
JFP 16 (4&5): 485–545, 2006. c© 2006 Cambridge University Press

doi:10.1017/S095679680600596X Printed in the United Kingdom

485

Monadic regions�

MATTHEW FLUET

Department of Computer Science, Cornell University, Ithaca, NY 14853, USA

(email: fluet@cs.cornell.edu)

GREG MORRISETT

Division of Engineering and Applied Science, Harvard University, Cambridge, MA 02138, USA

(email: greg@eecs.harvard.edu)

Abstract

Region-based type systems provide programmer control over memory management without

sacrificing type-safety. However, the type systems for region-based languages, such as the

ML-Kit or Cyclone, are relatively complicated, and proving their soundness is non-trivial.

This paper shows that the complication is in principle unnecessary. In particular, we show that

plain old parametric polymorphism, as found in Haskell, is all that is needed. We substantiate

this claim by giving a type- and meaning-preserving translation from a variation of the region

calculus of Tofte and Talpin to a monadic variant of System F with region primitives whose

types and operations are inspired by (and generalize) the ST monad of Launchbury and

Peyton Jones.

Capsule Review

Languages with regions are normally specified using a type-and-effects system to ensure

safety. Because these formulations involve sets of regions and subset checks, it is not obvious

that types for a region calculus can be faithfully encoded into the familiar polymorphism of

System F. In this paper, the authors provide just such a translation.

The key steps are to view Haskell’s state transformers as computations on independent

regions, to add extra function arguments that witness the “outlives” relation between regions,

and to observe that if regions have properly nested lifetimes then any set of coexisting regions

contains one that outlives the others.

The ideas are quite interesting, and Sections 1–3 do a very good job of providing intuition.

The formal translation from regions to monads that follows is technically very involved,

however. Nevertheless, the monadic account of regions is deserving of further study.

1 Background

Tofte and Talpin introduced a new technique for type-safe memory management

based on regions (Tofte & Talpin, 1994; Tofte & Talpin, 1997). In their calculus,

� This is a revised and extended version of the paper that appeared in the Ninth ACM SIGPLAN
International Conference on Functional Programming (ICFP’04) (Fluet & Morrisett, 2004).

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

486 M. Fluet and G. Morrisett

regions are areas of memory holding heap allocated data. Regions are introduced

and eliminated with a lexically-scoped construct:

letregion ρ in e

and thus have last-in-first-out (LIFO) lifetimes following the block structure of the

program. In the example above, a region corresponding to ρ is created upon entering

the expression; for the duration of the expression, data can be allocated into the

region; after evaluating e to a value, all of the data allocated within the region are

reclaimed and the value is returned. The operations for memory management (create

region, reclaim region, and allocate object in region) can be implemented in constant

time and thus regions provide a compelling alternative to garbage collection.

The key contribution of Tofte and Talpin’s framework (hereafter referred to as

TT) was a type-and-effects system that ensures the safety of this allocation and

deallocation scheme. The types of allocated data objects are augmented with the

region in which they live. For example the type:

((int, ρ1) × (int, ρ2), ρ1)

describes pairs of integers where the pair and first component live in region ρ1 and

the second component lives in region ρ2.

Region polymorphism makes it possible to abstract over the regions a computation

manipulates. Furthermore, function types include an effect which records the set of

regions that must still be allocated in order to ensure that the computation is safe

to run. In general, any operation that needs to dereference a pointer into a region

will require that region to be live. For example, a function fst that takes in a pair

of integers and returns the first component without examining it could have a type

of the form:

fst :: ∀ρ1, ρ2, ρ3.((int, ρ1) × (int, ρ2), ρ3)
{ρ3}

−−→ (int, ρ1)

Such a function is polymorphic over regions ρ1, ρ2, and ρ3 so the caller can effectively

re-use the function regardless of where the data were allocated. However, the effect

“{ρ3}” on the arrow indicates that whatever region instantiates ρ3 needs to still

be allocated when fst is called. In principle, neither of the other regions needs to

be live across the call since the function does not examine the integer values. In

practice, ρ1 will be live assuming the caller wishes to use the result.

A unique feature of this scheme is that evaluation can lead to values with dangling

pointers: a pointer to data in some region that has been reclaimed. This is allowed

when the effect of the continuation does not contain the dangling pointer’s region,

for then we know the computation never dereferences the dangling pointer. For

some programs, this allows a region-based memory manager to reclaim strictly more

objects than a trace-based garbage collector. Consider, for example, the following

program:

letregion ρa in

let g = letregion ρb in

let p = (3 at ρa, 4 at ρb) at ρa

in λz:unit. fst [ρa, ρb, ρa] p

in g ()

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

Monadic regions 487

The pair p and its first component are allocated in the outer (older) region ρa
whereas p’s second component is allocated in an inner (younger) region ρb. The

closure bound to g is a thunk that calls fst on p. Note that the region ρb is

deallocated before the thunk is run, and thus g’s closure contains a dangling pointer

to an object that is never dereferenced. The TT system is strong enough to show

that the code is safe.

Variations on the TT typing discipline have been used in a number of projects. The

ML-Kit compiler (Tofte et al., 2002) uses automatic region inference to translate

Standard ML into a region-based language instead of relying upon traditional

garbage collection. In contrast, the Cyclone Safe-C language (Grossman et al., 2002)

exposes regions and region allocation to the programmer. Furthermore, the type-

and-effects system of Cyclone extends that of TT with a form of region subtyping—

pointers into older regions can be safely treated as pointers into younger regions.

This extra degree of polymorphism is crucial for minimizing the lifetimes of objects,

as they would otherwise be constrained to live in the same region. Region subtyping

also simplifies the interfaces for abstract datatypes because the regions of the ADT

can be encapsulated by an upper bound.

Unfortunately, the type-and-effect systems of TT and Cyclone are relatively

complicated. At the type level, they introduce new kinds for regions and effects.

Effects are meant to be treated as sets of regions, so standard term equality no

longer suffices for type checking. Finally, the typing rule for letregion is extremely

subtle because of the interplay of dangling pointers and effects. Indeed, over the

past few years, a number of papers have been published attempting to simplify or at

least clarify the soundness of the construct (Crary et al., 1999; Banerjee et al., 1999;

Helsen & Thiemann, 2000; Calcagno, 2001; Calcagno et al., 2002; Henglein et al.,

2005). All of these problems are amplified in Cyclone because of region subtyping

where the meta-theory is considerably more complicated (Grossman et al., 2001).

Overview

The goal of this work is to find a simpler account of region-based type systems.

In particular, we wish to explain the type soundness of a Cyclone-like language

via translation to a language with only parametric polymorphism, such as

System F (Reynolds, 1974; Girard et al., 1989) extended with appropriate region

primitives. The essence of the translation is that parametric polymorphism alone

provides the power needed to model region effects.

Our work was inspired by the ST monad of Launchbury and Peyton Jones (1995;

1994) which is used to encapsulate a “stateful” computation within a pure functional

language such as Haskell. Indeed, the runST primitive turns out to be a good

approximation of letregion in that it creates a new store, allows one to allocate

values in the store, and upon completion, deallocates the store and returns a value

that may have dangling pointers. The runST primitive can be assigned a conventional

polymorphic type, which, through the magic of parametricity, ensures that dangling

pointers are never dereferenced. Unfortunately, runST is not sufficient to encode

region-based languages since there is no support for nested stores. In particular,

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

488 M. Fluet and G. Morrisett

a nested application of runST cannot allocate or touch data in an outer store.

An extension to ST that admits a limited form of nested stores was proposed by

Launchbury and Sabry (1997) but, as we discuss in Section 2, it does not provide

enough flexibility to encode the region polymorphism of TT or Cyclone.

In this paper, we consider a monad family, called RGN, which does provide the

necessary power to encode region calculi and back this claim by giving a translation

from a novel region calculus to a monadic version of System F which we call FRGN.

The central element of the translation is the presence of terms that witness region

subtyping. These terms provide the evidence needed to safely “shift” computations

from one store to another. We believe that this translation sheds new light on both

region calculi as well as Haskell’s ST monad. In particular, it shows that the notion

of region subtyping is in some sense central for supporting nested stores.

The remainder of this paper is structured as follows. In the following section, we

examine more closely why the ST monad and its variants are insufficient for encoding

region-based languages. This motivates the design for FRGN, which is presented more

formally in Section 3. A key aspect of FRGN is that no extension to the type system

of System F is required. We give dynamic and static semantics for the language,

and prove the soundness of the type system. Encapsulation of region computations

in FRGN is ensured by the type system, using parametric polymorphism. We feel

that Sections 2 and 3 develop sufficient intuition to reasonably establish our goal of

finding a simpler account of region-based type systems.

However, the skeptical reader may well wonder if the simplicity of the FRGN type

system points to some deficiency, failing to capture all of the idioms available in

type-and-effect systems for region calculi. In the interest of rigorously demonstrating

that we have lost no power in adopting FRGN, Section 4 returns to region calculi,

developing a source language that captures the key aspects of TT and Cyclone-like

region calculi. Then, in Section 5, we show how this language can be translated to

FRGN in a type- and meaning-preserving fashion, thereby establishing our claim that

parametric polymorphism is sufficient for encoding the type-and-effects systems of

region calculi. Much of the technical complexity stems from our desire to establish

the correctness of the translation, in addition to the simpler property of type

preservation. Section 6 considers the expressiveness of our region calculi. Some

readers may prefer to skip Sections 4–6 on a first reading.

In Sections 7 and 8, we consider related work and summarize and note directions

for future work. Due to space limitations, the proofs of the theorems stated here

can be found in a companion technical report (Fluet, 2004).

2 From ST to RGN

Launchbury and Peyton Jones (1995; 1994) introduced the ST monad to encapsulate

stateful computations within the pure functional language Haskell. Three key insights

give rise to a safe and efficient implementation of stateful computations. First, a

stateful computation is represented as a store transformer, a description of commands

to be applied to an initial store to yield a final store. Second, the store can not be

duplicated, because the state type is opaque and all primitive store transformers use

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

Monadic regions 489

the store in a single-threaded manner; hence, a stateful computation can update the

store in place. Third, parametric polymorphism can be used to safely encapsulate

and run a stateful computation.

The types and operations associated with the ST monad are the following:

τ ::= . . . | ST τs τa | STRef τs τa

returnST :: ∀s.∀a.a → ST s a

thenST :: ∀s.∀a, b.ST s a → (a → ST s b) → ST s b

newSTRef :: ∀s.∀a.a → ST s (STRef s a)

readSTRef :: ∀s.∀a.STRef s a → ST s a

writeSTRef :: ∀s.∀a.STRef s a → a → ST s ()

runST :: ∀a.(∀s.ST s a) → a

The type ST s a is the type of computations which operate on a store and deliver a

value of type a. The type s behaves like a name (or index) for the store and serves to

distinguish computations operating on one store from computations operating on

another. The type STRef s a is the type of references allocated from a store indexed

by s and containing a value of type a.

The operations returnST and thenST are the unit and bind operations of the ST

monad. The former yields the trivial store transformer that delivers its argument

without affecting the store. The latter composes store transformers in sequence,

passing the result and final store of the first computation to the second; notice that

the two computations must manipulate stores indexed by the same type.

The next three operations are primitive store transformers that operate on the

store. newSTRef takes an initial value and yields a store transformer, which, when

applied to a store, allocates a fresh reference, and delivers the reference and the store

augmented with the reference mapping to the initial value. Similarly, readSTRef and

writeSTRef yield computations that respectively query and update the mappings of

references to values in the current store. Note that all of these operations require

the store index types of ST and STRef to be equal.

In this section, we will write short code examples in pseudo-Haskell syntax1

using the do notation, which provides a more conventional syntax for monadic

programming. This notation allows do x <- e; stmts as shorthand for thenST

e (λx. do stmts) and do e as shorthand for e.

Here is a function yielding a computation that adds the contents of two references

into a new reference:

add :: ∀s. STRef s Int → STRef s Int → ST s Int

add v w = do a <- readSTRef v

b <- readSTRef w

newSTRef (a + b)

Finally, the operation runST encapsulates a stateful computation. To do so, it

takes a store transformer as its argument, applies it to an initial empty store, and

returns the result while discarding the final store. Note that to apply runST, we

1 We use Haskell as a convenient and familiar notation, but the correspondence is quite weak. In
particular, all of the calculi presented in the remainder of this paper will evaluate under a call-by-value
semantics.

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

490 M. Fluet and G. Morrisett

instantiate a with the type of the result to be returned, and then supply a store

transformer, which is polymorphic in the store index type. The effect of this universal

quantification is that the store transformer makes no assumptions about the initial

store (e.g., the existence of pre-allocated references). Furthermore, the instantiation

of the type variable a occurs outside the scope of the type variable s; this prevents the

store transformer from delivering a value whose type mentions s. Thus, references or

computations depending on the final store cannot escape beyond the encapsulation

of runST.

