M-COHYPONORMAL POWERS OF COMPOSITION OPERATORS

SATISH K. KHURANA and BABU RAM

(Received 7 May 1990)

Communicated by W. Moran

Abstract

Let $T_{1}, i=1,2$ be measurable transformations which define bounded composition operators $C_{T_{i}}$ on L^{2} of a σ-finite measure space. Let us denote the Radon-Nikodym derivative of $m \circ T_{i}^{-1}$ with respect to m by $h_{i}, i=1,2$. The main result of this paper is that if $C_{T_{1}}^{*}$ and $C_{T_{2}}^{*}$ are both M-hyponormal with $h_{1} \leq M^{2}\left(h_{2} \circ T_{2}\right)$ a.e. and $h_{2} \leq M^{2}\left(h_{1} \circ T_{1}\right)$ a.e., then for all positive integers m, n and $p,\left[\left(C_{T_{1}}^{m} C_{T_{2}}^{n}\right)^{p}\right]^{*}$ is $M^{p^{2}(m+n)^{2}}$-hyponormal. As a consequence, we see that if C_{T}^{*} is an M-hyponormal composition operator, then $\left(C_{T}^{*}\right)^{n}$ is $M^{n^{2}}$-hyponormal for all positive integers n.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 47 B 20, secondary 47 B 38.

1. Introduction

Let $\left(X, \sum, m\right)$ be a σ-finite measure space and let T be a measurable transformation from X into itself. Let $L^{2}=L^{2}\left(X, \sum, m\right)$. Then the composition transformation C_{T} is defined by $C_{T} f=f \circ T$ for every $f \in$ L^{2}. If C_{T} happens to be a bounded operator on L^{2}, then we call it the composition operator induced by $T . C_{T}$ is a bounded linear operator on L^{2} precisely when (i) $m \circ T^{-1}$ is absolutely continuous with respect to m and (ii) $h=d m \circ T^{-1} / d m$ is in $L^{\infty}\left(X, \sum, m\right)$. Let $R\left(C_{T}\right)$ denote the

[^0]range of C_{T} and C_{T}^{*}, the adjoint of C_{T}. In what follows, \mathbb{N} denotes the set of positive integers.

Let $B(H)$ denote the Banach algebra of all bounded linear operators on the Hilbert space H. An operator $T \in B(H)$ is called M-hyponormal if there exists some $M>0$ such that $\left\|T^{*} x\right\| \leq M\|T x\|$ for all $x \in H$.

Let T_{1} and T_{2} be measurable transformations of X into itself with Radon-Nikodym derivatives h_{1} and h_{2} respectively such that $C_{T_{i}} \in B\left(L^{2}\right)$ for $i=1,2$. It is shown in [2] that if $h_{i} \circ T_{i} \leq h_{j}$ for $i, j=1,2$, then for all positive integers m, n and p, the operator $\left(C_{T_{1}}^{m} C_{T_{2}}^{n}\right)^{p}$ is hyponormal. The aim of this paper is to obtain an analogous result when $C_{T_{1}}^{*}$ and $C_{T_{2}}^{*}$ are M-hyponormal operators.

2. Lemmas

Lemma 2.1. Let P be the projection of L^{2} onto $\overline{R\left(C_{T}\right)}$. If C_{T}^{*} is M hyponormal then

$$
((h \circ T) P f, f)=((h \circ T) f, f) \quad \text { for all } f \in L^{2}
$$

