M-COHYPONORMAL POWERS OF COMPOSITION OPERATORS

SATISH K. KHURANA and BABU RAM

(Received 7 May 1990)

Communicated by W. Moran

Abstract

Let T_1 , i = 1, 2 be measurable transformations which define bounded composition operators C_{T_i} on L^2 of a σ -finite measure space. Let us denote the Radon-Nikodym derivative of $m \circ T_i^{-1}$ with respect to m by h_i , i = 1, 2. The main result of this paper is that if $C_{T_1}^*$ and $C_{T_2}^*$ are both M-hyponormal with $h_1 \leq M^2(h_2 \circ T_2)$ a.e. and $h_2 \leq M^2(h_1 \circ T_1)$ a.e., then for all positive integers m, n and p, $[(C_{T_1}^m C_{T_2}^n)^p]^*$ is $M^{p^2(m+n)^2}$ -hyponormal. As a consequence, we see that if C_T^* is an M-hyponormal composition operator, then $(C_T^*)^n$ is M^{n^2} -hyponormal for all positive integers n.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 47 B 20, secondary 47 B 38.

1. Introduction

Let (X, \sum, m) be a σ -finite measure space and let T be a measurable transformation from X into itself. Let $L^2 = L^2(X, \sum, m)$. Then the composition transformation C_T is defined by $C_T f = f \circ T$ for every $f \in L^2$. If C_T happens to be a bounded operator on L^2 , then we call it the composition operator induced by T. C_T is a bounded linear operator on L^2 precisely when (i) $m \circ T^{-1}$ is absolutely continuous with respect to m and (ii) $h = dm \circ T^{-1}/dm$ is in $L^{\infty}(X, \sum, m)$. Let $R(C_T)$ denote the

^{© 1992} Australian Mathematical Society 0263-6115/92 \$A2.00 + 0.00

range of C_T and C_T^* , the adjoint of C_T . In what follows, N denotes the set of positive integers.

Let B(H) denote the Banach algebra of all bounded linear operators on the Hilbert space H. An operator $T \in B(H)$ is called *M*-hyponormal if there exists some M > 0 such that $||T^*x|| \le M||Tx||$ for all $x \in H$.

Let T_1 and T_2 be measurable transformations of X into itself with Radon-Nikodym derivatives h_1 and h_2 respectively such that $C_{T_i} \in B(L^2)$ for i = 1, 2. It is shown in [2] that if $h_i \circ T_i \leq h_j$ for i, j = 1, 2, then for all positive integers m, n and p, the operator $(C_{T_1}^m C_{T_2}^n)^p$ is hyponormal. The aim of this paper is to obtain an analogous result when $C_{T_1}^*$ and $C_{T_2}^*$ are *M*-hyponormal operators.

2. Lemmas

LEMMA 2.1. Let P be the projection of L^2 onto $\overline{R(C_T)}$. If C_T^* is M-hyponormal then

$$((h \circ T)Pf, f) = ((h \circ T)f, f)$$
 for all $f \in L^2$.

PROOF. Since C_T^* is *M*-hyponormal, $\operatorname{Ker}(C_T^*) \subseteq \operatorname{Ker}(C_T)$. Also, for all $f \in L^2$, $Pf - f \in \operatorname{Ker}(P) = \operatorname{Ker}(C_T^*)$. Therefore,

$$((h \circ T)Pf, f) = ((h \circ T)(Pf - f), f) + ((h \circ T)f, f)$$

= $((h \circ T)f, f)$ for all $f \in L^2$,

which proves the required result.

LEMMA 2.2. If
$$C_T^*$$
 is M-hyponormal, then
 $h \le M^2(h \circ T)$ a.e

PROOF. Since C_T^* is *M*-hyponormal, we have

$$\|C_T f\|^2 \le M^2 \|C_T^* f\|^2$$
 for all $f \in L^2$.

This implies that

$$(C_T f, C_T f) \le M^2 (C_T^* f, C_T^* f)$$

or

$$(C_T^* C_T f, f) \le M^2 (C_T C_T^* f, f)$$

or

$$(hf, f) \le M^2((h \circ T)Pf, f)$$
 (by [2, Lemma 1.1(a)])

[3] or

$$(hf, f) \le M^2((h \circ T)f, f),$$
 (by Lemma 2.1)

which yields

$$h \leq M^2(h \circ T)$$
 a.e.

Lemma 2.1 can be extended to give the following result.