All of these observations can be carried over to the region case, where we interpret

stores as regions. We introduce the type RGN r a as the type of computations which

transform a region indexed by r and deliver a value of type a. Likewise, the type

RGNLoc r a is the type of (immutable) locations allocated in a region indexed by r

and containing a value of type a. Each of the operations in the ST monad has an

isomorphic analogue in the RGN monad:

returnRGN :: ∀r.∀a.a → RGN r a

thenRGN :: ∀r.∀a, b.RGN r a → (a → RGN r b) → RGN r b

newRGNLoc :: ∀r.∀a.a → RGN r (RGNLoc r a)

readRGNLoc :: ∀r.∀a.RGNLoc r a → RGN r a

runRGN :: ∀a.(∀r.RGN r a) → a

Does this suffice to encode region-based languages, where runRGN corresponds to

letregion? In short, it does not. In a region-based language, it is critical to allocate

locations in and read locations from an outer region while in the scope of an

inner region. For example, an essential idiom in region-based languages is to enter

a letregion in which temporary data is allocated, while reading input from and

allocating output in an outer region; upon leaving the letregion, the temporary data

is reclaimed, but the input and output data are still available.

Unfortunately, this idiom cannot be accommodated in the framework presented

thus far. For example, consider this canonical example of region-based memory

management usage:

letregion ρ1 in

let a = 1 at ρ1 in

let c = letregion ρ2 in

let b = 7 at ρ2 in

let z = (a ⊕ b) at ρ1 in

z in

. . . c . . .

where we think of a as an input, b as a temporary, and c as an output. A näıve

translation fails to type-check:

runRGN (Λr1.

do a <- newRGNLoc [r1] 1

c <- runRGN (Λr2.

do b <- newRGNLoc [r2] 7

z <- a ⊕ b

newRGNLoc [r1] z)

. . . c . . .)

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

Monadic regions 491

The error arises from the fact that allocating a temporary in the younger region

(newRGNLoc [r2] 7) yields a computation of type RGN r2, while allocating the

result in the older region (newRGNLoc [r1] z) yields a computation of type RGN r1.

These computations cannot be sequenced, since their region indices differ.

Launchbury and Sabry (1997) argue that the principle behind runST can be

generalized to provide nested scope. They introduce two additional operations

blockST :: ∀s.∀a.(∀r.ST (s, r) a) → ST s a

importSTRef :: ∀s.∀r.∀a.STRef s a → STRef (s, r) a

where blockST encapsulates a nested scope and importSTRef explicitly allows

references from an enclosing scope to be manipulated by the inner scope. Similarly,

Peyton Jones2 suggests introducing the constant

liftST :: ∀s.∀r.∀a.ST s a → ST (s, r) a

in lieu of importSTRef , with the same intention of importing computations from an

outer scope into the inner scope. In essence, liftST encodes the stack of stores using

a tuple type for the index on the ST monad.

Should we adopt blockST and liftST in the RGN monad as letRGN and liftRGN?

At first glance, doing so would appear to provide sufficient expressiveness to encode

region-based languages. We can “fix” our previous translation as follows:

runRGN (Λr1.

do a <- newRGNLoc [r1] 1

c <- letRGN (Λr2.

do b <- newRGNLoc [r2] 7

z <- a ⊕ b

liftRGN (newRGNLoc [r1] z))

. . . c . . .)

However, another critical aspect of region-based languages is region polymorphism.

For example, consider a generalization of the add function above, where each of the

two input locations are allocated in different regions, the output location is to be

allocated in a third region, and the result computation is to be indexed by a fourth

region; such a function would have the type:

gadd :: ∀r1,r2,r3,r4.
RGNLoc r1 Int → RGNLoc r2 Int → RGN r4 (RGNLoc r3 Int)

However, there is no way to write gadd with liftRGN terms that will result in

sufficient polymorphism over regions. For example, if we write

gadd v w = liftRGN (do a <- readRGNLoc v

b <- liftRGN (readRGNLoc w)

liftRGN (liftRGN (newRGNLoc (a + b))))

then we produce a function with the type:

gadd :: ∀r1,r2,r3,r4.
RGNLoc ((r1, r2), r3) Int → RGNLoc (r1, r2) Int →
RGN (((r1, r2), r3), r4) (RGNLoc r1 Int)

The problem is that the explicit connection between the outer and inner regions in

the product type enforces a total order on regions, which leaks into the types of

2 private communication

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

492 M. Fluet and G. Morrisett

region allocated values. The function above only works when the four regions are

consecutive and the output location is allocated in the outermost region, the input

locations are allocated in the next two regions, and the computation is indexed by

the innermost region.

However, the order of the regions should not matter. The only requirement is

that if the final computation (indexed by r4) is ever run, then each of the regions

r1, r2, and r3 must be live. To put it another way, the three regions are older than

(i.e., subtypes of) region r4. Hence, we adopt a simple solution, one that enables

the translation given in Section 5, whereby we abstract the liftRGN applications and

pass evidence that witnesses the region subtyping.

gadd :: ∀r1,r2,r3,r4.
(∀b.RGN r1 b → RGN r4 b) →
(∀b.RGN r2 b → RGN r4 b) →
(∀b.RGN r3 b → RGN r4 b) →
RGNLoc r1 Int → RGNLoc r2 Int →
RGN r4 (RGNLoc r3 Int)

gadd ev1 ev2 ev3 v w = do a <- ev1 (readRGNLoc v)

b <- ev2 (readRGNLoc w)

ev3 (newRGNLoc (a + b))

While this evidence can be assembled from liftRGN terms, we find that the key

notion is subtyping on regions and evidence that witnesses the subtyping. The

product type used in blockST is one way of connecting the outer and inner stores,

but all the “magic” happens with liftST. Therefore, we adopt an approach that fuses

the two operations into letRGN:

r1 � r2 ≡ ∀b.RGN r1 b → RGN r2 b

letRGN :: ∀r1.∀a.(∀r2.r1 � r2 → RGN r2 a) → RGN r1 a

The argument to letRGN is given the evidence that the outer (older) region is a

subtype of the new (younger) region, which it can use in the region computation.

The same parametricity argument that applied to runST applies here: locations and

computations from the inner region cannot escape beyond the encapsulation of

letRGN. We no longer need a product type connecting the outer and inner regions,

as this relationship is given by the witness function.

We note that much of the development in this paper could be pursued using

letRGN and liftRGN with types analogous to blockST and liftST (i.e., using a

product type) and appropriately assembling evidence from liftRGN terms. However,

we have adopted the approach given above for a number of reasons. First, the

types are smaller than under the alternative scheme. Looking forward to Section 5,

we trade the number of terms in scope for the size of the types in scope. Second,

one is encouraged to write region polymorphic functions with the fused letRGN,

whereas one can write region constrained functions with liftRGN. Third, letRGN

makes it clear that the only witness functions are those that arise from entering a

new region. Finally, although we have made the type r1 � r2 a synonym for a witness

function, we can imagine a scheme in which this primitive evidence is abstract and

we provide additional operations for combining evidence and operations for taking

evidence to functions for importing RGN computations or RGNLoc locations. The

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

Monadic regions 493

latter corresponds to pointer subtyping in Cyclone, where a pointer to region r1 may

be coerced to a pointer to region r2 when r1 outlives r2.

3 Target language: FRGN

The language FRGN is an extension of System F (Reynolds, 1974; Girard et al.,

1989) (also referred to as the polymorphic lambda calculus), adding the types and

operations from the RGN monad. As described in the previous section, the design

of FRGN takes inspiration from the work on monadic state (Launchbury & Peyton

Jones, 1995; Launchbury & Peyton Jones, 1994; Launchbury & Sabry, 1997; Ariola

& Sabry, 1998; Semmelroth & Sabry, 1999; Moggi & Sabry, 2001). Essentially, FRGN

uses an explicit region monad to enforce the locality of region allocated values.

We present the full formal language FRGN and (sketch) a syntactic proof of

type soundness. We begin with a presentation of the language (surface syntax,

computation syntax, dynamic semantics, and static semantics) and then proceed to

the proof.

The dynamic semantics defines a large-step (or natural) semantics, which defines

an evaluation relation from towers of stacks of regions and expressions to values.

Our main reason for adopting a large-step operational semantics is to simplify the

theorems and proofs of Section 5; establishing the correctness of the translation

would be more difficult using small-step operational semantics, due to differing

numbers of intermediate small-steps.

To prove type soundness, we adopt a proof method using natural transition

semantics (Volpano & Smith, 1997; Smith & Volpano, 1998), which models program

execution in terms of transitions between partial derivations. Although the language

presented here can only describe terminating programs, this proof method can be

extended in a straight-forward manner to handle non-terminating executions, as

will arise from adding a fixRGNLoc command. Adopting this method allows us to

prove type soundness with the familiar progress and preservation theorems, without

needing define a small-step operational semantics nor establish its correspondence

with the large-step operational semantics we wish to use in Section 5. We remark

further on this proof method at the end of Section 3.5.

3.1 Syntax of FRGN

Figure 1 presents the syntax of “surface programs” (that is, excluding syntax and

semantic values that will appear in the operational semantics) of FRGN. In the

following sections, we explain and motivate the main constructs of FRGN.

3.1.1 Types

Types in FRGN include all those found in System F (function and product types

and type abstractions) along with the primitive types int and bool. The RGN τr τa
and RGNLoc τr τa types were introduced in the previous section. We add the type

RGNHandle τr as the type of handles for the region indexed by the type τr . A value

of this type is a region handle – a run-time value holding the data necessary to

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

494 M. Fluet and G. Morrisett

i ∈ �
α, β, γ ∈ TVars

f, x ∈ Vars

Surface types

τ ::= int | bool | τ1 → τ2 | τ1 × · · · × τn | α | ∀α.τ |
RGN τr τa | RGNLoc τr τa | RGNHandle τr

Surface terms

e ::= i | e1 � e2 | e1 � e3 | tt | ff | if eb then et else ef |
x | λx:τ.e | e1 e2 | (e1, . . . , en) | seli e | Λα.e | e [τ] |
let x = e1 in e2 | κr | κ

Surface commands

κr ::= runRGN [τa] v

κ ::= returnRGN [τr] [τa] v | thenRGN [τr] [τa] [τb] v1 v2 |
letRGN [τr] [τa] v | newRGNLoc [τr] [τa] v1 v2 | readRGNLoc [τr] [τa] v

Surface values

v ::= i | tt | ff | x | λx:τ.e | (v1, . . . , vn) | Λα.e | κr | κ

Fig. 1. Surface syntax of FRGN

allocate values within a region. Region indices (types) and region handles (values)

are distinguished in order to maintain a phase distinction between compile-time and

run-time expressions and to more accurately reflect implementations of regions. The

original Tofte-Talpin region calculus (1994; 1997) distinguished between put and

get effects; a put entails allocating in a region (and requires a handle), while a get

entails reading through a pointer (and does not require a handle). This ensures that

region indices, like other types, have no run-time significance and may be erased

from compiled code. On the other hand, region handles are necessary at run-time to

allocate values within a region.

Region indices could be introduced as a distinct kind, but doing so unnecessarily

complicates the type system. Hence, we allow an arbitrary type in the first argument

of the RGN monad type constructor. While the type RGN bool int is well-formed,

a value of such type cannot arise during the execution of a well-typed program.

Furthermore, surface programs will never require a region index to be represented

by anything other than a type variable.

3.1.2 Terms

As with types, terms in FRGN include all those found in System F; constants,

arithmetic and boolean operations, function abstraction and application, tuple in-

troduction and elimination, and type abstraction and instantiation are all completely

standard.

We let κr and κ range over the syntactic class of monadic commands. (Equivalently,

and as suggested by the explicit type annotations and the restriction of sub-

expressions to values, we can consider the monadic commands as constants with

polymorphic types in a call-by-value interpretation of FRGN. Presenting monadic

commands in this fashion avoids intermediate terms in the operational semantics

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

Monadic regions 495

l ∈ Locations

Region names r ∈ Rnames

Region placeholders ρ ::= r | •
Stack names s ∈ Snames

Stack placeholders σ ::= s | ◦

Computation types τ ::= . . . | σ	ρ

Computation terms e ::= . . . | 〈l〉σ	ρ | handle(σ	ρ)

Computation commands κ ::= . . . | witnessRGN σ	ρ1 σ	ρ2 [τa] v

Computation values v ::= . . . | 〈l〉σ	ρ | handle(σ	ρ)

Regions R ::= {l1 �→ v1, . . . , ln �→ vn}
Stacks S ::= · | S, r �→ R (ordered domain)

Towers T ::= · | T , s �→ S (ordered domain)

Fig. 2. Computation syntax of FRGN

corresponding to partial application.) Each of the commands has been described

previously.

3.1.3 Computation Syntax of FRGN

Figure 2 presents the syntax of “computation programs,” which extends the syntax

of the previous section with semantic values that appear in the operational semantics.

Stack names, region names, and locations are used to represent pointers to region

allocated data. Because runRGN computations can be nested, we need a means to

distinguish data allocated in regions that belong to different runRGN computations;

stack names serve this purpose. Each runRGN computation is associated with a

unique stack, which collects and identifies all regions belonging to that computation.

Stack and region placeholders distinguish between live and dead stacks and regions;

a dead stack (◦) or region (•) corresponds to a deallocated stack or region.

The computation syntax adds one new type form and two new expression forms.