Proof. Since C_{T}^{*} is M-hyponormal, $\operatorname{Ker}\left(C_{T}^{*}\right) \subseteq \operatorname{Ker}\left(C_{T}\right)$. Also, for all $f \in L^{2}, P f-f \in \operatorname{Ker}(P)=\operatorname{Ker}\left(C_{T}^{*}\right)$. Therefore,

$$
\begin{aligned}
((h \circ T) P f, f) & =((h \circ T)(P f-f), f)+((h \circ T) f, f) \\
& =((h \circ T) f, f) \quad \text { for all } f \in L^{2}
\end{aligned}
$$

which proves the required result.
Lemma 2.2. If C_{T}^{*} is M-hyponormal, then

$$
h \leq M^{2}(h \circ T) \text { a.e. }
$$

Proof. Since C_{T}^{*} is M-hyponormal, we have

$$
\left\|C_{T} f\right\|^{2} \leq M^{2}\left\|C_{T}^{*} f\right\|^{2} \quad \text { for all } f \in L^{2}
$$

This implies that

$$
\left(C_{T} f, C_{T} f\right) \leq M^{2}\left(C_{T}^{*} f, C_{T}^{*} f\right)
$$

or

$$
\left(C_{T}^{*} C_{T} f, f\right) \leq M^{2}\left(C_{T} C_{T}^{*} f, f\right)
$$

or

$$
(h f, f) \leq M^{2}((h \circ T) P f, f) \quad(\text { by }[2, \text { Lemma 1.1(a)]) }
$$

or

$$
(h f, f) \leq M^{2}((h \circ T) f, f), \quad(\text { by Lemma 2.1 })
$$

which yields

$$
h \leq M^{2}(h \circ T) \text { a.e. }
$$

Lemma 2.1 can be extended to give the following result.
Lemma 2.3. Let P denote the projection of L^{2} onto $\overline{R\left(C_{T}\right)}$. If C_{T}^{*} is M-hyponormal, then

$$
\left(\left(h^{n} \circ T\right) P f, f\right)=\left(\left(h^{n} \circ T\right) f, f\right) \text { for all } f \in L^{2} \text { and } n \in \mathbb{N} .
$$

Lemma 2.4. If $h \leq M^{2}(h \circ T)$ a.e., for all $r, m \in \mathbb{N}$ and $f \in L^{2}$, then

$$
\begin{equation*}
\left((h \circ T)^{r} C_{T}^{m} f, C_{T}^{m} f\right) \leq M^{(m-1)(2 r+m)}\left(h^{r+m} f, f\right) \tag{2.4.1}
\end{equation*}
$$

Proof. We shall prove the result by induction on m and fixed r. For $m=1$ and $f \in L^{2}$,

$$
\begin{aligned}
\left((h \circ T)^{r} C_{T} f, C_{T} f\right) & =\int(h \circ T)^{r}\left(|f|^{2} \circ T\right) d m \\
& =\int h^{r}|f|^{2} d m \circ T^{-1} \\
& =\int h^{r}|f|^{2} h d m \\
& =\left(h^{r+1} f, f\right),
\end{aligned}
$$

which shows that (2.4.1) holds for $m=1$. Now assuming that (2.4.1) holds for $m=1,2, \ldots, k$ and $f \in L^{2}$, we have

$$
\begin{aligned}
\left((h \circ T)^{r} C_{T}^{k+1} f, C_{T}^{k+1} f\right)= & \left((h \circ T)^{r} C_{T}^{k} C_{T} f, C_{T}^{k} C_{T} f\right) \\
& \leq M^{(k-1)(2 r+k)}\left(h^{r+k} C_{T} f, C_{T} f\right) \\
& \quad \text { (by the induction hypothesis) } \\
& =M^{(k-1)(2 r+k)} \int h^{r+k}\left(|f|^{2} \circ T\right) d m \\
\leq & M^{(k-1)(2 r+k)+2(r+k)} \int\left(h^{r+k} \circ T\right)\left(|f|^{2} \circ T\right) d m \\
\quad & \left.\quad \text { since } h \leq M^{2}(h \circ T) \text { a.e. }\right) \\
& =M^{k(2 r+k+1)} \int h^{r+k}|f|^{2} h d m \\
& =M^{k(2 r+k+1)}\left(h^{r+k+1} f, f\right),
\end{aligned}
$$

which completes the induction step and (2.4.1) holds for all $r, m \in \mathbb{N}$ and $f \in L^{2}$.

