denote

_ i * i\y
F(y) = 5 /_Ooe A(N) d).
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By the convolution property of the Fourier transform, we have

(38) = 1\/T/OO F()/)ei(:w;y)z dy

By using a derivation similar to that in (3.7), we also have

1 1 o o itz—y)?
(3.9) = 5”@/_00“”(/0 (x, — 2)e" 7 dz) dy

Note that

0 6
(3.11) + %/_OOF(}/)(/O (x _Z)e'(zA,t dZ) d
1 [ iy —)?
(3.12) —5/ F(y)e % dy
11, [
+ (§ - g’&) [WF(Y)e dy
1 o0
+Exi/_ooF”(y)e4f dy

By (3.4), we then have
- oy —2)? 2
(3.13) VAaritS; (xy) = A(0) fe i dz
0
1 [e%s) e
+§/_OCF(y)</O e W dz) dy
1 > ’ iy —y)?
— F (}/)e ar dy

— fx+/ F(y)e% dy
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VaTitSy(x,) = A(0) / "k — e dz
0

1 © (X+ }’)
+ g/ E(y)e dy

,l\/ F’/(}/)e 4t dy

9
1 [ iy?
- g/ F(J’)e% dy
— 00
1 [ 1" i
+§ F'(y)es dy.
o2 1 >
VAaTitS;(xy) :A(O)/ e dz+§/ F’(y)e 7 dy
0 —00
L[, itee =)
—7/ F'(y)e 7 dy,
9/
"XE 1 > ity —p)?
(3.14) VamitSi(x,) = A0 + / F'(y)e™7" dy
_ l/oo D )e e d
9/ . y Y-
By the definition of A()\), we have
1 1
(3.15) A(0) — 5AZA(/\) — §X‘A()\) =A(N).
Therefore, (3.14) is simply
(3.16) \/47ritS4(x+)=/ F(y)e En dy
Continuing the differentiation, we have
VAarmitSs(x,) = / F’(y)e W d)/,
VATitSs(x;) = / F'(y)e™ 7 dy,
> iGer —3)2
\/47rit57(x+):/ F"(y)e @ dy,
VAaritSg(xy) :/ (y)e X+4r dy

lxi > i(xy — 2 o0 i(xt
= 9A(0)e™ +3/ F”(y)e( i dy79/ F(y)e = - dy,

—0o0 — 00
where in the last identity we have used the equivalence of the expressions (3.14) and
(3.16).
We now estimate the terms So(x. ), . . . , Sg(x; ). Note the important factor (rs) > in
front of the expression for the kernel K(r, s, t). In view of this, to derive the dispersive
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estimate, we can safely discard terms of order O(5), O(;5), O( ) in the expressions
of V4mitS;j(x,) for0 < j < 8.
We first consider v/4mitSy(x,). Denote

o2
(3.17) H, = / e dz.
0

By using integration by parts, we have

X+ 2 ix?
/ (xy —2z)ew dz:2i(71+eT)t+H+x+,
0

o (xy —z ./ H 1 2
/ ! W odz = Her?+ +21t(—+ —xy + *673@),
A 2 2 2 2

X. 3 . 2
Y (xy —2)° 2 . =93 1
/ uef dz=i(—1+e # )tx;+_H,x,
o 6 6
ixi
+ x+(itH+ — ieTter)
4 LA U
—5(—1+e4r)t +§ze4f txy.

For (3.11), we write

/ (x+—z)ex 7 dz
2
:/ (x4 —z)e’i e‘< ZZW dz
0

X ) o 2y _(_ 2y2
:/ (x+fz)e%{1+l( ZZL+}/)+ (Z22y +y7)
0

32t
vo( (2lly] + y2)3) L iz,

t°

The last error term is acceptable for us, since

(IZIIyI »*)’ X _r+s
F ‘ d ’ dy S — S ——.