The type σ	ρ is the instantiated form of a region index (hence, ◦	• corresponds to

a dead region in a dead stack). Such a type identifies the stack and region in which

a monadic region computation is executing. The expression 〈l〉σ	ρ is the runtime

representation of a RGNLoc σ	ρ τa; that is, it is the pointer associated with a region

allocated value. Likewise, the expression handle(σ	ρ) is the runtime representation

of a region handle (RGNHandle σ	ρ).

The computation syntax also adds a new command form. The command

witnessRGN σ	ρ1 σ	ρ2 [τa] v casts a computation from the type RGN σ	ρ1 τa
to the type RGN σ	ρ2 τa. (This command is used to construct terms of the type

τr1 � τr2 ≡ ∀β.RGN τr1 β → RGN τr2 β introduced in Section 2.) Operationally, such

a command is the identify function, so long as the cast is valid. The static semantics

of the next section ensure that all such casts in a well-typed program are valid.

Thus far, we have talked about region allocated data without discussing where

such data is stored. Storable (i.e., closed) values are associated with locations in

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

496 M. Fluet and G. Morrisett

T ; e ↪→ v

T ; i ↪→ i

T ; e1 ↪→ v1 v1 ≡ i1
T ; e2 ↪→ v2 v2 ≡ i2

i1 � i2 = i

T ; e1 � e2 ↪→ i

T ; e1 ↪→ v1 v1 ≡ i1
T ; e2 ↪→ v2 v2 ≡ i2

i1 � i2 = b

T ; e1 � e2 ↪→ b T ; tt ↪→ tt

T ; ff ↪→ ff

T ; eb ↪→ vb vb ≡ tt

T ; et ↪→ v

T ; if eb then et else ef ↪→ v

T ; eb ↪→ vb vb ≡ ff

T ; ef ↪→ v

T ; if eb then et else ef ↪→ v

T ; λx:τ.e ↪→ λx:τ.e

T ; e1 ↪→ v1 v1 ≡ λx:τ1.e
′
1

T ; e2 ↪→ v2 T ; e′
1[v2/x] ↪→ v3

T ; e1 e2 ↪→ v3

T ; e1 ↪→ v1 . . . T ; en ↪→ vn

T ; (e1, . . . , en) ↪→ (v1, . . . , vn)

T ; e ↪→ v v ≡ (v1, . . . , vn)

1 � i � n

T ; seli e ↪→ vi

T ; Λα.e ↪→ Λα.e

T ; e ↪→ v v ≡ Λα.e′

T ; e′[τ/α] ↪→ v′

T ; e [τ] ↪→ v′

T ; e1 ↪→ v1

T ; e2[v1/x] ↪→ v2

T ; let x = e1 in e2 ↪→ v2

s /∈ dom(T)

T , s �→ (·, r �→ {}); v [s	r] handle(s	r) ↪→ v′ v′ ≡ κ′

T , s �→ (·, r �→ {}); κ′ ↪→κ S
′′; v′′ S ′′ ≡ ·, r �→ R′′

T ; runRGN [τa] v ↪→ v′′[◦	 • /s	r] T ; κ ↪→ κ

T ; 〈l〉σ	ρ ↪→ 〈l〉σ	ρ T ; handle(σ	ρ) ↪→ handle(σ	ρ)

Fig. 3. Dynamic semantics of FRGN (expressions)

regions R; regions are ordered into stacks S; finally, stacks are ordered into towers

T . We use the notation S(r, l) and T (s, r, l) for iterated lookups of values in stacks and

towers, repectively. Again, towers are a technical device that serve to distinguish nes-

ted runRGN computations from one another. Intuitively, executing a runRGN com-

putation adds a new stack to the top of the tower (the new stack is deallocated upon

finishing the computation), while executing a letRGN command adds a new region to

the top of the topmost stack (the new region is deallocated upon finishing the com-

mand). These intuitions are formalized in the dynamic semantics of the next section.

3.2 Dynamic semantics of FRGN

Two mutually inductive judgements (one for pure expressions (Figure 3) and one

for monadic commands (Figure 4)) define the dynamic semantics. We state without

proof that the dynamic semantics is deterministic; it is syntax-directed, taking T ; e

configurations modulo α-conversion, including conversion of stack names, region

names, and locations, which are (uniquely) bound in the tower T .

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

Monadic regions 497

T , s �→ S ; κ ↪→κ S
′; v

τr ≡ s	r

T , s �→ S ; returnRGN [τr] [τa] v ↪→κ S ; v

τr ≡ s	r v1 ≡ κ1 T , s �→ S ; κ1 ↪→κ S
′; v′

1

T , s �→ S ′; v2 v′
1 ↪→ v′′ v′′ ≡ κ′′ T , s �→ S ′; κ′′ ↪→κ S

′′′; v′′′

T , s �→ S ; thenRGN [τr] [τa] [τb] v1 v2 ↪→κ S
′′′; v′′′

τr ≡ s	r1 r1 ∈ dom(S) r2 /∈ dom(S)

T , s �→ (S, r2 �→ {}); v [s	r2] w handle(s	r2) ↪→ v′ v′ ≡ κ′

T , s �→ (S, r2 �→ {}); κ′ ↪→κ S
′′′; v′′ S ′′′ ≡ S ′′, r2 �→ R′′

2

T , s �→ S ; letRGN [τr] [τa] v ↪→κ S
′′[s	 • /s	r2]; v

′′[s	 • /s	r2]

where w = (Λβ.λk:RGN s	r1 β.witnessRGN s	r1 s	r2 [β] k)

σ	ρ1 ≡ s	r1 σ	ρ2 ≡ s	r2 v ≡ κ

S ≡ S1, r1 �→ R1, S2, r2 �→ R2, S3 T , s �→ S ; κ ↪→κ S
′; v′

T , s �→ S ; witnessRGN σ	ρ1 σ	ρ2 [τa] v ↪→κ S
′; v′

τr ≡ s	r v1 ≡ handle(s	r) r ∈ dom(S) l /∈ dom(S (r))

T , s �→ S ; newRGNLoc [τr] [τa] v1 v2 ↪→κ S{(r, l) �→ v2}; 〈l〉s	r

τr ≡ s	r v ≡ 〈l〉s	r r ∈ dom(S) l ∈ dom(S (r)) S (r, l) = v′

T , s �→ S ; readRGNLoc [τr] [τa] v ↪→κ S ; v′

Fig. 4. Dynamic semantics of FRGN (commands)

The judgement T ; e ↪→ v asserts that evaluating the closed expression e in tower

T results in a value v. Likewise, the judgement T , s �→ S; κ ↪→ S ′; v asserts that

evaluating the closed monadic command κ in a non-empty tower whose top stack

is S results in a new top stack S ′ and a value v.

The rules for T ; e ↪→ v for expression forms other than runRGN are completely

standard. The tower T is passed unchanged to sub-evaluations. The rule for

runRGN [τa] v runs a monadic computation. The rule executes in the following

manner. First, fresh stack and region names s and r are chosen. Next, the argument

v is applied to the region index s	r and the region handle handle(s	r) and evaluated

in the extended tower T , s �→ (·, r �→ {}) (that is, the tower T extended with a stack

consisting of a single empty region (bound to r) bound to s) to a monadic command

κ′. This command is evaluated under the extended tower to a modified region and

a value v′′. The modified region is discarded, while occurrences of s	r are replaced

by ◦	• in v′′, because the stack and region have been deallocated and are no longer

accessible.

The rules for T , s �→ S; κ ↪→ S ′; v peform monadic operations that side-effect the

top stack. The monadic unit and bind operations are standard; in particular, note

the manner in which the rule for thenRGN threads the modified top stack through

the computation.

The rule for letRGN [s	r1] τa v executes in much the same way as the rule for

runRGN. First, a fresh region name r2 is chosen. Next, the argument v is applied to

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

498 M. Fluet and G. Morrisett

the region index s	r2, a witness function, and the region handle handle(s	r2) and

evaluated under an extended tower that adds an empty region bound to r2 to the top

of the stack. This evaluation yields a monadic command κ′, which is also evaluated

under the extended tower to a modified top stack and value v′′. The modified top

region is discarded, while occurrences of s	r2 are replaced by s	• in the modified top

stack and in v′′, because the region has been deallocated and is no longer accessible.

The rule for witnessRGN permits a monadic computation to occur when the

region names r1 and r2 appear in order in the top stack.

The rules for newRGNLoc and readRGNLoc respectively allocate and read region

allocated data. The rule for newRGNLoc requires a region handle for a region in

the top stack, chooses a fresh location in the region, and returns a modified top

stack (with the value stored at the freshly chosen location) and the location. The

rule for readRGNLoc requires a location into a region in the top stack, and returns

the value stored in the location.

It is important to note that the execution of a monadic command is predicated

upon the command’s region index corresponding to a live region in the top stack.

While it will be possible to have commands that reference deallocated stacks and

regions, it will not be possible to execute them. Furthermore, the restriction to the

top stack corresponds to the fact that while runRGN computations can be nested,

the inner computation must complete before executing a command in the outer

computation. The type system of the next section ensures that these invariants are

preserved during the execution of well-typed programs.

3.3 Natural Transition Semantics of FRGN

While the dynamic semantics presented thus far suffices to describe the complete

execution of a program, it cannot describe non-terminating executions or failed

executions. To do so, we adopt a natural transition semantics (Volpano & Smith, 1997;

Smith & Volpano, 1998), which provides a notion of attempted or partial execution.

The key idea is to model program execution as a sequence of partial derivation trees,

which may or may not converge to a complete derivation. The advantage of the

natural transition semantics is that it is directly related to the large-step operational

semantics of the language, while being capable of describing the evaluation of

programs that (a) diverge, (b) terminate with a value, and (c) “get stuck.”

Before defining partial derivation trees, we distinguish between complete judge-

ments (T ; e ↪→ v and T , s �→ S; κ ↪→κ S ′; v, introduced in the dynamic semantics) and

pending judgements, which are judgements of the form T ; e ↪→ ? or T , s �→ S; κ ↪→κ ?

and represent expressions and commands that need to be evaluated.

A partial derivation tree is an inductively defined structure given by the following

grammar:

Predicates P

Complete derivations � J ::= [T ; e ↪→ v] | [T , s �→ S ; κ ↪→κ S
′; v] | P

Partial derivation trees D ::= J | [T ; e ↪→ ?]() | [T , s �→ S ; κ ↪→κ ?]()

| [T ; e ↪→ ?](J1, . . . , Jk−1,Dk)
†

| [T , s �→ S ; κ ↪→κ ?](J1, . . . , Jk−1,Dk)
‡

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

Monadic regions 499

where

� A complete derivation represents the entire derivation tree (comprised of

instances of the evaluation rules) that terminates with the eponymous complete

judgement.

† There is an instance of an evaluation rule with the form

J1 · · · Jn

T ; e ↪→ v

where 1 � k � n and

— for i < k, Ji ≡ [Ji].

— if Jk ≡ T ; e ↪→ v, then Dk = [T ; e ↪→ v] or Dk = [T ; e ↪→ ?](. . .).

— if Jk ≡ T , s �→ S; κ ↪→κ S ′; v, then Dk = [T , s �→ S; κ ↪→κ S ′; v] or

Dk = [T , s �→ S; κ ↪→κ ?](. . .).

— if Jk ≡ P , then Dk = P .

‡ There is an instance of an evaluation rule with the form

J1 · · · Jn

T , s �→ S ; κ ↪→κ S
′; v

where 1 � k � n and

— for i < k, Ji ≡ [Ji].

— if Jk ≡ T ; e ↪→ v, then Dk = [T ; e ↪→ v] or Dk = [T ; e ↪→ ?](. . .).

— if Jk ≡ T , s �→ S; κ ↪→κ S ′; v, then Dk = [T , s �→ S; κ ↪→κ S ′; v] or

Dk = [T , s �→ S; κ ↪→κ ?](. . .).

— if Jk ≡ P , then Dk = P .

Note that the definition of a partial derivation tree requires that a node labeled

with a pending judgement must have children that are “compatible” with the

corresponding complete judgement. Furthermore, each node of a partial derivation

tree can have at most one pending judgement amongst its children; the pending

judgement must be the rightmost child and the parent node must also be a pending

judgement.

Figure 5 gives (a representative sample of) the rules for the natural transition

semantics. The rules are derived systematically from the judgements of Figures 3

and 4. In addition, note the two “congruence” rules. Finally, it should be clear that

each transition moves a partial derivation tree “closer” to a complete judgement.

Let −→∗ be the reflexive, transitive closure of the −→ relation.

The natural transition semantics enjoys soundness and completeness properties

demonstrating that it accurately models the dynamic semantics in the case of

terminating computations.

Lemma 3.1
If D is a partial derivation and D −→ D′, then D′ is a partial derivation.

Lemma 3.2 (NTS Soundness)
(1) If [T ; e ↪→ ?]() −→∗ D′ and D′ contains no pending judgements,

then D′ is a complete derivation for a judgement of the form T ; e ↪→ v

(i.e., D′ ≡ J′ ≡ [T ; e ↪→ v]).