Lemma 2.5. If C_{T}^{*} is M-hyponormal, then for all $r, m \in$ and $f \in L^{2}$,

$$
\begin{equation*}
M^{(m-1)(2 r+m)}\left(h^{r}\left(C_{T}^{m}\right)^{*} f,\left(C_{T}^{m}\right)^{*} f,\left(C_{T}^{m}\right)^{*} f\right) \geq\left((h \circ T)^{r+m} f, f\right) \tag{2.5.1}
\end{equation*}
$$

Proof. We fix r and induct on m. For $m=1$ and $f \in L^{2}$,

$$
\begin{aligned}
\left(h^{r} C_{T}^{*} f, C_{T}^{*} f\right) & =\left(C_{T} h^{r} C_{T}^{*} f, f\right) \\
& =\left(\left(h^{r} \circ T\right) C_{T} C_{T}^{*} f, f\right) \\
& =\left(\left(h^{r} \circ T\right)(h \circ T) P f, f\right) \quad(\text { by }[2, \text { Lemma 1.1(a) }]) \\
& =\left(\left(h^{r+1} \circ T\right) P f, f\right) \\
& =\left(\left(h^{r+1} \circ T\right) f, f\right), \quad(\text { by Lemma } 2.3)
\end{aligned}
$$

which shows that the result holds for $m=1$. Let us suppose that the result holds for $m=1,2, \ldots, k$ and $f \in L^{2}$. Then

$$
\begin{align*}
& \left(h^{r}\left(C_{T}^{k+1}\right)^{*} f,\left(C_{T}^{k+1}\right)^{*} f\right)=\left(h^{r}\left(C_{T}^{k}\right)^{*} C_{T}^{*} f,\left(C_{T}^{k}\right)^{*} C_{T}^{*} f\right) \tag{2.5.2}\\
& \quad \geq \frac{1}{M^{(k-1)(2 r+k)}}\left((h \circ T)^{r+k} C_{T}^{*} f, C_{T}^{*} f\right)
\end{align*}
$$

(by induction hypothesis).
But $M^{2}(h \circ T) \geq h$ a.e., so that $M^{2(r+k)}(h \circ T)^{r+k} \geq h^{r+k}$ a.e. Thus

$$
\begin{align*}
\left((h \circ T)^{r+k} C_{T}^{*} f, C_{T}^{*} f\right) & \geq \frac{1}{M^{2(r+k)}}\left(h^{r+k} C_{T}^{*} f, C_{T}^{*} f\right) \tag{2.5.3}\\
& =\frac{1}{M^{2(r+k)}}\left(\left(h^{r+k} \circ T\right) C_{T} C_{T}^{*} f, f\right) \\
& =\frac{1}{M^{2(r+k)}}\left(\left(h^{r+k} \circ T\right)(h \circ T) P f, f\right) \\
& =\frac{1}{M^{2(r+k)}}\left(\left(h^{r+k+1} \circ T\right) P f, f\right) \\
& =\frac{1}{M^{2(r+k)}}\left(\left(h^{r+k+1} \circ T\right) f, f\right) \quad(\text { by Lemma 2.3 }) \\
& =\frac{1}{M^{2(r+k)}}\left((h \circ T)^{r+k+1} f, f\right)
\end{align*}
$$

Hence, by the use of (2.5.2) and (2.5.3), we have

$$
M^{k(2 r+k+1)}\left(h^{r}\left(C_{T}^{k+1}\right)^{*} f,\left(C_{T}^{k+1}\right)^{*} f\right) \geq\left((h \circ T)^{r+k+1} f, f\right)
$$

which shows that the result holds for $m=k+1$. Thus the result holds for all $r, m \in \mathbb{N}$ and $f \in L^{2}$.