Therefore we can safely dlscard the error term and write

> X 2 i(— 2
(311):§/700F(}/){\/0 (x_,_fz)e%(l-fm

4t
(—2zy + y*)?
————=)d }d
3212 ) e
o[> 2 i 2 1
(318) :5/0 (X+7Z)€4’{mo+ (471‘7@) mzfﬁmzl} dZ7

where

> 1 > 2
m= [ Fdy=g m= [ Fopay=

my = / F(y)y4 dy =0,

https://doi.org/10.4153/CJM-2014-002-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2014-002-0

Energy-critical NLS 1127

and we have used the fact that F is an even function. We can use the notation (3.17)
to simplify (3.18) further as

i . i .
(3.11) = 7<H+x+ N iew x2 B 2(1 + 6it)t —iew (2t(—i+6t) — x3) ) .
9 54¢ 54¢

In a similar way, we also have
ixi
H, N 1eTx+) '
9 54t

e — )

Now for (3.12), we can expand the functione™ #  as

(3.13) = 3(

i(xy —y)? i (=2 yty?)
e % — e e i
g i(—2x1y+ %) (“2xy+y?)? Xy +y°
= (14 = +0( )
4t 32¢2 |£]?

The error term is again acceptable for us, since

o0 By 4y P I R
Fo)l-o( 2 ) dy s T s T
/_oo t° LI
Therefore, neglecting the error term, we have

~ o > (=2 y +72)  (=2xy +
[ ar=® [ (o e -

2)2

. ) &

i —2t(i + 6t) + x2
—e a4 -

108¢2
Similarly,
oo
wu (=1 + 2it)xy
F(y)e s dy—e —_—
/_OO 362
o0 it —)? w21 — 2it +x2
Fl(y)e 7 dy = —ev — 1t
/_oo 3612

o0 ey —y)? X X
F'"(y)e & dy = —ew ——.
/ () y e

— 00

Collecting all the estimates, we have

2 2
—2it)x? (’+6t)(*_?) f( —2t(i + 6t) + x2)
+
648t2 54¢ 972t2

- 1

VAaTitSy(xy) = —(
1/, EIUPS IR a2
+§(1(—1+e4r)tx++gH+x++Ex+(21tH+—21e4ftx+)

i i
+ (78(71 +ew )t + 2ie7txi) )

N =

1 (x2 N iew x2 201 +6it)t —iew (2t(—i +6t) — xﬁ))
9 54t 54¢ ’
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324¢2 324¢2 162t

22
IS () — (1 —2it)x, ew(—1+2it)x. (i +6t)x;
1\A+) — — -

ix2
1/x, iewx 1/1 . (H 1 4
+f(—++7+)+7<7H+x3+21t(—+—x++feTx+)>,
3\9 54t 9\2 2 2

1—2it i+6t 1 i
VA4ritS = — — +—(2i(—1+e#* )t+H,x
mitSy(xr) e 1oz +olH )+ Hix,)

ew (1 —2it+x2) e (—2t(i+6t)+x3)

324t2 324t2 ’
ix? i
- H, ewx, ewn(=1+2it)x,
VATitSs(x,) = — + +
mitSi () = 5 ¥ 052 1082
ix2
. e (—2t(i + 6t) +x2)
VATitSy(xy) = — 10822 ,
ix?
- e (—1+2it)x,
VATitSs(xy) = ———M———,
mTitS5(x4) 3612
ix2
e (1 — 2ift +x2)
VATitS =
TitSe(X4) 3612
ixi
- e x,
VATitS =——
mTitS7(x1) s

ix2 ix?
ix T (1 —2it+x2)  em (—2t(i +6t) +x2)
V4ritSs(x —ew ¢ hi LAy
3(x+) 1212 1212

In the same way, we have the expression for Sx(x) for 0 < k < 8.
By (3.2) and neglecting the acceptable error terms, we then have

varit(

5
rs) K(r,s,t)
st

Con

8 8
VAmit Z ArSi(xy) — Vamit Z B Si(x)
k=0 k=0

i(rfs)2

1 ,
= W{ e 7 (1 — 12717 + 72irst’ + 144t%)

z(—2+r+s)z

+e # [—7—6r* (=149 —6st —12r°(2 —3s+ ) (=1+s—it)
+245° (1 + it) — 24it + 72t + 144it° — 144¢*

— 677(6 — 65+ 5*) (1 + 5* + s(—2 — 2it) + 2it — 2t?)