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

500 M. Fluet and G. Morrisett

D −→ D′

[T ; λx:τ.e ↪→ ?]() −→
[
T ; λx:τ.e ↪→ λx:τ.e

]

[T ; e1 e2 ↪→ ?]() −→ [T ; e1 e2 ↪→ ?]([T ; e1 ↪→ ?]())

v1 ≡ λx:τ1.e
′
1

[T ; e1 e2 ↪→ ?]([T ; e1 ↪→ v1]) −→ [T ; e1 e2 ↪→ ?]([T ; e1 ↪→ v1], v1 ≡ λx:τ1.e
′
1)

[T ; e1 e2 ↪→ ?]([T ; e1 ↪→ v1], v1 ≡ λx:τ1.e
′
1) −→

[T ; e1 e2 ↪→ ?]([T ; e1 ↪→ v1], v1 ≡ λx:τ1.e
′
1, [T ; e2 ↪→ ?]())

[T ; e1 e2 ↪→ ?]([T ; e1 ↪→ v1], v1 ≡ λx:τ1.e
′
1, [T ; e2 ↪→ v2]) −→

[T ; e1 e2 ↪→ ?]([T ; e1 ↪→ v1], v1 ≡ λx:τ1.e
′
1, [T ; e2 ↪→ v2], [T ; e′

1[v2/x] ↪→ ?]())

[T ; e1 e2 ↪→ ?]

(
[T ; e1 ↪→ v1], v1 ≡ λx:τ1.e

′
1,

[T ; e2 ↪→ v2], [T ; e′
1[v2/x] ↪→ v3]

)
−→

⎡
⎣ T ; e1 ↪→ v1 v1 ≡ λx:τ1.e

′
1

T ; e2 ↪→ v2 T ; e′
1[v2/x] ↪→ v3

T ; e1 e2 ↪→ v3

⎤
⎦

s /∈ dom(T)

[T ; runRGN [τa] v ↪→ ?]() −→ [T ; runRGN [τa] v ↪→ ?](s /∈ dom(T))

[T ; runRGN [τa] v ↪→ ?](s /∈ dom(T)) −→
[T ; runRGN [τa] v ↪→ ?](s /∈ dom(T), [T , s �→ (·, r �→ {}); v [s	r] handle(s	r) ↪→ ?]())

v′ ≡ κ′

[T ; runRGN [τa] v ↪→ ?]

(
s /∈ dom(T),
[T , s �→ (·, r �→ {}); v [s	r] handle(s	r) ↪→ v′]

)
−→

[T ; runRGN [τa] v ↪→ ?]

(
s /∈ dom(T),
[T , s �→ (·, r �→ {}); v [s	r] handle(s	r) ↪→ v′], v′ ≡ κ′

)

[T ; runRGN [τa] v ↪→ ?]

(
s /∈ dom(T),
[T , s �→ (·, r �→ {}); v [s	r] handle(s	r) ↪→ v′], v′ ≡ κ′

)
−→

[T ; runRGN [τa] v ↪→ ?]

⎛
⎝s /∈ dom(T),

[T , s �→ (·, r �→ {}); v [s	r] handle(s	r) ↪→ v′], v′ ≡ κ′,
[T , s �→ (·, r �→ {}); κ′ ↪→κ ?]()

⎞
⎠

S ′′ ≡ ·, r �→ R′′

[T ; runRGN [τa] v ↪→ ?]

⎛
⎝s /∈ dom(T),

[T , s �→ (·, r �→ {}); v [s	r] handle(s	r) ↪→ v′], v′ ≡ κ′,
[T , s �→ (·, r �→ {}); κ′ ↪→κ S ′′; v′′]

⎞
⎠ −→

[T ; runRGN [τa] v ↪→ ?]

⎛
⎝s /∈ dom(T),

[T , s �→ (·, r �→ {}); v [s	r] handle(s	r) ↪→ v′], v′ ≡ κ′,
[T , s �→ (·, r �→ {}); κ′ ↪→κ S ′′; v′′], [S ′′ ≡ ·, r �→ R′′]

⎞
⎠

[T ; runRGN [τa] v ↪→ ?]

⎛
⎝s /∈ dom(T),

[T , s �→ (·, r �→ {}); v [s	r] handle(s	r) ↪→ v′], v′ ≡ κ′,
[T , s �→ (·, r �→ {}); κ′ ↪→κ S ′′; v′′], S ′′ ≡ ·, r �→ R′′

⎞
⎠ −→

⎡
⎢⎢⎣

s /∈ dom(T)
T , s �→ (·, r �→ {}); v [s	r] handle(s	r) ↪→ v′ v′ ≡ κ′

T , s �→ (·, r �→ {}); κ′ ↪→κ S ′′; v′′ S ′′ ≡ ·, r �→ R′′

T ; runRGN [τa] v ↪→ v′′[◦	 • /s	r]

⎤
⎥⎥⎦

D −→ D′

[T ; e ↪→ ?](J1, . . . , Jk ,D) −→
[T ; e ↪→ ?](J1, . . . , Jk,D

′)

D −→ D′

[T , s �→ S; κ ↪→κ ?](J1, . . . , Jk ,D) −→
[T , s �→ S; κ ↪→κ ?](J1, . . . , Jk,D

′)

Fig. 5. Natural transition semantics of FRGN (abbreviated)

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

Monadic regions 501

(2) If [T , s �→ S ; κ ↪→κ ?]() −→∗ D′ and D′ contains no pending judgements,

then D′ is a complete derivation for a judgement of the form T , s �→ S ; κ ↪→κ S
′; v

(i.e., D′ ≡ J′ ≡ [T , s �→ S ; κ ↪→κ S
′; v]).

Lemma 3.3 (NTS Completeness)
(1) If T ; e ↪→ v and D is a complete derivation for T ; e ↪→ v, then [T ; e ↪→ ?]() −→∗ D.

(2) If T , s �→ S ; κ ↪→κ S
′; v and Dκ is a complete derivation for T , s �→ S ; κ ↪→κ S

′; v,

then [T , s �→ S ; κ ↪→κ ?]() −→∗ Dκ.

For each tower T and expression e, we define an execution of e in T as a sequence

[T ; e ↪→ ?]() −→ D1 −→ D2 −→ · · ·

Thus, an execution has three possibilities:

(1) Suppose that for all Dn such that [T ; e ↪→ ?]() −→∗ Dn, there exists Dn+1 such

that Dn −→ Dn+1. Then, we say that e in T diverges.

(2) Suppose that there exists Dn such that [T ; e ↪→ ?]() −→∗ Dn, such that there

does not exist Dn+1 such that Dn −→ Dn+1.

(a) Suppose Dn contains no pending judgements. By Lemma 3.2, Dn ≡ [T ; e ↪→
v]. Then, we say that e in T terminates with the value v.

(b) Suppose Dn contains pending judgements. Then, we say that e in T gets

stuck.

By inspection of the rules in Figure 5, it is clear that the stuck partial derivation

trees correspond to trees in which predicates cannot be satisfied; all other transitions

are unrestricted. Predicates like v ≡ λx:τ.e and v ≡ κ are traditional type errors,

where expressions evaluate to values of the wrong form. Predicates like s ∈ dom(T)

also correspond to type errors, where towers have the wrong form. The static

semantics given in the next section and the definitions given in Section 3.5 ensure

that stuck partial derivation trees are not well-typed.

3.4 Static semantics of FRGN

Well-typed programs obey several invariants, which are enforced with typing judge-

ments. In addition to the traditional “type-checking” judgements for expressions, we

have judgements that enforce the consistency of towers, and various well-formedness

judgements that serve as a technical convenience.

3.4.1 Definitions

Figure 6 presents additional definitions for syntactic classes that appear in the static

semantics. Type contexts ∆ are ordered lists of type variables and value contexts

Γ are ordered lists of variables and types. Tower, stack, and region types mimic

towers, stacks, and regions, recording the type of the value stored at each location.

Tower, stack, and region domains are a technical device that records the locations

in scope. Because proving the well-formedness of tower types requires proving the

well-formedness of types, which requires verifying that stack and region names are

in scope, one cannot easily have tower types serve the dual purpose of recording

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

502 M. Fluet and G. Morrisett

Type contexts ∆ ::= · | ∆, α

Value contexts Γ ::= · | Γ, x : τ

Region domains R ::= {l1, . . . , ln}
Region types R ::= {l1 �→ τ1, . . . , ln �→ τn}
Stack domains S ::= · | S, r �→ R (ordered domain)

Stack types S ::= · | S, r �→ R (ordered domain)

Tower domains T ::= · | T , s �→ S (ordered domain)

Tower types T ::= · | T , s �→ S (ordered domain)

τr1 � τr2 ≡ ∀β.RGN τr1 β → RGN τr2 β

S � S
′ ≡ dom(S) = dom(S

′
) ∧

∀r ∈ dom(S
′
).dom(S(r)) ⊇ dom(S

′
(r))

T|s ≡ T
′
, s �→ S

′
such that T ≡ T

′
, s �→ S

′
,T

′′

S � S′ ≡ dom(S) = dom(S′) ∧
∀r ∈ dom(S′).dom(S(r)) ⊇ dom(S′(r)) ∧

∀l ∈ dom(S′(r)).S(r, l) = S′(r, l)

T|s ≡ T ′, s �→ S′ such that T ≡ T ′, s �→ S′,T ′′

Fig. 6. Static semantics of FRGN (definitions)

locations in scope. We tacitly assume that all domains are well-formed – containing

distinct stack names, region names, and locations.

We recall the abbreviation τr1 � τr2 for the type of a function that coerces any

computation taking place in the region indexed by τr1 into a computation taking

place in the region indexed by τr2 .

We define the relation � to describe extensions of stack domains and types. Note

that we consider tower and stack domains and types to have ordered domains.

Hence, dom(S) ⊇ dom(S ′) indicates that the ordered domain of dom(S ′) is a prefix of

the ordered domain of dom(S). Finally, we define restriction operators, which return

a prefix of tower domains and types.

3.4.2 Expressions

Figures 7, 8, and 10 present the typing rules for the judgement ∆; Γ;T : T �exp e : τ,

which asserts that under type context ∆, value context Γ, and tower type T with

tower domain T, the expression e has type τ.

The rules for constants, arithmetic and boolean operations, function abstraction

and application, tuple introduction and elimination, and type abstraction and

instantiation are all completely standard. As expected in a monadic language, each

command expression is given the monadic type RGN τr τa for appropriate region

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

Monadic regions 503

∆; Γ; T : T �exp e : τ

�ctxt ∆; Γ; T : T

∆; Γ; T : T �exp i : int

∆; Γ; T : T �exp e1 : int

∆; Γ; T : T �exp e2 : int

∆; Γ; T : T �exp e1 � e2 : int

∆; Γ; T : T �exp e1 : int

∆; Γ; T : T �exp e2 : int

∆; Γ; T : T �exp e1 � e2 : bool

�ctxt ∆; Γ; T : T

∆; Γ; T : T �exp tt : bool

�ctxt ∆; Γ; T : T

∆; Γ; T : T �exp ff : bool

∆; Γ; T : T �exp eb : bool

∆; Γ; T : T �exp et : τ ∆; Γ; T : T �exp ef : τ

∆; Γ; T : T �exp if eb then et else ef : τ

�ctxt ∆; Γ; T : T x ∈ dom(Γ) τ = Γ(x)

∆; Γ; T : T �exp x : τ

∆; Γ, x:τ1; T : T �exp e : τ2

∆; Γ; T : T �exp λx:τ1.e : τ1 → τ2

∆; Γ; T : T �exp e1 : τ1 → τ2

∆; Γ; T : T �exp e2 : τ1

∆; Γ; T : T �exp e1 e2 : τ2

�ctxt ∆; Γ; T : T

∆; Γ; T : T �exp ei : τi
i∈1...n

∆; Γ; T : T �exp (e1, . . . , en) : τ1 × · · · × τn

∆; Γ; T : T �exp e : τ1 × · · · × τn
1 � i � n

∆; Γ; T : T �exp seli e : τi

�ctxt ∆; Γ; T : T

∆, α; Γ; T : T �exp e : τ

∆; Γ; T : T �exp Λα.e : ∀α.τ

∆; T �type τ

∆; Γ; T : T �exp e : ∀α.τ′

∆; Γ; T : T �exp e [τ] : τ′[τ/α]

∆; Γ; T : T �exp e1 : τ1

∆; Γ, x:τ1; T : T �exp e2 : τ2

∆; Γ; T : T �exp let x = e1 in e2 : τ2

∆; T �type τa ∆; Γ; T : T �exp v : ∀γr.RGNHandle γr → RGN γr τa

∆; Γ; T : T �exp runRGN [τa] v : τa

Fig. 7. Static semantics of FRGN (expressions)

index and return type. The typing rules for returnRGN and thenRGN correspond to

the standard typing rules for monadic unit and bind operations. The typing rules

for newRGNLoc and readRGNLoc are straight-forward.