LEMMA 2.3. Let P denote the projection of L^2 onto $\overline{R(C_T)}$. If C_T^* is M-hyponormal, then

$$((h^n \circ T)Pf, f) = ((h^n \circ T)f, f) \text{ for all } f \in L^2 \text{ and } n \in \mathbb{N}.$$

LEMMA 2.4. If $h \le M^2(h \circ T)$ a.e., for all $r, m \in \mathbb{N}$ and $f \in L^2$, then (2.4.1) $((h \circ T)^r C_T^m f, C_T^m f) \le M^{(m-1)(2r+m)}(h^{r+m} f, f).$

PROOF. We shall prove the result by induction on m and fixed r. For m = 1 and $f \in L^2$,

$$((h \circ T)^{r}C_{T}f, C_{T}f) = \int (h \circ T)^{r}(|f|^{2} \circ T) dm$$
$$= \int h^{r}|f|^{2} dm \circ T^{-1}$$
$$= \int h^{r}|f|^{2}h dm$$
$$= (h^{r+1}f, f),$$

which shows that (2.4.1) holds for m = 1. Now assuming that (2.4.1) holds for m = 1, 2, ..., k and $f \in L^2$, we have

$$((h \circ T)^{r} C_{T}^{k+1} f, C_{T}^{k+1} f) = ((h \circ T)^{r} C_{T}^{k} C_{T} f, C_{T}^{k} C_{T} f)$$

$$\leq M^{(k-1)(2r+k)} (h^{r+k} C_{T} f, C_{T} f)$$

(by the induction hypothesis)

$$= M^{(k-1)(2r+k)} \int h^{r+k} (|f|^2 \circ T) dm$$

$$\leq M^{(k-1)(2r+k)+2(r+k)} \int (h^{r+k} \circ T) (|f|^2 \circ T) dm$$

(since $h \leq M^2 (h \circ T)$ a.e.)

$$= M^{k(2r+k+1)} \int h^{r+k} |f|^2 h dm$$

$$= M^{k(2r+k+1)} (h^{r+k+1} f, f),$$

which completes the induction step and (2.4.1) holds for all $r, m \in \mathbb{N}$ and $f \in L^2$.

LEMMA 2.5. If
$$C_T^*$$
 is *M*-hyponormal, then for all $r, m \in and f \in L^2$,
(2.5.1) $M^{(m-1)(2r+m)}(h^r(C_T^m)^*f, (C_T^m)^*f, (C_T^m)^*f) \ge ((h \circ T)^{r+m}f, f)$.

PROOF. We fix r and induct on m. For m = 1 and $f \in L^2$,

$$(h^{r}C_{T}^{*}f, C_{T}^{*}f) = (C_{T}h^{r}C_{T}^{*}f, f)$$

= $((h^{r} \circ T)C_{T}C_{T}^{*}f, f)$
= $((h^{r} \circ T)(h \circ T)Pf, f)$ (by [2, Lemma 1.1(a)])
= $((h^{r+1} \circ T)Pf, f)$
= $((h^{r+1} \circ T)f, f)$, (by Lemma 2.3)

which shows that the result holds for m = 1. Let us suppose that the result holds for m = 1, 2, ..., k and $f \in L^2$. Then

(2.5.2)
$$(h^{r}(C_{T}^{k+1})^{*}f, (C_{T}^{k+1})^{*}f) = (h^{r}(C_{T}^{k})^{*}C_{T}^{*}f, (C_{T}^{k})^{*}C_{T}^{*}f)$$

$$\geq \frac{1}{M^{(k-1)(2r+k)}}((h \circ T)^{r+k}C_{T}^{*}f, C_{T}^{*}f)$$

(by induction hypothesis).

But $M^2(h \circ T) \ge h$ a.e., so that $M^{2(r+k)}(h \circ T)^{r+k} \ge h^{r+k}$ a.e. Thus (2.5.3)

$$\begin{aligned} \left(\left(h \circ T\right)^{r+k} C_T^* f, \ C_T^* f \right) &\geq \frac{1}{M^{2(r+k)}} (h^{r+k} C_T^* f, \ C_T^* f) \\ &= \frac{1}{M^{2(r+k)}} (\left(h^{r+k} \circ T\right) C_T C_T^* f, \ f) \\ &= \frac{1}{M^{2(r+k)}} (\left(h^{r+k} \circ T\right) (h \circ T) P f, \ f) \\ &= \frac{1}{M^{2(r+k)}} (\left(h^{r+k+1} \circ T\right) P f, \ f) \\ &= \frac{1}{M^{2(r+k)}} (\left(h^{r+k+1} \circ T\right) f, \ f) \quad \text{(by Lemma 2.3)} \\ &= \frac{1}{M^{2(r+k)}} (\left(h \circ T\right)^{r+k+1} f, \ f) . \end{aligned}$$