+ 3653 (—1 — 2it + 2t%) + 24s(1 + 3it — 6t> — 6it°)

+12r(=2+5)(—1 45 +5*(—3 — 3it) — 3it + 6t* + 6it” + s(3 + 6it — 617))] }
= Il-
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i(r+s—2)2
We multiply I; by the factor e~ “5 and this gives us

i(rts—2)2

e « L1 =6—12r+ 6r> — 125+ 18rs — 6r%s + 65> — 615> + 125

2 2

e? e’ ., 7 ei(r;s) _i(fZZ[YJrS)
3.19 —e & ar _ +
(3.19) 12¢2 12¢2
2r 372 . 2r 4t
12 12 12 212
2s  7rs  9r’s 57 s

2 et e te

32 9rs? 19r%8%  4rds? i
et T e T
L2 5 ars s

t2 12 t2 12

st st

2i  6ir  6ir?  2ir’

t t t t
6is  15irs N 12ir2s  3irds
t t t t
6is>  12irs®  7ir*s?  ir’s?

- — ¢ — +

t t t t
2 3irs  ir’s®

t t t

+ 124t — 12irt — 12ist + 6irst

L =92 i(=24rt9? 5 =92 _ =24
(3.20) + 6ie urst— 12t° + 12e u
Now note that
ir—9% i(—24r+5)? _ir=1)(—1
e a = e G
ir—s)  i(—2+r+5)? 25 .
For the terme™ = i r°s°, we expand it as
ir=92 _ i(=2+rt9? ir=1)(s—
e(4r) _ i ZLH 7‘252 — ( 13( 1)1‘252
2 .
1 i(r—1(s—1)\* s
:Z—(—i( 1 )> r252+0(7),
! t 3
k=0
which is acceptable for us. Similarly,
ir—9% _ i(—2+r+s)?
e I 1 rs
- o(d)
12¢2 12¢2 13
4 .
=5 i(—2tr+9)? 1 i(r—1(s—1)\k s
12¢” = a t2:12t22— - +0(—,
k! t 3
k=0
3 .
L itr—9?  i(—24res)? . 1 i(r—1(s—1)\F rs
6ie  # i rst:6zrst2—<f#) +O(—3).
—~ K t t
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Plugging the above expressions into (3.19) and (3.20), we obtain (after a long and
tedious computation) that

55
x(r+ 2 r's
e 11:O( ta).

This concludes the proof of the dispersive estimate. Therefore we have proved the
following lemma.

Lemma 3.2
sup}K(r,s,t)| <|t|77%, t+#£o.
rs>1
Consequently, we have the following corollary.
Corollary 3.3

120 £l iy S W20 F e 1 700

As a sanity check, we now verify that the eigenfunctions ¢, (r) form a complete
basis.

3.2 Resolution of Identity

Lemma 3.4

= /OO OA(r)PA(s) dX = %5(r—s), rs> 1.
T J o r

Adopting the same notations as in the proof of the dispersive estimate (see (3.2)),

we have
1 [ Const
-/ 6 =55 (Z Tulee ) A — ’; Ti(x)Bi+C.C.),
where
1 [ A\ Axy)?
To(xy) = 7 /_OC )(\4)(c0s()\x+)—1+( Z) ) dh,
Ti(xy) = ——/ A(/\) s1n()\x+)—/\x+) dA,
A )\
Tr(xy) = *7/ ( ) )
1 A()\) .
Ts(xy) = g/_oc \ sin(Ax;) dA,
Tix,) = L [70 AN cos(Ax )i AN,k =4,6,8,
ST S A sinQwx )i AN, k= 5,7
Note that
(3.21) Ti(xy) = (To(x+)) fork=0,1,2,...,7.
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We first derive the expression for Ty(x,). By a derivation similar to (3.5), (3.6),