The key judgements are those relating to the creation of new regions. Recall that

we would like to consider a value of type RGN τr τa as a region-transformer –

that is, it accepts a region (indexed by the type τr), performs some operations (such

as allocating into the region), and returns a value and the modified region. However,

this is slightly inaccurate, owing to the fact that a stack of regions admits a region

outlives relationship. Rather, we should consider a value of type RGN τr τa as a

region-stack-transformer – that is, it accepts a stack of regions (indexed by the

type τr , corresponding to a particular member of the region stack), performs some

operations (such as allocating into the regions), and returns a value and the modified

stack of regions. Note that the actual stack of regions passed at runtime may include

regions younger than the region corresponding to τr; τr simply ensures the liveness

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

504 M. Fluet and G. Morrisett

∆; Γ; T : T �exp e : τ

∆; T �type τr ∆; Γ; T : T �exp v : τa

∆; Γ; T : T �exp returnRGN [τr] [τa] v : RGN τr τa

∆; Γ; T : T �exp e1 : RGN τr τa
∆; Γ; T : T �exp e2 : τa → RGN τr τb

∆; Γ; T : T �exp thenRGN [τr] [τa] [τb] v1 v2 : RGN τr τb

∆; T �type τr1 ∆; T �type τa
∆; Γ; T : T �exp v : ∀γr2 .τr1 � γr2 → RGNHandle γr2 → RGN γr2 τa

∆; Γ; T : T �exp letRGN [τr1] [τa] v : RGN τr1 τa

∆; Γ; T : T �exp v : RGN σ	ρ1 τa T �cast σ	ρ1 � σ	ρ2

∆; Γ; T : T �exp witnessRGN σ	ρ1 σ	ρ2 [τa] v : RGN σ	ρ2 τa

∆; Γ; T : T �exp v1 : RGNHandle τr ∆; Γ; T : T �exp v2 : τa

∆; Γ; T : T �exp newRGNLoc [τr] [τa] v1 v2 : RGN τr (RGNLoc τr τa)

∆; Γ; T : T �exp v : RGNLoc τr τa

∆; Γ; T : T �exp readRGNLoc [τr] [τa] v : RGN τr τa

Fig. 8. Static semantics of FRGN (commands)

of a particular region (and all regions older than it), without excluding the liveness

of younger regions.

We first examine the typing rule for the runRGN expression:

∆; T �type τa ∆; Γ; T : T �exp v : ∀γr.RGNHandle γr → RGN γr τa

∆; Γ; T : T �exp runRGN [τa] v : τa

As stated above, the argument to runRGN should describe a region computation.

In fact, we require v to be a polymorphic function that yields a region computation

after being applied to a (fresh) region handle. The effect of universally quantifying

the region index in the type of v is to require v to make no assumptions about the

input stack of regions (e.g., the existence of pre-allocated values). Furthermore, all

region-transformer operations are “infected” with the region index: when combining

operations, the rule for thenRGN requires the region index type to be the same;

locations allocated and read using newRGNLoc and readRGNLoc require the region

index of the RGNLoc to be the same as the computation in which the operation

occurs. While witness functions (discussed in more detail below) may coerce a region

computation indexed by τr to a region computation indexed by τ′
r for a younger

region index τ′
r , this coercion simply “infects” the computation with a younger

region index that implies the older region index. Thus, if a region computation

RGN γr τa were to return a value that depended upon the region indexed by γr , then

γr (or some younger, as of yet unintroduced, region index γ′
r) would appear in the

type τa. Since the type τa appears outside the scope of the type variable γr in the

typing rule for runRGN, it follows that γr cannot appear in the type τa. Therefore,

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

Monadic regions 505

T �cast σ	ρ� σ	ρ′

T �cast ◦	•� ◦	•
s ∈ dom(T)

T �cast s	•� s	•
s ∈ dom(T) T(s) ≡ S1, r1 �→ R1, S2

T �cast s	r1 � s	•

s ∈ dom(T) T(s) ≡ S1, r1 �→ R1, S2, r2 �→ R2, S3

T �cast s	r1 � s	r2

Fig. 9. Static semantics of FRGN (casts)

it must be the case that the value returned by the computation described by v does

not depend upon the region index which will instantiate γr . Taken together, these

facts ensure that an arbitrary new region can be supplied to the computation and

that the value returned will not leak any means of accessing the region or values

allocated within it; hence, the region can be destroyed at the end of the computation.

Finally, because we require region handles for allocating within regions, we provide

the region handle for the newly created region as the argument to a function that

yields the computation we wish to execute.

The typing rule for letRGN is very similar:

∆; T �type τr1 ∆; T �type τa
∆; Γ; T : T �exp v : ∀γr2 .τr1 � γr2 → RGNHandle γr2 → RGN γr2 τa

∆; Γ; T : T �exp letRGN [τr1] [τa] v : RGN τr1 τa

Exactly the same argument as above applies, except that we additionally have an

witness argument of type τr1 � γr2 . The operational behavior of letRGN is ensure that

the newly allocated region is related to previously allocated regions according to the

stack discipline. The witness argument is provided to the computation taking place

in the stack with the inner/younger region allocated in order to coerce computations

(such as allocating a new value in some outer/older region) from a computation

indexed by the outer region to a computation indexed by the the inner region. This

coersion is safe because every region in the stack denoted by τr1 outlives every

region in the stack denoted by γr2 . Operationally, such a witness function acts as the

identity function.

The typing rule for witnessRGN formalizes this outlives argument: a witnessRGN

term is well-typed whenever σ	ρ1 can be cast to σ	ρ2. The judgement T �cast

σ	ρ1 � σ	ρ2 (Figure 9) verifies the casts witnessed by witnessRGN terms. Note

that the judgement T �cast s	r1 � s	r2 enforces the requirement that r1 outlives r2
in the stack s. The other �cast judgements allow casts to deallocated regions, which

can be introduced when deallocating a region at the end of a runRGN or letRGN

computation. This is a technicality needed to ensure that programs remain closed

and well-typed during their execution.

Figure 10 gives typing rules for location and handle expressions. The judgements

ensure that stack and region names that appear in locations and handles are in

scope; furthermore, a location in a live stack and region points to a value with the

type assigned by the tower type.

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

506 M. Fluet and G. Morrisett

∆; Γ; T : T �exp e : τ

�ctxt ∆; Γ; T : T ∆; T �type τa

∆; Γ; T : T �exp 〈l〉◦	• : RGNLoc ◦	• τa

�ctxt ∆; Γ; T : T s ∈ dom(T) ∆; T �type τa

∆; Γ; T : T �exp 〈l〉s	• : RGNLoc s	• τa

�ctxt ∆; Γ; T : T s ∈ dom(T) r ∈ dom(T(s)) l ∈ dom(T(s, r)) T(s, r, l) = τa

∆; Γ; T : T �exp 〈l〉s	r : RGNLoc s	r τa

�ctxt ∆; Γ; T : T

∆; Γ; T : T �exp handle(◦	•) : RGNHandle ◦	•

�ctxt ∆; Γ; T : T s ∈ dom(T)

∆; Γ; T : T �exp handle(s	•) : RGNHandle s	•

�ctxt ∆; Γ; T : T s ∈ dom(T) r ∈ dom(T(s))

∆; Γ; T : T �exp handle(s	r) : RGNHandle s	r

Fig. 10. Static semantics of FRGN (locations and handles)

�ttype T : T

dom(T) = dom(T)

∀s ∈ dom(T). dom(T(s)) = dom(T(s))

∀s ∈ dom(T).∀r ∈ dom(T(s)) dom(T(s, r)) = dom(T(s, r))

∀s ∈ dom(T).∀r ∈ dom(T(s)).∀l ∈ dom(T(s, r)). ·; T|s �type T(s, r, l)

�ttype T : T

�tower T : T : T

�ttype T : T

dom(T) = dom(T) = dom(T)

∀s ∈ dom(T). dom(T(s)) = dom(T(s)) = dom(T (s))

∀s ∈ dom(T).∀r ∈ dom(T(s)) dom(T(s, r)) = dom(T(s, r)) = dom(T (s, r))

∀s ∈ dom(T).∀r ∈ dom(T(s)).∀l ∈ dom(T(s, r)). ·; ·; T|s : T|s �exp T (s, r, l) : T(s, r, l)

�tower T : T : T

Fig. 11. Static semantics of FRGN (towers, stacks, and regions)

3.4.3 Towers

Figure 11 presents typing rules that enforce the well-formedness and consistency

of towers. The judgement �ttype T : T asserts that tower type T is well-formed

with tower domain T. In particular, the judgement asserts that T has the domain

specified by T and each type in the range of T is well-formed. Note the use of the

restriction operator; this ensures that types “lower” in the tower cannot reference

stack and region names that appear “higher” in the tower. This corresponds to the

fact that while runRGN computations can be nested, the inner computation must

complete before executing a command in the outer computation. Hence, while an

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

Monadic regions 507

inner computation may have references to the outer computation, there can be

no references from the outer computation to the inner computation. Finally, the

judgement �tower T : T : T asserts that the tower T is well-formed with tower type

T and tower domain T. Like the judgement �ttype, it asserts that T has the domain

specified by T and each stored value in the range of T has the type specified by T.

Again, restriction operators are used to assert that storable values “lower” in the

tower cannot contain references to storable values “higher” in the tower.

3.4.4 Technical details

Figures A 1 and A 2 in Appendix A contain additional (completely standard)

judgements for ensuring that types τ, type contexts ∆, and value contexts Γ are

well-formed. Because types may contain stack and region names, the judgements

�type and �vctxt require a tower domain T.

3.4.5 Surface programs

It is useful to note that the static semantics can be greatly simplified for the

surface syntax presented in Figure 1. Tower types and tower domains are purely

technical devices that are used to prove type soundness. In the static semantics,

they simply collect the names of stacks and regions in scope and assign types

to locations. Note that in every rule, tower types and tower domains are passed

unmodified to sub-judgements. Since surface programs do not admit syntax for

naming stacks and regions, we can type any closed, surface expression with the

judgement ·; ·; · : · �exp e : τ. Pushing these empty tower types and tower domains

through the rules leads to the following simplifications:

∆; Γ; · : · �exp e : τ =⇒ ∆; Γ �exp e : τ ∆; · �type τ =⇒ ∆ �type τ

∆; · �vctxt Γ =⇒ ∆ �vctxt Γ �ctxt ∆; Γ; · : · =⇒ �ctxt ∆; Γ

Hence, we recover a type system equivalent to that of System F, which is sufficient

for type-checking surface programs.

Further simplifications can be made by interpreting the monadic commands as

constants with polymorphic types. For example, the typing judgements for each of

the monadic commands are equivalent to the following typings:

runRGN :: ∀α.(∀γr.RGNHandle γr → RGN γr α) → α

returnRGN :: ∀γr.∀α.α → RGN γr α

thenRGN :: ∀γr.∀α, β.RGN γr α → (α → RGN γr β) → RGN γr β

letRGN :: ∀γr1 .∀α.(∀γr2 .γr1 � γr2 → RGNHandle γr2 → RGN γr2 α) → RGN γr1 α

newRGNLoc :: ∀γr.∀α.RGNHandle γr → α → RGN γr (RGNLoc γr α)

readRGNLoc :: ∀γr.∀α.RGNLoc γr α → RGN γr α

Treating the monadic commands as syntactic forms simplifies the proofs, as there is

no need to consider partially applied forms.

3.5 Type soundness of FRGN

In this section, we sketch a proof of type soundness. We wish to prove that a well-

typed, closed initial program either succeeds (returning a value of the correct type)

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

508 M. Fluet and G. Morrisett

or diverges. A preservation theorem and a progress theorem make this theorem an

easy corollary.

The Preservation Theorem states that the terminating computation of a well-

typed expression yields a value of the same type. Because the dynamic semantics

are defined by two mutually inductive judgements, the Preservation Theorem also

states that the terminating computation of a well-typed command yields a well-typed

extension of the top stack and a value of the same type. Various substitution lemmas

for dead stacks and regions are required to prove the cases where stacks and regions

are deallocated.

Theorem 3.1 (Preservation)

(1) If

(a) �tower T : T : T,

(b) ·; ·; T : T �exp e : τ, and

(c) T ; e ↪→ v′,

then ·; ·; T : T �exp v′ : τ.

(2) If

(a) �tower T , s �→ S : T, s �→ S : T, s �→ S,

(b) ·; ·; T, s �→ S : T, s �→ S �exp κv : RGN s	r τa, and

(c) T , s �→ S; κv ↪→κ S ′; v′,

then there exists S
′ � S and S′ � S such that �tower T , s �→ S ′ : T, s �→ S′ : T, s �→

S
′
and ·; ·; T, s �→ S′ : T, s �→ S

′ �exp v′ : τa.

Proof

Proceed by mutual induction on the derivations (1c) T ; e ↪→ v′ and (2c) T , s �→
S; κ ↪→ S ′; v′. �

The Progress Theorem states that a partially evaluated expression can always move

forward towards complete evaluation. Progress Theorems are notoriously difficult

in a large-step operational semantics. Our approach adopts a natural transition

semantics, introduced in Section 3.3. The Progress Theorem states that any well-typed

partial derivation that contains a pending judgement can transition to another well-

typed partial derivation. As usual, the proof of the Progress Theorem depends on a

Canonical Forms Lemma, which describes the forms of values of particular types.