Lemma 2.6. If $h \leq M^{2}(h \circ T)$ a.e., then for all $n \in \mathbb{N}$ and $f \in L^{2}$,

$$
\left(\left(C_{T}^{n}\right)^{*} C_{T}^{n} f, f\right) \leq M^{n(n-1)}\left(h^{n} f, f\right)
$$

Proof. For $n=1$, the result is true since $C_{T}^{*} C_{T} f=h f$. Let us suppose that the result is true for $n=r$ and $f \in L^{2}$. Then

$$
\begin{aligned}
\left(\left(C_{T}^{r+1}\right)^{*} C_{T}^{r+1} f, f\right) & =\left(\left(C_{T}^{r} C_{T}\right)^{*} C_{T}^{r} C_{T} f, f\right)=\left(\left(C_{T}^{r}\right)^{*} C_{T}^{r} C_{T} f, C_{T} f\right) \\
& \leq M^{r(r-1)}\left(h^{r} C_{T} f, C_{T} f\right) \quad \text { (by the induction hypothesis) }
\end{aligned}
$$

Now, since $h \leq M^{2}(h \circ T)$ a.e., $h^{r} \leq M^{2 r}\left(h^{r} \circ T\right)$ a.e. and so

$$
\begin{aligned}
\left(h^{r} C_{T} f, C_{T} f\right) & =\int h^{r}\left(|f|^{2} \circ T\right) d m \\
& \leq M^{2 r} \int\left(h^{r} \circ T\right)\left(|f|^{2} \circ T\right) d m \\
& =M^{2 r} \int h^{r}|f|^{2} h d m=M^{2 r}\left(h^{r+1} f, f\right)
\end{aligned}
$$

Hence

$$
\left(\left(C_{T}^{r+1}\right)^{*} C_{T}^{r+1} f, f\right) \leq M^{r(r-1)} M^{2 r}\left(h^{r+1} f, f\right)=M^{r(r+1)}\left(h^{r+1} f, f\right),
$$

which completes the induction step and the result follows.
Lemma 2.7. If C_{T}^{*} is M-hyponormal, then

$$
M^{n(n-1)}\left(C_{T}^{n}\left(C_{T}^{n}\right)^{*} f, f\right) \geq\left((h \circ T)^{n} f, f\right)
$$

for all $n \in \mathbb{N}$ and $f \in L^{2}$.
Proof. The result can be proved using induction on n by applying similar techniques as in Lemma 2.6.

3. Main results

In this section we shall prove our main results.
Theorem 3.1. If C_{T}^{*} is M-hyponormal, then $\left(C_{T}^{*}\right)^{n}$ is $M^{n^{2}}$-hyponormal for all $n \in \mathbb{N}$.

Proof. Since C_{T}^{*} is M-hyponormal, for all $n \in \mathbb{N}$ and $f \in L^{2}$,

$$
\left.M^{n(n+1)}\left(C_{T}^{n}\left(C_{T}^{n}\right)^{*} f, f\right) \geq\left(h^{n} f, f\right) \quad \text { (by Lemmas } 2.7 \text { and } 2.2\right)
$$

Also, by the use of Lemma 2.6, for all $n \in \mathbb{N}$ and $f \in L^{2}$,

$$
\left(\left(C_{T}^{n}\right)^{*} C_{T}^{n} f, f\right) \leq M^{n(n-1)}\left(h^{n} f, f\right)
$$

Hence, for all $n \in \mathbb{N}$ and $f \in L^{2}$, we have either

$$
\left(\left(C_{T}^{n}\right)^{*} C_{T}^{n} f, f\right) \leq M^{2 n^{2}}\left(C_{T}^{n}\left(C_{T}^{n}\right)^{*} f, f\right)
$$

or

$$
\left\|C_{T}^{n} f\right\|^{2} \leq M^{2 n^{2}}\left\|\left(C_{T}^{n}\right)^{*} f\right\|^{2}
$$

or

$$
\left\|C_{T}^{n} f\right\| \leq M^{n^{2}}\left\|\left(C_{T}^{n}\right)^{*} f\right\|,
$$

which proves the required result.