we have

(3.22) Tolx.) = i/oo l(cos(m) —1+ %Azxi) (A\) — A(0)) dx

21 J_ oo A%
A0) [ cos(Axy) — 1+ 3A%x2
2 .
(3.23) + | X di
Now recall
1 oo
(3.24) —/ cos(Ay) dX = 6(y),
21 J_
1 [ sin(A\y) 1.
(3.25) prS) B X = 551gn(y),
1 [ 1—cos(\y) 1
oy Ty dX = S|y,
T ) _oo 2
1 [ Ay —sin(\y) 1, .
= A S S
o L N b A i sign(y),
1 [ cos(Ay)—1+ %()\y)z 1
E/—oo N d\ = EM .
Therefore
_ BN
(3.23) = 5 A(0).
From (3.25) and (3.24) , we also obtain
X 1.
(3.26) / o(y) dy = 3 sign(x).
0

This useful identity will be used below.
Now, using a similar analysis as in (3.8)—(3.10), we have

1 1 1 [ 1
(3:22)= -5 (F(x+) — F(0) — EP”(O)xi) +3 /0 (xy = Y)F(y) dy = 22 F(0).

Hence

1 1 1 1
To(x,) = =5 Flw) + (§ - gxi) F(0) + —=F"(0)x]

1 A(0),
+3/0 (e = P)E(y) dy + == x|
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By (3.21), we then have

(627)  Tie) = —5F () — 3xFO) + SF/ (O,

+ l/ F(y) dy + @xi sign(x, ),
3/, 4

A
Ty(t) = —gF(x) — 3FO) + 3FGx) + 2] + 1F'(0),
_ 1 /1! 1 7] A(O .
T3(xy) = —§F () + gF (x) + 5 sign(x, ),
Ty(e,) = — 5 FV () + S () + A)3(x,)
= F(x),

where we have used the identity (3.15). Continuing the differentiation, we have
Ts(xy) = F'(xy), Te(xy) =F'(xy), Ty(xy) =F"(x;),
Ts(x:) = F(x,) = 9A(0)5(x,) + 3F" (x,) — 9F(x,.).

We now compute the explicit expression for Ty, 0 < k < 8. By using the definition
of A(\) and a contour integration, we have

1 3 \/5 \/5
— — o3 vy in( Y2
(3.28) F(y) T (cos( 5 |y|) + 3sm( 5 \y|>)
By using the identities (3.27), (3.26), we have

(3.29) / U Ry dy = -1 / TG dy+ L / " FO(y) dy + A(0) / " s(y)dy
0 9 Jo 3 /o 0

1 1 A0
= —§F(3)(x+) + gF’(xQ + sign(xy ).
Similarly,
(3.30)
X4 1

(xe — y)F(y) dy = — / e — FD(y) dy + & / (%, — 9E"(y) dy
0 9 0 3 0

+A(0) / (e — )6(y)dy
0

1 1 A(0
- 7§(F”(x+) —F"(0)) + g(F(x+) —F(0) + ?)\x+|.
Substituting (3.28) — (3.30) into the expressions for Ty, 0 < k < 8, we then obtain

8
> ATil(xy)
k=0

= 22 5(x,) — 12°5° cos(?m) (e%x*i]{[—er] + e_%x*f}([m])

1
+ 4{6(6-1—r2 +3r(=2+5) — 65+ ) oy | + 3],
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—3[ 32437 + 1177 (=2 +5) + 485 — 225" + 35
+r(48 — 485+ 1152)] sign(xy)
+4[1+1’2+s2 —e%x*(
[—187(—1+5) — 6(2 — 3s + %) + r*(—6 + 55%)] cos (?m)
+6V3(—1+N(r(=1+5) — (=1 +9)sin (Lx,) ) H[—x.]
+e 7 22 cos ( ?9@) 9—[[x+]} }

3
= 22 5(x,) — e 2% 125% cos (?M)

3 3
+E(6+r2+3r(—2+s)—6s+52)x++1xi

3
- Z< — 32437 + 1177 (=2 +5) + 485 — 225" + 35" + (48 — 485 + 1157))
Fl+2+8+e 22 cos (?9@)

where H is the Heaviside step function defined as

1, y>0,
:}(: =
o {0, otherwise.