Definition 3.1

(1) A pending judgement T ; e ↪→ ? is well typed iff there exists T, T, and τ such

that �tower T : T : T and ·; ·; T : T �exp e : τ.

(2) A pending judgement T , s �→ S; κ ↪→ ? is well typed iff there exists T, T, S,

S, r ∈ dom(S), and τa such that �tower T , s �→ S : T, s �→ S : T, s �→ S and

·; ·; T, s �→ S : T, s �→ S �exp κ : RGN s	r τa.

(3) A partial derivation D is well typed iff every pending judgement in it is well

typed.

Theorem 3.2 (Progress)

If D is a well-typed partial derivation with pending judgements, then there exists D′

such that D −→ D′ and D′ is well typed.

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

Monadic regions 509

Proof

Let N be the uppermost node of D that is labeled with a pending judgement, either

T ; e ↪→ ? or T , s �→ S; κ ↪→κ ?. Any transition on D must occur at this node. Proceed

by considering all possible forms of pending judgements. �

Theorem 3.3 (Soundness)

If ·; ·; · : · �exp e : τ, then any execution of e (in ·) either terminates with a value v

(such that ·; ·; · : · �exp v : τ) or diverges.

Proof

Let [·; e ↪→ ?]() −→ D1 −→ D2 −→ · · · be an execution of e. Note that [·; e ↪→ ?]()

is well-typed by �tower · : · : · and ·; ·; · : · �exp e : τ. By Progress, every Di is well

typed.

(1) Suppose that for all Dn such that [·; e ↪→ ?]() −→∗ Dn, there exists Dn+1 such

that Dn −→ Dn+1. Then, e diverges.

(2) Suppose that there exists Dn such that [·; e ↪→ ?]() −→∗ Dn, such that there does

not exist Dn+1 such that Dn −→ Dn+1.

(a) Suppose Dn contains no pending judgements. By Lemma 3.2, Dn ≡ [·; e ↪→ v].

Then, e terminates with the value v. By Preservation, ·; ·; · : · �exp v : τ.

(b) Suppose Dn contains pending judgements. By Progress, there exists D′ such

that Dn −→ D′, contradicting the assumption that there does not exist Dn+1

such that Dn −→ Dn+1. Thus, e cannot get stuck. �

Remarks

As stated previously, our main reason for adopting a large-step operational semantics

is to simplify the theorems and proofs of Section 5. However, we believe that the

technique of proving type soundness for languages described by natural transition

semantics shows great promise, particularly for the monadic treatment of effects. In

many ways, natural transition semantics attempts to bridge the gap between large-

step operational semantics and small-step operational semantics. Natural transition

semantics incorporates the advantages of large-step operational semantics (namely,

a concise semantics) and ameliorates some of the disadvantages of small-step

operational semantics. First, there is no need to introduce intermediate terms to

“mark” points of interest in an evaluating program. For example, Semmelroth and

Sabry’s account of monadic state in ML requires a term sto ∆ e, to distinguish

nested runST evaluations.

Second, there is no need to introduce evaluation contexts. While this may appear

to be a minor point (by recognizing that one has effectively defined the evaluation

context by the path through a partial derivation tree to a pending judgement), it has

broader implications, particularly in the monadic setting. For example, Semmelroth

and Sabry’s evaluation contexts are quite complex, requiring four separate contexts.

This complexity is required to express the relative sequencing of pure and monadic

operations; essentially, the contexts must find the sto ∆ [] that corresponds to the

“active” monadic evaluation, then follow commands down to either the “active”

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

510 M. Fluet and G. Morrisett

Surface commands κ ::= . . . | writeRGNLoc [τr] [τa] v1 v2

Computation commands κ ::= . . . | writeRGNLoc [τr] [τa] v1 v2

T , s �→ S ; κ ↪→κ S
′; v

τr ≡ s	r v1 ≡ 〈l〉s	r
r ∈ dom(S) l ∈ dom(S (r))

T , s �→ S ;writeRGNLoc [τr] [τa] v1 v2 ↪→κ S{(r, l) �→ v2}; ()

∆; Γ; T : T �exp e : τ

∆; Γ; T : T �exp v1 : RGNLoc τr τa ∆; Γ; T : T �exp v2 : τa

∆; Γ; T : T �exp writeRGNLoc [τr] [τa] v1 v2 : 1

Fig. 12. Extensions to FRGN for writeRGNLoc

monadic command or “active” pure expression. In the natural transition semantics,

this is accomplished “automatically” by jumping to the pending judgement of the

partial derivation tree. In our case, the fact that this pending judgement can take

one of two forms (either a pure call-by-value System F judgement or an imperative

monadic judgement), effectively eliminates the need to interleave contexts.

We also believe that the complete soundness proof using natural transition

semantics is easier than the corresponding proof using small-step operational

semantics (for example, the soundness proof for Cyclone’s region system undertaken

by the second author (Grossman et al., 2001)). Eliminating intermediate terms and

evaluation contexts are obvious savings. The proof flavor is also slightly different:

where one was doing case analysis on the form of the active position of an evaluation

context, now one is doing case analysis on the pending jugdement’s children.

3.6 Extensions

We consider two easy extensions to the language FRGN: mutable locations and

fixed-point locations.

3.6.1 Mutable locations

Figure 12 presents the extensions necessary to support mutable locations. The

command writeRGNLoc [τr] [τa] v1 v2 overwrites the value stored at the location v1
with the value v2. All lemmas and theorems can be extended to support mutable

locations in a straight-forward manner. In the special case where programs do not

contain letRGN, we obtain an alternative proof for the soundness of strict monadic

state (Semmelroth & Sabry, 1999).

3.6.2 Fixed-point locations

Figure 13 presents the extensions necessary to support fixed-point locations. The

command fixRGNLoc [τr] [τa] v1 v2 allocates a value of type τa in the region indexed

by τr; the value is produced by the function v2 which is applied to the location where

the allocated value is to be stored. This provides a means of allocating recursive

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

Monadic regions 511

Surface commands κ ::= . . . | fixRGNLoc [τr] [τa] v1 v2

Computation commands κ ::= . . . | fixRGNLoc [τr] [τa] v1 v2

Computation values v ::= . . . | �

T , s �→ S ; κ ↪→κ S
′; v

τr ≡ s	r v1 ≡ handle(s	r)

r ∈ dom(S) l /∈ T , s �→ S

T , s �→ S{(r, l) �→ �}; v2 〈l〉s	r ↪→ v′

T , s �→ S ;fixRGNLoc [τr] [τa] v1 v2 ↪→ S{(r, l) �→ v′}, 〈l〉s	r

∆; Γ; T : T �exp e : τ

�ctxt ·; ·; T : T ·; T �type τ

·; ·; T : T �exp � : τ

∆; Γ; T : T �exp v1 : RGNHandle τr ∆; Γ; T : T �exp v2 : RGNLoc τr τa → τa

∆; Γ; T : T �exp fixRGNLoc [τr] [τa] v1 v2 : RGN τr (RGNLoc τr τa)

Fig. 13. Extensions to FRGN for fixRGNLoc

functions. (Recursive structures could be accomodated with the addition of recursive

types.)

The dynamic semantics for fixRGNLoc make use of a dummy storable value �.

The typing rule for � admits arbitrary well-formed types. (We slightly abuse notation

here; � is not technically an expression form. A � can only appear in the range of

a region.) However, � is not a value and cannot be the result of any computation.

It serves as a place holder in the store, marking the location where the recursive

knot will be tied. It also ensures that the tower is well-formed with respect to the

extended tower type necessary to prove that v2 〈l〉s	r is well-typed.

We note that the typing rule for fixRGNLoc requires that the function v2 has the

type RGNLoc τr τa → τa. This is a pure function, not a monadic computation. Hence,

it is safe to evaluate with the location bound to � (where the allocated value is to be

stored), because no computation (and, hence, no reading of region allocated values)

can occur during the evaluation of the application of v2 to the location. On the other

hand, v2 can return a (suspended) computation that reads the allocated value, since

this computation cannot occur until after the knot has been tied. For example, if h

is a variable of type RGNHandle τr , then the following expression returns a location

of type RGNLoc τr (int → RGN τr int), which points to a (monadic) function that

evaluates factorials:

fixRGNLoc [τr] [int → RGN τr int] h

(λf:RGNLoc τr (int → RGN τr int).λn:int.

if n = 0 then returnRGN τr 1

else thenRGN [τr] [int → RGN τr int] [int]

(readRGNLoc [τr] [int → RGN τr int] f)

(λg:int → RGN τr int.

thenRGN [τr] [int] [int]

(g (n − 1))

(λm:int.returnRGN [τr] [int] (n ∗ m))))

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

512 M. Fluet and G. Morrisett

4 Region calculi

The previous sections have presented FRGN and have (hopefully) developed sufficient

intuition to reasonably establish our goal of finding a simpler account of region-

based type systems. However, while FRGN shares some similarities with region calculi

(e.g., evaluation with a stack of regions), its type system appears to be quite different

from the type-and-effect systems associated with region-based languages. Hence, the

skeptical reader may well wonder if the simplicity of the FRGN type system points

to some deficiency, failing to capture all of the idioms available in type-and-effect

systems for region calculi. Our present task is to rigorously demonstrate that we

have lost no power in adopting FRGN; our method for accomplishing this task is

to give a type- and meaning-preserving translation from a source language that

captures the key aspects of Tofte-Talpin and Cyclone-like region calculi into FRGN.

Much of the technical complexity in previous and subsequent sections stems from

our desire to establish the formal correctness of the translation, not simply an

intuitive account of the correspondence. Furthermore, as should be clear, there is

a large “semantic gap” between the type-and-effect system for a traditional region

calculus and the type system for FRGN. The next subsection sketches the major

obstacles to be overcome in the translation. Our conclusion is that the gap is

too large to be bridged by a single translation. Instead, we present an Untyped

Region Calculus (URC) in Section 4.2, which provides a core syntax and dynamic

semantics for a typical region calculus. Sections 4.3–4.5 present a succession of

type-systems for URC. The first is a Traditional Region Calculus (TRC), which

corresponds directly to type-and-effect systems given in the literature (Helsen &

Thiemann, 2000; Calcagno, 2001; Calcagno et al., 2002). The second is the Bounded

Region Calculus (BRC), which augments TRC with a form of bounded region

polymorphism. The Bounded Region Calculus can be seen as a core model of early

versions of Cyclone (Grossman et al., 2001; Grossman et al., 2002). Finally, the

Single Effect Calculus (SEC) restricts BRC by admitting only a single region as the

latent effect of an expression. Hence, our roadmap is as follows:

Untyped Region Calculus (URC)

� Traditional Region Calculus (TRC)

� Bounded Region Calculus (BRC)

� Single Effect Calculus (SEC)

Type- and meaning-preserving translations down this chain are relatively straightfor-

ward (meaning-preservation following directly from the shared dynamic semantics),

and will presented as succinctly as possible. After presenting the Single Effect

Calculus, it should be clear that there is a much greater correspondence between the

type system for SEC and FRGN than between the type system for TRC and FRGN.

However, the translation from the Single Effect Calculus to FRGN contains some

subtleties, and will be covered in full detail in Section 5.

4.1 From TRC to SEC to FRGN: Translation Sketch

The form of the function type and the form of the expression typing judgement are

defining characteristics of “traditional” type-and-effect systems, such as that to be

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

Monadic regions 513

given for the Traditional Region Calculus:

τ1

ϕ−→ τ2 ∆; Γ �exp e : τ, ϕ

In a region-based language, an effect denotes a set of regions. In the function type,

the effect ϕ is a latent effect: a (super)set of those regions read from or written

to when the function is called. In the expression typing judgement, the effect ϕ

describes the regions affected when the expression evaluates.

A typed call-by-value monad translation (Wadler, 1995; Sabry & Wadler, 1997;

Moggi & Sabry, 2001; Wadler & Thiemann, 2003) suggests translating the type

τ1

ϕ
−→ τ2 to ��τ1� → RGN ��ϕ� ��τ2� and translating the judgement ∆; Γ �exp e : τ, ϕ

to an expression of type RGN ��ϕ� ��τ�. The difficulty with this translation is that

ϕ naturally denotes a set of regions, while τr in RGN τr τa only names a single region.

Hence, we would be better served by representing effects by a single region; but,

which region? The key insight is that a LIFO stack of regions imposes a partial

order on live (allocated) regions. Older regions (lower on the stack) outlive younger

regions (higher on the stack). Hence, the liveness of a region implies the liveness of

all regions below it on the stack. Alternatively, we consider a region to be a subtype

of all the region that it outlives. Thus, it is the case that a single region can serve as

a witness for a set of effects: the region appears as a single effect in place of the set.

This will be the defining characteristic of the Single Effect Calculus.

To bridge the gap between the type-and-effect systems of the Traditional Region

Calculus and the Single Effect Calculus, we take inspiration from Cyclone (Grossman

et al., 2001). One key difference (among many) between Cyclone and the Tofte-Talpin

region calculus is that the type-and-effects system of Cyclone extends that of Tofte-

Talpin’s with a form of bounded region polymorphism. The abstraction of a region

variable may be bounded by a set of regions ϕ. At the instantiation of by a

region ρ, we must show that the liveness of ρ implies the liveness of all the regions in

ϕ. Within the body of the abstraction, we may assume that is an upper bound on

the set of regions ϕ. However, like the Tofte-Talpin region calculus, Cyclone treats

effects as sets of regions affected by the evaluation of an expression. The Bounded

Region Calculus will combine these traits by admitting both latent effects as sets of

regions and bounded region polymorphism.