Theorem 3.2. With T_{1}, T_{2}, h_{1} and h_{2} as above, let $A=C_{T_{1}}$ and $B=$ $C_{T_{2}}$. If A^{*} and B^{*} are M-hyponormal such that

$$
h_{1} \leq M^{2}\left(h_{2} \circ T_{2}\right) \quad \text { a.e., }
$$

and

$$
h_{2} \leq M^{2}\left(h_{1} \circ T_{1}\right) \text { a.e., }
$$

then $\left(A^{m} B^{n}\right)^{*}$ is $M^{(m+n)^{2}}$-hyponormal for all $m, n \in \mathbb{N}$.
Proof. Since A^{*} and B^{*} are M-hyponormal, by Lemma 2.2,

$$
h_{i} \leq M^{2}\left(h_{i} \circ T_{i}\right) \quad \text { for } i=1,2 .
$$

Now for $f \in L^{2}$,

$$
\begin{aligned}
\left(\left(A^{m} B^{n}\right)^{*}\left(A^{m} B^{n}\right) f, f\right) & =\left(\left(A^{m}\right)^{*} A^{m} B^{n} f, B^{n} f\right) \\
& \leq M^{m(m-1)}\left(h_{1}^{m} B^{n} f, B^{n} f\right) \quad(\text { by Lemma 2.6 }) \\
& \leq M^{m(m+1)}\left(\left(h_{2} \circ T_{2}\right)^{m} B^{n} f, B^{n} f\right) \\
& \quad\left(\text { since } h_{1} \leq M^{2}\left(h_{2} \circ T_{2}\right) \text { a.e. }\right) \\
& \leq M^{m(m+1)+(n-1)(2 m+n)}\left(h_{2}^{m+n} f, f\right) \quad(\text { by Lemma 2.4 }) \\
& =M^{(m+n)^{2}-(m+n)}\left(h_{2}^{m+n} f, f\right) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\left(\left(A^{m} B^{n}\right)\left(A^{m} B^{n}\right)^{*} f, f\right) & =\left(A^{m} B^{n}\left(B^{n}\right)^{*}\left(A^{m}\right)^{*} f, f\right) \\
& =\left(B^{n}\left(B^{n}\right)^{*}\left(A^{m}\right)^{*} f,\left(A^{m}\right)^{*} f\right) \\
& \geq \frac{1}{M^{n(n-1)}}\left(\left(h_{2} \circ T_{2}\right)^{n}\left(A^{m}\right)^{*} f,\left(A^{m}\right)^{*} f\right)
\end{aligned}
$$

(by Lemma 2.7)

$$
\geq \frac{1}{M^{n(n+1)}}\left(h_{1}^{n}\left(A^{m}\right)^{*} f,\left(A^{m}\right)^{*} f\right) \quad \text { (by hypothesis) }
$$

$$
\geq \frac{1}{M^{n(n+1)+(m-1)(2 n+m)}}\left(\left(h_{1} \circ T_{1}\right)^{n+m} f, f\right)
$$

(by Lemma 2.5)
$=\frac{1}{M^{(m+n)^{2}-(m+n)}}\left(\left(h_{1} \circ T_{1}\right)^{n+m} f, f\right)$

$$
\geq \frac{1}{M^{(m+n)^{2}+(m+n)}}\left(h_{2}^{m+n} f, f\right) \quad \text { (by hypothesis) }
$$