Similarly,

8
> BiTi(x)
k=0
3
= r2s25(x) + r*s* cos (%x) (e_%xﬂ-([x] + e%xJ{[—x])
1
+ n (6(r2 — 3rs+57)|x| + 3|x|> + (=97 + 33r%s — 33rs” + 95°) sign(x))
3 3
+ 147+ +e 7 cos (%x) Hlx] + e*r?s% cos (%x) H[—x].

After a long and tedious computation, we arrive at

8 8
ZAka(xQ - ZBka(x) =r’6(x,) — 2525 (x) = —r*s*6(r —s), 15> 1.
k=0 k=0

Here in the last equality we have used again the fact that §(x,) = §(r+s—2) = 0 for
r > 1,5 > 1. We have proved the resolution of identity.

4 Littlewood—Paley Operators and L? Based Sobolev Spaces

In this section, we introduce the Littlewood—Paley operators and L? based Sobolev
spaces on exterior domains. These will be needed later for the nonlinear estimates.
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First, given a bounded function m(¢), which for convenience we assume to be defined
on all of R and even in ¢, we define

m(V/=Ap) f =5 (m()Fof).

This defines a functional calculus on L2 + H&. In particular, for N > 0, we can
define Littlewood—Paley projectors Py by taking m = ¢ (N ~!)\), for suitable 1) com-
pactly supported away from 0. We similarly define P<y using m = ¢(N~')\), where
¢ € C(R) equals 1 on a neighborhood of 0. We also set P~y = 1 — P<y.

As in the whole space case, we have the following proposition.

Proposition 4.1 (Bernstein inequality [14,16]) Let1 < p < q < oo, and suppose
o € R. Then forany N > 0

1_1
[P<n fllzsey S N"* 79 fllce,s
1(=Ap) 2 Py flle) = N7||Px e -

Now we introduce the L? based Sobolev spaces on exterior domains. In [16], the
authors first noticed that in the obstacle case, Sobolev spaces defined via the usual
Laplacian A and the Dirichlet Laplacian Ap are not always equivalent unless one
works with L?(IR"),1 < p < n. For p > n, counterexamples can be constructed by
modifying the eigenfunctions of the Dirichlet Laplacian. This is the first evidence of
the subtle difference between the obstacle case and the whole space case. In a sub-
sequent paper [14] the authors proved the equivalence between two Sobolev spaces
in the general nonradial setting on the exterior domain of a strictly convex obstacle.
Here we will just record a typical version of these results that is good enough to use
in this paper.

Lemma 4.2 ([14]) Let0 <s< 1,1 < p < % Then for any C*(Q) function f, we
have

IIVEFL, ~ [ a2 f -
Here |V |* is defined for functions f: R" — C by using the Fourier transform
VEf©) = le[f©), cer

Let I be a time interval. We now define several function spaces S°(I), Z(I), W(I)
and N(I) with the norms given by

[ ull gy = [l
D L;X’L}cﬂLfL;‘ij (IxQ)’
lullzay = lull 2w
L' (IxQ)
11
Hu”W(I) = H(_AD)Z ”MH 2n+2) an(n+2) )
Lt”fz an3—8 (IxQ)
11
lullv = || (=Ap)T 7u|| e :

LfLX"2+2"74 (IxQ)
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Keeping in mind that the exponents fall into restrictions defined in Lemma 4.2, we
estimate

IF@) |y S || (~Ap)F " Fw)|| e
DL (1)

SV Fw|
LI (Ix Q)

n+2
n—2

P _2 )
S H” 2(12)H|V|1 “H Ay 20 S Nl -

L" 2L (IxQ)

This important estimate will be used several times without explicit mention in Sec-
tion 5 (cf. (5.8)).

5 Proof of Theorem 1.2

A direct consequence of our dispersive estimates is the following standard Strichartz
estimates. Although we state it only for dimensions n = 5,7, the lemma actually
holds for all dimensions n > 3 provided the corresponding dispersive estimate holds.