Hence, by the use of (2.5.2) and (2.5.3), we have

$$M^{k(2r+k+1)}(h'(C_T^{k+1})^*f, (C_T^{k+1})^*f) \ge ((h \circ T)^{r+k+1}f, f),$$

which shows that the result holds for m = k + 1. Thus the result holds for all $r, m \in \mathbb{N}$ and $f \in L^2$.

LEMMA 2.6. If
$$h \leq M^2(h \circ T)$$
 a.e., then for all $n \in \mathbb{N}$ and $f \in L^2$,
 $((C_T^n)^* C_T^n f, f) \leq M^{n(n-1)}(h^n f, f).$

PROOF. For n = 1, the result is true since $C_T^*C_T f = hf$. Let us suppose that the result is true for n = r and $f \in L^2$. Then

$$((C_T^{r+1})^* C_T^{r+1} f, f) = ((C_T^r C_T)^* C_T^r C_T f, f) = ((C_T^r)^* C_T^r C_T f, C_T f)$$

$$\leq M^{r(r-1)} (h^r C_T f, C_T f) \text{ (by the induction hypothesis)}.$$

Now, since $h \leq M^2(h \circ T)$ a.e., $h^r \leq M^{2r}(h^r \circ T)$ a.e. and so

$$(h^{r}C_{T}f, C_{T}f) = \int h^{r}(|f|^{2} \circ T) dm$$

$$\leq M^{2r} \int (h^{r} \circ T)(|f|^{2} \circ T) dm$$

$$= M^{2r} \int h^{r}|f|^{2}h dm = M^{2r}(h^{r+1}f, f).$$

Hence

$$((C_T^{r+1})^* C_T^{r+1} f, f) \le M^{r(r-1)} M^{2r} (h^{r+1} f, f) = M^{r(r+1)} (h^{r+1} f, f),$$

which completes the induction step and the result follows.

LEMMA 2.7. If
$$C_T^*$$
 is M-hyponormal, then

$$M^{n(n-1)}(C_T^n(C_T^n)^*f, f) \ge ((h \circ T)^n f, f)$$

for all $n \in \mathbb{N}$ and $f \in L^2$.

PROOF. The result can be proved using induction on n by applying similar techniques as in Lemma 2.6.

3. Main results

In this section we shall prove our main results.

THEOREM 3.1. If C_T^* is M-hyponormal, then $(C_T^*)^n$ is M^{n^2} -hyponormal for all $n \in \mathbb{N}$.

PROOF. Since C_T^* is *M*-hyponormal, for all $n \in \mathbb{N}$ and $f \in L^2$, $M^{n(n+1)}(C_T^n(C_T^n)^*f, f) \ge (h^n f, f)$ (by Lemmas 2.7 and 2.2). Also, by the use of Lemma 2.6, for all $n \in \mathbb{N}$ and $f \in L^2$,

$$((C_T^n)^* C_T^n f, f) \le M^{n(n-1)}(h^n f, f).$$

Hence, for all $n \in \mathbb{N}$ and $f \in L^2$, we have either

$$((C_T^n)^* C_T^n f, f) \le M^{2n^2} (C_T^n (C_T^n)^* f, f)$$

or

$$||C_T^n f||^2 \le M^{2n^2} ||(C_T^n)^* f||^2$$

or

$$||C_T^n f|| \le M^{n^2} ||(C_T^n)^* f||,$$

which proves the required result.

THEOREM 3.2. With T_1 , T_2 , h_1 and h_2 as above, let $A = C_{T_1}$ and $B = C_{T_2}$. If A^* and B^* are M-hyponormal such that

$$h_1 \le M^2(h_2 \circ T_2) \quad a.e.$$

and

$$h_2 \leq M^2(h_1 \circ T_1) \quad a.e.$$

then $(A^m B^n)^*$ is $M^{(m+n)^2}$ -hyponormal for all $m, n \in \mathbb{N}$.