Thus, for all $f \in L^{2}$, we have either

$$
\left(\left(A^{m} B^{n}\right)^{*}\left(A^{m} B^{n}\right) f, f\right) \leq M^{2(m+n)^{2}}\left(\left(A^{m} B^{n}\right)\left(A^{m} B^{n}\right)^{*} f, f\right)
$$

or

$$
\left\|\left(A^{m} B^{n}\right) f\right\|^{2} \leq M^{2(m+n)^{2}}\left\|\left(A^{m} B^{n}\right)^{*} f\right\|^{2}
$$

or

$$
\left\|\left(A^{m} B^{n}\right) f\right\| \leq M^{(m+n)^{2}}\left\|\left(A^{m} B^{n}\right)^{*} f\right\|,
$$

so that $\left(A^{m} B^{n}\right)^{*}$ is $M^{(m+n)^{2}}$-hyponormal.
Following the same lines as in the proof of Theorem 3.2 and induction on p, we can prove the following theorem.

Theorem 3.3. Under the hypothesis of Theorem 3.2, we have

$$
\begin{equation*}
\left(\left[\left(A^{m} B^{n}\right)^{p}\right]^{*}\left(A^{m} B^{n}\right)^{p} f, f\right) \leq M^{p^{2}(m+n)^{2}-p(m+n)}\left(h_{2}^{p(m+n)} f, f\right) \tag{3.3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
M^{p^{2}(m+n)^{2}+p(m+n)}\left(\left(A^{m} B^{n}\right)^{p}\left[\left(A^{m} B^{n}\right)^{p}\right]^{*} f, f\right) \geq\left(h_{2}^{p(m+n)} f, f\right), \tag{3.3.2}
\end{equation*}
$$

for all m, n and $p \in \mathbb{N}$ and $f \in L^{2}$.
With the help of Theorem 3.3, we can generalize Theorem 3.2 in the following form.

TheOrem 3.4. Under the hypothesis of Theorem 3.2, $\left[\left(A^{m} B^{n}\right)^{p}\right]^{*}$ is $M^{p^{2}(m+n)^{2}}$-hyponormal.

Proof. Using (3.3.1) and (3.3.2), for all m, n and $p \in \mathbb{N}$ and $f \in L^{2}$ we have that

$$
\left(\left[\left(A^{m} B^{n}\right)^{p}\right]^{*}\left(A^{m} B^{n}\right)^{p} f, f\right) \leq M^{2 p^{2}(m+n)^{2}}\left(\left(A^{m} B^{n}\right)^{p}\left[\left(A^{m} B^{n}\right)^{p}\right]^{*} f, f\right)
$$

or

$$
\left\|\left(A^{m} B^{n}\right)^{p} f\right\|^{2} \leq M^{2 p^{2}(m+n)^{2}}\left\|\left[\left(A^{m} B^{n}\right)^{p}\right]^{*} f\right\|^{2}
$$

or

$$
\left\|\left(A^{m} B^{n}\right)^{p} f\right\| \leq M^{p^{2}(m+n)^{2}}\left\|\left[\left(A^{m} B^{n}\right)^{p}\right]^{*} f\right\|,
$$

which completes the proof of the theorem.
Corollary 3.5. Under the hypothesis of Theorem 3.2, $\left[(A B)^{p}\right]^{*}$ is $M^{4 p}$. hyponormal. In particular, $(A B)^{*}$ is M^{4}-hyponormal.

Acknowledgements. We are thankful to the referee for his valuable comments.

References

[1] D. J. Harrington and R. Whitley, 'Seminormal composition operators', J. Operator Theory 11 (1984), 125-135.
[2] P. Dibrell and J. T. Campbell, 'Hyponormal powers of composition operators', Proc. Amer. Math. Soc. 102 (4) (1988), 914-18.
[3] P. R. Halmos, A Hilbert space problem book (Van Nostrand, Princeton, N.J., 1976).

Maharshi Dayanand University
Rohtak -124001,
India

[^0]: (c) 1992 Australian Mathematical Society $\mathbf{0 2 6 3 - 6 1 1 5 / 9 2} \$ \mathrm{~A} 2.00+0.00$