Lemma 5.1 Let I be a time interval containing 0. Let the dimension n = 5,7. Let
Q=R"\B(0,1). Let u = u(t,x) : I x Q — C be radial and satisfy

t
Ll(t, ) — el[ADMO _ 1/ el([*S)ADf(S, . )ds, te I.
0

Here ug = u(0, -) € L> + H} and f € L}(L* + H}) are both radial.
Let (gi,1;), i = 1,2 be admissible pairs such that 2 < q; < 400, ql + 2 =72 Then

oy S Ntollze + 151 1 -

Here (g, 1}) are the Holder conjugate exponents of (qa, 12).

We will use Lemma 5.1 many times below without explicit mention. For conve-
nience we shall refer to it simply as “the Strichartz estimate” or “Strichartz estimates”.
For the nonlinear problem, we need to make the definition of the solution more
precise. Let I be a finite time interval containing 0. As is well known (cf. [16, (2.3),
p- 51), the radial Sobolev inequality
n—2
= Sl S Nl
implies that radial H}(f2) forms an algebra. So by Hi — H;} boundedness of
exp(itAp), we have

t
(5.1) H/ ei('*S)AD(\u
0

Therefore, if u € C(I; H}(2)), then the inhomogeneous term will also be in H} (£2).
This naturally motivates the following definition.

]

nt2
n—2

L HL(IX Q)

ﬁu) (s) ds’

o S u
L HY(IXQ)

Definition 5.2 (Solution) Denote F(u) = |u|ﬁu A radial function u: IxQ — C
on a non-empty time interval I C R (possibly infinite or semi-infinite) is a strong
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H}(2) solution (or solution for short) to (1.1) if it lies in the class C°H} (I x €2), and
we have the Duhamel formula

. tl .
u(ty) = eG=Ry(10) — i / DAL By (1)) dt
to

for all ty,¢; € I. We refer to the interval I as the lifespan of u. We say that u is
a maximal-lifespan solution if the solution cannot be extended to any strictly larger
interval. We say that u is a global solution if I = R.

Using (5.1) we can easily construct the local solution of (1.1) using a fixed point
argument in C°H} (). Moreover, (5.1) shows that the lifespan of the local solution
depends on the H}(£2) norm of the initial data. Hence, the existence of the global so-
lution then follows quickly from the energy conservation of the defocusing equation
(1.1). More precisely, we have the following theorem.

Theorem 5.3 (Global well-posedness) Let uy € Hy(Q) be spherically symmetric.
Then there exists a unique global solution

2(n+2)

we CRHM)NL, 2 Hy " (Rx Q).

Moreover, Vu € L1, L' (R x Q) for any admissible pair (q, ). For anyt € R, we have

t,loc™x

n—2
u(t
5 lu(t, x)

E(u(t)) = /Q(%|Vu(t,x)|2dx+ T) dx = E(uo).

2(n+2)
)

For this global solution, scattering holds provided the global space-time L,",
bounded. Precisely, suppose that u satisfies

norm is

]l 20 < 0.
L% ([0,00)x€)

Then u scatters forward in time, i.e., there exists a unique radial function v, € H} ()
such that

tli{rolo ||eitADV+ — “(t)”H(}(SZ) =0.

The same statement holds backward in time.

The fact that global control of Li(x"“)/ =2 horm implies finiteness of Strichartz
norms and scattering is established by similar steps to those leading from (5.3) to
(5.4). Furthermore, a standard continuity argument shows that if [[ug || < € for
small €, then the corresponding solution scatters in both time directions. (see [7] for

instance).
Due to Theorem 5.3, the proof of Theorem 1.2 is reduced to showing that the
L,zgﬂ)/ =2 horm of the solution over any compact time interval is bounded by a

constant which should only depend on the energy. Theorem 1.2 is thus a consequence
of the following theorem.
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Theorem 5.4  Assume that u € H}(Q) is a spherically symmetric solution of (1.1) on
a compact interval [t_,t,]. Suppose E(uy) < E. Then
llul| 202 < C(E).

L ([t 1% Q)

The rest of this section will be devoted to the proof of Theorem 5.4. We begin with
some useful conventions.