Hence, a translation from a source region calculus to FRGN must accomplish a

number of objectives: (1) eliminate region subtyping (through explicit coercions), (2)

sequence computations using the monadic constructs, and (3) encode effects using a

single region for the index of the RGN monad. In order to simplify the translation to

FRGN and its proof of correctness, we factor out this third objective in the remainder

of this section by first sketching a translation to the Single Effect Calculus. In terms

of translating types and typing judgements, our path is as follows:

TRC/BRC �(3) SEC �(1,2) FRGN

τ1
ϕ

−→ τ2 �(3) Π � ϕ.τ1

−→ τ2 �(1,2) Λ.(�� � ϕ� → ��τ1� → RGN ��� ��τ1�)

∆; Γ �exp e : τ, ϕ �(3) ∆; Γ �exp e : τ, θ
where θ bounds ϕ

�(1,2) ��∆� ; ��Γ� �exp ��e� : RGN ��θ� ��τ�

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

514 M. Fluet and G. Morrisett

i ∈ �
l ∈ Locations

r ∈ RNames where H ∈ RNames

ϑ, ∈ RVars where H ∈ RVars

f, x ∈ Vars

Region placeholders

θ, ρ ::= | r | •
Effects

ϕ ::= {ρ1, . . . , ρn}

Terms

e ::= i at ρ | e1 � e2 at ρ | e1 � e2 | tt | ff | if eb then et else ef |
x | λx.e at ρ | e1 e2 | (e1, e2) at ρ | fst e | snd e |
letregion in e | λ.u at ρ | e [ρ] |
〈l〉r | 〈l〉•

Abstractions

u ::= λx.e at ρ | λ.u at ρ

Values

v ::= tt | ff | x | 〈l〉r | 〈l〉•

Storable values

w ::= i | λx.e | (v1, v2) | λ.u
Regions

R ::= {l1 �→ w1, . . . , ln �→ wn}
Region stacks / Stacks

S ::= · | S, r �→ R (ordered domain)

Fig. 14. Syntax of URC

4.2 An Untyped Region Calculus

This section presents an Untyped Region Calculus (URC), which is a variation of

the region calculus of Tofte and Talpin (1994; 1997), in the spirit of more recent

direct presentations of region calculi (Helsen & Thiemann, 2000; Calcagno, 2001;

Calcagno et al., 2002; Henglein et al., 2005). This calculus will provide core syntax

and dynamic semantics for the subsequent type systems.

4.2.1 Syntax of URC

Figure 14 presents the syntax of programs in the Untyped Region Calculus.

As in FRGN we distinguish between region variables, region names, and a deal-

located region •. For an external language, it suffices to allows region placeholders

to range over region variables (RVars), which include a distinguished member

H, corresponding to a global region that remains live (allocated) throughout the

execution of the program. Region names and locations are used to represent pointers

to region allocated data.

Terms are similar to those found in the λ-calculus. One major difference is that

terms yielding heap allocated values carry a region annotation at ρ, which indicates

the region in which the value is to be allocated. We assume that integers, pairs,

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

Monadic regions 515

and function closures require heap allocated storage, while booleans do not. New

regions are introduced (and implicitly created and destroyed) by the letregion in e

term. The region variable is bound within e, demarcating the scope of the region.

Within e, values may be read from or allocated in the region .

The term λ.u at ρ introduces a region abstraction (allocated in the region ρ),

where the term u is polymorphic in the region .3 Such region polymorphism is

particularly useful in the definition of functions, in which we parameterize over the

regions necessary for the evaluation of the function. The term e [ρ] eliminates a

region abstraction; operationally, it substitutes the place ρ for the region variable

in u and evaluates the resulting term.

The expression 〈l〉r is the (live) pointer associated with a region allocated value.

Likewise, the expression 〈l〉• is the is the (dangling) pointer associated with a region

deallocated value.

Because the introduction forms for region allocated values are not themselves

values, we formalize the syntactic class of storable values. Storable values are

associated with locations in regions R and regions are ordered into stacks S .

Intuitively, evaluating a letregion expression adds a new region to the top of the

stack (which is deallocated upon finishing the expression).

4.2.2 Dynamic semantics of URC

An inductive judgement (Figure 15) defines the dynamic semantics of the Untyped

Region Calculus. We state without proof that the dynamic semantics is deterministic.

The judgement S; e ↪→ S ′; v′ asserts that evaluating the closed expression e in stack

S results in a new stack S ′ and a value v′. Note that the rules for S; e ↪→ S ′; v′ thread

the modified stack through each expression evaluation, imposing a left-to-right

evaluation order. Consider, for example, the following rule:

S ; e1 ↪→ S1; 〈l1〉r1 S1(r1, l1) = i1
S1; e2 ↪→ S2; 〈l2〉r2 S2(r2, l2) = i2
r ∈ dom(S2) l /∈ S2 i1 � i2 = i

S ; e1 � e2 at r ↪→ S2{(r, l) �→ i}; 〈l〉r

The first line evaluates e1 to a live location and reads out the integer stored at 〈l1〉r1 .
Likewise, the second line evaluates e2 to a live location and reads out the integer

stored at 〈l2〉r2 . Finally, a fresh location in the region r is chosen, and the final stack

with the computed integer stored at the freshly chosen location and the location are

returned. The other rules work in much the same manner.

The rule for letregion introduces (and subsequently eliminates) a new region. Its

execution is similar to that of letRGN.

Finally, there is a special rule for the evaluation of surface programs. Programs

in the Untyped Region Calculus are simply terms. We distinguish programs because

the type systems presented in the next sections have a special judgement for top-level

programs. Essentially, this judgement establishes reasonable “boundary conditions”

for a program’s execution, an aspect that is often overlooked in other descriptions of

3 Limiting the body of a region abstraction to abstractions ensures that an erasure function that removes
region annotations and produces a λ-calculus term is meaning preserving.

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

516 M. Fluet and G. Morrisett

S ; e ↪→ v

r ∈ dom(S) l /∈ S

S; i at r ↪→ S{(r, l) �→ i}; 〈l〉r

S; e1 ↪→ S1; 〈l1〉r1 S1(r1, l1) = i1
S1; e2 ↪→ S2; 〈l2〉r2 S2(r2, l2) = i2
r ∈ dom(S2) l /∈ S2 i1 � i2 = i

S; e1 � e2 at r ↪→ S2{(r, l) �→ i}; 〈l〉r

S; e1 ↪→ S1; 〈l1〉r1 S1(r1, l1) = i1
S1; e2 ↪→ S2; 〈l2〉r2 S2(r2, l2) = i2

i1 � i2 = b

S; e1 � e2 at ↪→ S2; b S; tt ↪→ S; tt S; ff ↪→ S; ff

S; eb ↪→ S ′; tt S ′; et ↪→ S ′′; v′′

S; if eb then et else ef ↪→ S ′′; v′′
S; eb ↪→ S ′; ff S ′; ef ↪→ S ′′; v′′

S; if eb then et else ef ↪→ S ′′; v′′

r ∈ dom(S) l /∈ S

S; λx.e′ at r ↪→ S{(r, l) �→ λx.e′}; 〈l〉r

S; e1 ↪→ S1; 〈l1〉r1 S1(r1, l1) = λx.e′

S1; e2 ↪→ S2; v2 S2; e
′[v2/x] ↪→ S3; v3

S; e1 e2 ↪→ S3; v3

S; e1 ↪→ S1; v1 S1; e2 ↪→ S2; v2
r ∈ dom(S2) l /∈ S2

S; (e1, e2) at r ↪→ S2{(r, l) �→ (v1, v2)}; 〈l〉r

S; e ↪→ S ′; 〈l〉r
S ′(r, l) = (v1, v2)

S; fst e ↪→ S ′; v1

S; e ↪→ S ′; 〈l〉r
S ′(r, l) = (v1, v2)

S; snd e ↪→ S ′; v2

r ∈ dom(S) l /∈ S

S; λ.u′ at r ↪→ S{(r, l) �→ λ.u′}; 〈l〉r

S; e1 ↪→ S1; 〈l1〉r1 S1(r1, l1) = λ.u′

S1; u
′[ρ2/] ↪→ S2; v2

S; e1 [ρ2] ↪→ S2; v2

r /∈ S S, r �→ {}; e[r/] ↪→ S ′, r �→ R′; v′

S; letregion in e ↪→ S ′[•/r]; v′[•/r]
e ↪→prog v

·,H �→ {}; e[H/H] ↪→ ·; H �→ R′; v′

e ↪→prog v′[•/H]

Fig. 15. Dynamic semantics of URC

region calculi. Programs are evaluated under a stack with a distinguished region H,

which is substituted for the region variable H during the evaluation of the program.

Essentially, one can consider the evaluation of a program e as being equivalent to

the evaluation of the expression letregion H in e, where the final stack is discarded.

4.3 A Traditional Region Calculus

Figure 16 gives an abbreviated static semantics for a traditional region calcu-

lus (Helsen & Thiemann, 2000; Calcagno, 2001; Calcagno et al., 2002) applied to

the syntax of the Untyped Region Calculus. The type structure is as follows:

Types Boxed types

τ ::= bool | (µ, ρ) µ ::= int | τ1

ϕ′
−→ τ2 | τ1 × τ2 | Π.ϕ

′
τ

A region is associated with every type that requires heap allocated storage. The type

(µ, ρ) pairs together a boxed type (a type requiring heap allocated storage) and a

region placeholder; we interpret (µ, ρ) as the type of values of boxed type µ allocated

in region ρ. The judgement ∆ �place ρ checks that ρ is well-formed in the region

context ∆.

Note that the typing rules rely upon set theoretic operations (∈, ∪, and \) to

check and synthesize effects. As our translation to FRGN will require witnessing effect

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

Monadic regions 517

Region contexts ∆ ::= · | ∆,

∆; Γ �exp e : τ, ϕ

∆; Γ, x : τ1 �exp e′ : τ2, ϕ
′ ∆ �place ρ

∆; Γ �exp λx : τ1.
ϕ′
e′ at ρ : (τ1

ϕ′
−→ τ2, ρ), {ρ}

∆; Γ �exp e1 : (τ1

ϕ′
−→ τ2, ρ

′
1), ϕ1 ∆; Γ �exp e2 : τ1, ϕ2

∆; Γ �exp e1 e2 : τ2, ϕ1 ∪ ϕ2 ∪ {ρ′
1} ∪ ϕ′

∆ �type τ �ctxt ∆; Γ; (ϕ \) ∆, ; Γ �exp e : τ, ϕ

∆; Γ �exp letregion in e : τ, ϕ \

∆, ; Γ �exp u′ : τ, ϕ′ ∆ �place ρ

∆; Γ �exp λ.ϕ
′
u′ at ρ : (Π.ϕ

′
τ, ρ), {ρ}

∆; Γ �exp e : (Π.ϕ
′
τ, ρ′

1), ϕ1 ∆ �place ρ2

∆; Γ �exp e [ρ2] : τ[ρ2/], ϕ ∪ {ρ′
1} ∪ ϕ′[ρ2/]

Fig. 16. Static semantics of TRC (abbreviated)

subsumption by explicit coercions, the Bounded Region Calculus and Single Effect

Calculus will formalize these relations in separate judgements.

4.4 The Bounded Region Calculus

In this section, we sketch the Bounded Region Calculus (BRC), which can be seen

as a core model of Cyclone. The type structure for BRC is as follows:

Types Boxed types

τ ::= bool | (µ, ρ) µ ::= int | τ1

ϕ′
−→ τ2 | τ1 × τ2 | Π � ϕ.ϕ

′
τ

In a region-abstraction type Π � ϕ.ϕ
′
τ, the effect ϕ serves as a lower bound on the

lifetime of the region . (Note that the region variable is bound within ϕ′ and τ,

but not ϕ.) The abstraction can only be instantiated by a region ρ that has been

pushed on the stack more recently than those regions in ϕ. Within the body of the

abstraction, we may safely assume that is outlived by all of the regions in ϕ. Put

another way, if is live, then all of the regions in ϕ must be live.

Figure 17 gives an abbreviated static semantics for the Bounded Region Calculus.

Region contexts ∆ are ordered lists of region variables bounded by effect sets. We

summarize the main typing judgements in the following table.

Judgement Meaning

∆ �rr ρ2 � ρ1 If region ρ2 is live, then region ρ1 is live.

(Alt.: region ρ1 outlives region ρ2.)
∆ �re ρ � ϕ If region ρ is live, then all regions in ϕ are live.

(Alt.: all regions in ϕ outlive region ρ.)
∆ �er ϕ � ρ Region ρ is a region in ϕ.

∆ �ee ϕ ⊇ ϕ′ All region in ϕ′ are regions in ϕ.

∆; Γ �exp e : τ, ϕ Term e has type τ and effect ϕ.