PROOF. Since A^* and B^* are *M*-hyponormal, by Lemma 2.2,

$$h_i \le M^2(h_i \circ T_i) \text{ for } i = 1, 2.$$

Now for $f \in L^2$,

On the other hand,

$$((A^{m}B^{n})(A^{m}B^{n})^{*}f, f) = (A^{m}B^{n}(B^{n})^{*}(A^{m})^{*}f, f)$$

$$= (B^{n}(B^{n})^{*}(A^{m})^{*}f, (A^{m})^{*}f)$$

$$\geq \frac{1}{M^{n(n-1)}}((h_{2} \circ T_{2})^{n}(A^{m})^{*}f, (A^{m})^{*}f)$$
 (by Lemma 2.7)

$$\geq \frac{1}{M^{n(n+1)}}(h_{1}^{n}(A^{m})^{*}f, (A^{m})^{*}f)$$
 (by hypothesis)

$$\geq \frac{1}{M^{n(n+1)+(m-1)(2n+m)}}((h_{1} \circ T_{1})^{n+m}f, f)$$

(by Lemma 2.5)

$$= \frac{1}{M^{n(n+1)+(m-1)(2n+m)}}((h_{1} \circ T_{1})^{n+m}f, f)$$

$$= \frac{1}{M^{(m+n)^2 - (m+n)}} (n_1 \circ T_1) \quad f, f)$$

$$\ge \frac{1}{M^{(m+n)^2 + (m+n)}} (h_2^{m+n} f, f) \quad (\text{ by hypothesis}).$$

Thus, for all $f \in L^2$, we have either

$$((A^{m}B^{n})^{*}(A^{m}B^{n})f, f) \le M^{2(m+n)^{2}}((A^{m}B^{n})(A^{m}B^{n})^{*}f, f)$$

or

$$||(A^{m}B^{n})f||^{2} \le M^{2(m+n)^{2}}||(A^{m}B^{n})^{*}f||^{2}$$

or

$$\|(A^{m}B^{n})f\| \leq M^{(m+n)^{2}}\|(A^{m}B^{n})^{*}f\|,$$

so that $(A^m B^n)^*$ is $M^{(m+n)^2}$ -hyponormal.

Following the same lines as in the proof of Theorem 3.2 and induction on p, we can prove the following theorem.

THEOREM 3.3. Under the hypothesis of Theorem 3.2, we have

(3.3.1)
$$([(A^m B^n)^p]^* (A^m B^n)^p f, f) \le M^{p^2(m+n)^2 - p(m+n)} (h_2^{p(m+n)} f, f)$$

(3.3.2)
$$M^{p^2(m+n)^2+p(m+n)}((A^mB^n)^p[(A^mB^n)^p]^*f, f) \ge (h_2^{p(m+n)}f, f),$$

for all m, n and $p \in \mathbb{N}$ and $f \in L^2$.

With the help of Theorem 3.3, we can generalize Theorem 3.2 in the following form.

THEOREM 3.4. Under the hypothesis of Theorem 3.2, $[(A^m B^n)^p]^*$ is $M^{p^2(m+n)^2}$ -hyponormal.

[8]

PROOF. Using (3.3.1) and (3.3.2), for all m, n and $p \in \mathbb{N}$ and $f \in L^2$ we have that

$$([(A^{m}B^{n})^{p}]^{*}(A^{m}B^{n})^{p}f, f) \leq M^{2p^{2}(m+n)^{2}}((A^{m}B^{n})^{p}[(A^{m}B^{n})^{p}]^{*}f, f)$$

or

$$||(A^{m}B^{n})^{p}f||^{2} \le M^{2p^{2}(m+n)^{2}}||[(A^{m}B^{n})^{p}]^{*}f||^{2}$$

or

$$||(A^{m}B^{n})^{p}f|| \le M^{p^{2}(m+n)^{2}}||[(A^{m}B^{n})^{p}]^{*}f||,$$

which completes the proof of the theorem.

COROLLARY 3.5. Under the hypothesis of Theorem 3.2, $[(AB)^p]^*$ is M^{4p} -hyponormal. In particular, $(AB)^*$ is M^4 -hyponormal.

ACKNOWLEDGEMENTS. We are thankful to the referee for his valuable comments.

References

- D. J. Harrington and R. Whitley, 'Seminormal composition operators', J. Operator Theory 11 (1984), 125-135.
- [2] P. Dibrell and J. T. Campbell, 'Hyponormal powers of composition operators', Proc. Amer. Math. Soc. 102 (4) (1988), 914–18.
- [3] P. R. Halmos, A Hilbert space problem book (Van Nostrand, Princeton, N.J., 1976).

Maharshi Dayanand University Rohtak -124001, India