Conventions Let 0 < 13 < 1, < m; < 1y < 1 be small constants to be deter-
mined. We use ¢(7);) to denote a small constant depending on 7; such that 77,“ <
c(n;) < ;. We use C(n;) to denote a large constant such that 1 0 < C(mi) < -—.The
constants ¢(n;) and C(n;) will sometimes vary from line to line, but the dependence
is clear from the context. The notation a < b will be used to mean that a < C(E) b,
where C(E) may depend on the energy upper-bound E.

We will use ¢(x) to denote a radial smooth cutoff function such that
1, iflx] <1,

5.2 x) = -
6.2 9(x) {0, if x| > 2.

We also denote ¢-c(x) = ¢(&), p>c = 1 — ¢<c forany C > 0.
We decompose

[t_,t:] = U I
such that no < ||ullw;) < 2m. By Strlchartz estimates [13], we have
(53) [Vl xar S 1)y + IV (ul =) 252 0o

S+ Hu”WZI XQ)HVMHLZ("”” xS 1 +770_ [Vul[so(1;x0)-
1.x

By taking 7 small we have
(5.4) Vullsoi; xy S 1-

From interpolation we have

|| ||Vu|| 2n+2 2n(n+2) g ||1/l E(Ij)'
Ltu— L, TnZia (I]-XQ)
Thus
(5.5) lullzay 2 76 -

‘We now use (5.5) and
IfI] 2o SVl
L' (Q)

for f € H a d(Q) to show the uniform lower bound for the interval I;:

<H MH 2(n+2)

n—2
tx (fX - J

n—2
| MH ) S |Ij|2(”*2) .

We have
|I]|Z7’]1, ]:1,,]
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Now let
uy (1) = &80y (e)), u_(t) = eB0y(r).
We consider two cases for each I;:

* I;is called exceptional if either

s llwixay >0 or Jlu_llwaxe) > 10

e I; is called unexceptional if

s (w0 < mp°
Since
lutllwe xS HVMiH 2 22 S lue) |l
LT ([ )X ) 0

the number of exceptional intervals is bounded by C (no, E). We thus need to control
only the number of unexceptional intervals.

We now focus on the mass concentration property of the unexceptional intervals.
We begin with local mass concentration.

Let ¢ be the smooth cutoff function defined in (5.2), and ¢r(x) = ¢(x/R). Define
the local mass of u to be

My(t) = / ju(t, 026 () dx.
%=1
We have the following lemma.

Lemma 5.5 (Local mass concentration)

(5.6) ‘ M (t)(
Proof Using equation in (1.1), we compute
iMR(t) =2R U a¢§(x) dx = -2S Au - ﬁ(b}zz(x) dx
dt Ix|>1 Ix|>1
25 [ Vuagn(Ve) )
= — —y .
R e i R
Therefore
1
‘ 7 MR(t)‘ S S IVullpgszn [ orllegy=n S Mz(l‘)
Equation (5.6) follows dlrectly. [ |

We next establish the following important lemma.

Lemma 5.6 (Mass concentration on unexceptional intervals) Let I be an unexcep-
tional interval. Then for anyt € I,

/ 0P dx > clm)|.
Ix[ <35 1112
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Proof Denote I = [a, b]. Without loss of generality, we assume'

Mo
Hu”W([%b,b]xQ) > o

By the Duhamel formula
u(t) = u_(t) —i / ‘ e IBDE(y)(s)ds — i / t " =IBDF(y)(s)ds.
f_ a
We define
w(t) =i / ’ eI B(y) (s)ds = —u(t) +u_(t) — i / t et =80 B(y) (s)ds.
[ a

We next observe that w has certain bounds. By Strichartz estimates and the steps
leading from (5.3) to (5.5),

sup ||W(t7 : )”H&(Q) 5 1, tel
t

Moreover, we have

(5.7) [l (2 ]xq) = ',
nt2 nt2
(5.8) H / OE @] S Tl <
By the triangle inequality we then have
o
”WHW([%b.b]) = 1
and so .
7]0) 2 n
(ot — ) =n-
W22 > () =u

2 n+2)

We now show that the L,* norm of high frequency of w is negligible. To this
end, we use the dispersive estimate to obtain

(5.9)

(g
>Cm)|I|~ [a+b B xQ)

= H/ ei(t*S)ADP ‘,lF(M(S . )dsH 20012
T

a
i s
[

Shs|e_

([(Hb b]XQ

‘ P>C(772>|I|’%F(u(s7 ) H e (Q)ds

_, (u)|| 2(n+2)
)] L™ ([ alx Q)

First consider the case that 7,|I \% > 2. We estimate the norm of F(u) in different
spatial regimes. First,

19

<7]2\I\ (M)H n+2)

 F nt
<ma|I|2 (M)H X 2)(m

H >C(n2 \1\"

S o

1Otherwise this holds for [a, ‘%h], and we apply a similar argument by just reversing the time direction.
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l6_ Il

<
~ ||F(Ll | n+2 ) <m|1| an—z )

n—2 n—2
+2 (e
< 7, |[| i) |

~

n=2 n—2
13 11358

x

Next, using the radial Sobolev embedding | |x %zzf H 2m2) < H Vf || .. We estimate
an7 X
||P>C(nz)|1|*% (¢, F) || e
1

Sl 96, F0) | 2
nt2 e

< : oy n—2

~ C(nZ)U‘Z (Hv¢> |I| ‘ f? Q)”uHL;zTnZ(Q) + ||¢>n Ik 1u L: nt2) )Hv“”Lﬁ(Q))

< eI (mal]®) " ()]

2
2ot IVullz@) "

— 4 n—2 2
<clm)m, |12 < s 1|2
Putting these two pieces back into (5.9), we have

(5.10) w|| 202 <.

||P>C ()1~
([a+l7 b]XQ)

In the case where 7|I|2 < 2, applying the same argument without spatial cutoff
yields the better bound c(1,)|I|2; we again get (5.10).
From (5.10) and interpolation, we see that

4
||P>C(m)m7%W”W(["zﬂﬁb]) S "S-

This together with (5.7), (5.8), and the definition of unexceptional interval gives
n+2

”chmnur%”Hwa%hn S

Thus,
Mo
1P -+ ¥l n = 5

By interpolation, we have

M\ 2
—) > 15

(5.11) P (
| > (122 b X Q) 2

u|| 2n+2)

<Cm)||~ 3

On the other hand, using interpolatlon, radial Sobolev embedding and the lower
bound for |I] yield

I,

IMH 2(n+2
Lk 2 (122 b x Q)

P
< 1% ||¢>%m%u|| ;X)L;,g":? (252 b

S ()
UE
1

< -
T00™"

|V“HL2 )
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Thus, (5.11) can be improved to

sl sy > S
2(n+ - o -
a2 =2 (e ) 2

10,

HP<C(7/2)\I\_2

From this, the mass concentration follows quickly. Indeed, using the Bernstein and
Holder inequalities we have

1
5778 < HP (;5 \1\] uH 20112)

L n—2 ([u+b b]XQ)

() g il e

_1
<C("]2)m 2

<|[

_1
S Cip)|I| Z||¢ |1| ”HLOCLZ (122 b x )

Thus, there exists t, € I such that

[|u(to) || > C(772)|I|

RO< x| < |1|
Using (5.6) we get

[lu(®)| > c(n2)|1\ tel [ |

L<|x|< 5> |1|

Next by applying an appropriate spatial cutoff, we can obtain the same space-
localized Morawetz estimate

// |u(t x)|2n/n 2) dth<A|I‘l/2
W<ame W ~

forall A > 1 as that in [6, 10, 16]. Combining the mass concentration on unexcep-
tional intervals with the localized Morawetz estimate, we have the following lemma.

Lemma 5.7 ([6,19]) Let ] be an interval that contains a contiguous collection Uj I;
of unexceptional intervals. Then we have

ST < Clpy )]V
j

From this result, we can repeat an ingenious argument of Bourgain [6] to get the
upper bound of the number of unexceptional intervals.

Proposition 5.8 ([6,19]) There exists C(E, 1o, M1, M2, 13) such that
#{1;,1; is unexceptional} < C(E, 19, 1,72, 73)-

This, together with the fact that the number of the exceptional intervals is finite,
completes the proof of Theorem 1.2. ]
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