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

518 M. Fluet and G. Morrisett

Region contexts ∆ ::= · | ∆, � ϕ

∆ �rr ρ2 � ρ1

(� {ρ1, . . . , ρi, . . . , ρn}) ∈ ∆

∆ �rr � ρi

∆ �place ρ

∆ �rr ρ � ρ

∆ �rr ρ2 � ρ′ ∆ �rr ρ
′ � ρ1

∆ �rr ρ2 � ρ1

∆ �re ρ � ϕ

∆ �rr ρ � ρi
i∈1...n

∆ �re ρ � {ρ1, . . . , ρn}

∆ �er ϕ � ρ

∆ �eff {ρ1, . . . , ρn}
∆ �er {ρ1, . . . , ρn} � ρi

∆ �ee ϕ ⊇ ϕ′

∆ �eff ϕ

∆ �er ϕ � ρi
i∈1...n

∆ �ee ϕ ⊇ {ρ1, . . . , ρn}

∆; Γ �exp e : τ, ϕ

∆; Γ, x : τ1 �exp e′ : τ2, ϕ
′

∆ �place ρ ∆ �er ϕ � ρ

∆; Γ �exp λx : τ1.
ϕ′
e′ at ρ : (τ1

ϕ′
−→ τ2, ρ), ϕ

∆; Γ �exp e1 : (τ1

ϕ′
−→ τ2, ρ

′
1), ϕ ∆ �er ϕ � ρ′

1

∆; Γ �exp e2 : τ1, ϕ ∆ �ee ϕ ⊇ ϕ′

∆; Γ �exp e1 e2 : τ2, ϕ

∆ �type τ �ctxt ∆; Γ; {ρ1, . . . , ρn}
∆, � {ρ1, . . . , ρn}; Γ �exp e : τ, {ρ1, . . . , ρn, }

∆; Γ �exp letregion in e : τ, {ρ1, . . . , ρn}

∆, � ϕ′′; Γ �exp u′ : τ, ϕ′

∆ �place ρ ∆ �er ϕ � ρ

∆; Γ �exp λ � ϕ′′.ϕ
′
u′ at ρ : (Π � ϕ′′.ϕ

′
τ, ρ), ϕ

∆; Γ �exp e : (Π � ϕ′′.ϕ
′
τ, ρ′

1), ϕ ∆ �er ϕ � ρ′
1

∆ �place ρ2 ∆ �re ρ2 � ϕ′′ ∆ �ee ϕ ⊇ ϕ′[ρ2/]

∆; Γ �exp e [ρ2] : τ[ρ2/], ϕ

Fig. 17. Static semantics of BRC (abbreviated)

We note that the typing rules for the judgements �rr and �re simply formalize the

reflexive, transitive closure of the syntactic constraints in ∆, each of which asserts

a particular “outlived by” relation between a region variable and an effect set.

Likewise, the judgements �er and �rr formalize the set theoretic operations used by

the traditional region calculus. The ∆ �place ρ and ∆ �eff ϕ judgements check that ρ

and ϕ, respecitvely, are well-formed in the region context ∆.

The typing rule for letregion in e relates the new region to the currently live

regions by introducing into the region context with an appropriate bound: while

 is live, all regions in {ρ1, . . . , ρn} are live. The typing rule for region instantiation

requires that we be able to show that the formal region parameter ρ2 is outlived by

all of the regions in the region abstraction bound ϕ′′.

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

Monadic regions 519

Region contexts ∆ ::= · | ∆, � ϕ

Value contexts Γ ::= · | Γ, x : τ

Region domains R ::= {l1, . . . , ln}
Region types R ::= {l1 �→ µ1, . . . , ln �→ µn}
Stack domains S ::= · | S, r �→ R (ordered domain)

Stack types S ::= · | S, r �→ R (ordered domain)

Fig. 18. Static semantics of SEC (definitions)

Translation of TRC to BRC

There is a trivial translation from the traditional region calculus into the Bounded

Region Calculus, whereby every region abstraction becomes a region abstraction

with an empty bound. Meaning preservation is trivial, as the languages share the

same dynamic semantics. Type preservation corresponds to the validity of effect

enlargement.

Lemma 4.1 (Translation Preserves Types)
(1) If ∆; Γ �TRC

exp e : τ, ϕ, then forall ϕ′,

if �BRC
ctxt �̃�∆� ; �̃�Γ� ;ϕ′ and �̃�∆� �BRC

ee ϕ′ ⊇ ϕ,

then �̃�∆� ; �̃�Γ� �BRC
exp �̃�e� : �̃�τ� , ϕ′.

(2) If �TRC
prog p ok, then �BRC

prog �̃�p� ok.

4.5 The Single Effect Calculus

The Single Effect Calculus (SEC) can be seen as a restricted form of the Bounded

Region Calculus, where latent effects consist of a single region instead of a set of

regions. As a convention, we will use θ to represent regions that correspond to such

effects. Hence, the type structure is as follows:

Types Boxed types

τ ::= bool | (µ, ρ) µ ::= int | τ1
θ−→ τ2 | τ1 × τ2 | Π � ϕ.θτ

Because the Single Effect Calculus will be the source of our translation into FRGN,

we present the static semantics in more detail than the previous region calculi.

4.5.1 Definitions

Figure 18 present additional definitions for syntactic classes that appear in the

static semantics. As in BRC, region contexts ∆ are ordered lists of region variables

bounded by effect sets. Stack and region types and domains, as in FRGN, serve a

technical purpose in the proof of type-preservation under evaluation.

The typing rules for the Single Effect Calculus appear in the following figures.

4.5.2 Expressions

Figure 19 present the typing rules for the judgement ∆; Γ; S : S �exp e : τ, θ, which

asserts that under region context ∆, value context Γ, and stack type S with stack

domain S, the expression e has type τ and effects bounded by the region θ. In

practice, and as suggested by the typing rules, θ usually corresponds to the most

recently allocated region (also referred to as the top or current region).

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

520 M. Fluet and G. Morrisett

∆; Γ; S : S �exp e : τ, θ

�ctxt ∆; Γ; S : S; θ

∆; S �place ρ ∆; S �rr θ � ρ

∆; Γ; S : S �exp i at ρ : (int, ρ), θ

∆; Γ; S : S �exp e1 : (int, ρ1), θ ∆; S �rr θ � ρ1

∆; Γ; S : S �exp e2 : (int, ρ2), θ ∆; S �rr θ � ρ2

∆; S �place ρ ∆; S �rr θ � ρ

∆; Γ; S : S �exp e1 � e2 at ρ : (int, ρ), θ

∆; Γ; S : S �exp e1 : (int, ρ1), θ ∆; S �rr θ � ρ1

∆; Γ; S : S �exp e2 : (int, ρ2), θ ∆; S �rr θ � ρ2

∆; Γ �exp e1 � e2 : bool, θ

�ctxt ∆; Γ; S : S; θ

∆; Γ; S : S �exp tt : bool, θ

�ctxt ∆; Γ; S : S; θ

∆; Γ; S : S �exp ff : bool, θ

∆; Γ; S : S �exp eb : bool, θ

∆; Γ; S : S �exp et : τ, θ ∆; Γ; S : S �exp ef : τ, θ

∆; Γ; S : S �exp if eb then et else ef : τ, θ

�ctxt ∆; Γ; S : S; θ

x ∈ dom(Γ) Γ(x) = τ

∆; Γ; S : S �exp x : τ, θ

∆; Γ, x : τ1; S : S �exp e′ : τ2, θ
′

∆; S �place ρ ∆; S �rr θ � ρ

∆; Γ; S : S �exp λx : τ1.
θ′
e′ at ρ : (τ1

θ′
−→ τ2, ρ), θ

∆; Γ; S : S �exp e1 : (τ1
θ′

−→ τ2, ρ
′
1), θ ∆; S �rr θ � ρ′

1

∆; Γ; S : S �exp e2 : τ1, θ ∆; S �rr θ � θ′

∆; Γ; S : S �exp e1 e2 : τ2, θ

∆; Γ; S : S �exp e1 : τ1, θ

∆; Γ; S : S �exp e2 : τ2, θ

∆; S �place ρ ∆; S �rr θ � ρ

∆; Γ; S : S �exp (e1, e2) at ρ : (τ1 × τ2, ρ), θ

∆; Γ; S : S �exp e : (τ1 × τ2, ρ), θ

∆; S �rr θ � ρ

∆; Γ; S : S �exp fst e : τ1, θ

∆; Γ; S : S �exp e : (τ1 × τ2, ρ), θ

∆; S �rr θ � ρ

∆; Γ; S : S �exp snd e : τ2, θ

∆; S �type τ �ctxt ∆; Γ; S : S; θ

∆, � {θ}; Γ; S : S �exp e : τ,

∆; Γ; S : S �exp letregion in e : τ, θ

∆, � ϕ; Γ; S : S �exp u′ : τ, θ′

∆; S �place ρ ∆; S �rr θ � ρ

∆; Γ; S : S �exp λ � ϕ.θ
′
u′ at ρ : (Π � ϕ.θ

′
τ, ρ), θ

∆; Γ; S : S �exp e1 : (Π � ϕ.θ
′
τ, ρ′

1), θ ∆; S �rr θ � ρ′
1

∆; S �place ρ2 ∆; S �re ρ2 � ϕ ∆; S �rr θ � θ′[ρ2/]

∆; Γ; S : S �exp e1 [ρ2] : τ[ρ2/], θ

�ctxt ∆; Γ; S : S; θ ∆; S �btype µ

∆; Γ; S : S �exp 〈l〉• : (µ, •), θ

�ctxt ∆; Γ; S : S; θ r ∈ dom(S) l ∈ dom(S(r)) µ = S(r, l)

∆; Γ; S : S �exp 〈l〉r : (µ, r), θ

Fig. 19. Static semantics of SEC (expressions)

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

Monadic regions 521

∆; S �rr ρ2 � ρ1

S �rctxt ∆

(� {ρ1, . . . , ρi, . . . , ρn}) ∈ ∆

∆; S �rr � ρi

S �rctxt ∆

S = S1, r1 �→ R1, S2, r2 �→ R2, S3

∆; S �rr r2 � r1

∆; S �re r � {r1, . . . , rn}
∆; S �rr r � ri

S �rctxt ∆ S = S1, r1 �→ R1, S2

∆; S �rr • � r1

∆; S �place ρ

∆; S �rr ρ � ρ

∆; S �rr ρ2 � ρ′ ∆; S �rr ρ
′ � ρ1

∆; S �rr ρ2 � ρ1

∆; S �re ρ � ϕ

S �rctxt ∆

∆; S �rr ρ � ρi
i∈1...n

∆; S �re ρ � {ρ1, . . . , ρn}
Fig. 20. Static semantics of SEC (casts)

Figure 20 reproduces the �rr and �re judgements of the Bounded Region Calculus,

adding constraints implied by S, which asserts “outlived by” relations by explicit

ordering of region names.

As in BRC, the typing rule for letregion in e relates the new region to the

currently live regions by introducing into the region context with an appropriate

bound. In particular, the new region is outlived by the “old” current region and

becomes the “new” current region for the evaluation of the body of the letregion.

The judgements for locations ensure that region names that appear in locations

are in scope; furthermore, a location in a live region points to a value with the type

assigned by the stack type.

It is worth comparing the treatment of latent effects in the Single Effect Calculus

with their treatment in the other two type systems:

∆; Γ �exp e1 : (τ1

ϕ′
−→ τ2, ρ

′
1), ϕ1 ∆; Γ �exp e2 : τ1, ϕ2

∆; Γ �exp e1 e2 : τ2, ϕ1 ∪ ϕ2 ∪ {ρ′
1} ∪ ϕ′ TRC

∆; Γ �exp e1 : (τ1

ϕ′
−→ τ2, ρ

′
1), ϕ ∆ �er ϕ � ρ′

1

∆; Γ �exp e2 : τ1, ϕ ∆ �ee ϕ ⊇ ϕ′

∆; Γ �exp e1 e2 : τ2, ϕ
BRC

∆; Γ; S : S �exp e1 : (τ1
θ′

−→ τ2, ρ
′
1), θ ∆; S �rr θ � ρ′

1

∆; Γ; S : S �exp e2 : τ1, θ ∆; S �rr θ � θ′

∆; Γ; S : S �exp e1 e2 : τ2, θ
SEC

In the Single Effect Calculus, the composite effect ϕ1 ∪ ϕ2 ∪ {ρ′
1} is witnessed by

a single region θ that subsumes the effect of the entire expression. We interpret θ

as an upper bound on the composite effect; hence, θ is an upper bound on each

of the effect sets ϕ1 and ϕ2, which explains why θ is used in the antecedents that

type-check the sub-expressions e1 and e2. We require ρ′
1 to outlive the current region

θ by the antecedent ∆ �rr θ � ρ′
1. Finally, we require the latent single effect θ′, which

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

522 M. Fluet and G. Morrisett

�prog p ok

·,H � {}; ·; · : · �exp p : bool,H
�prog p ok

Fig. 21. Static semantics of SEC (surface programs)

is an upper bound on the set of regions affected by executing the function, to outlive

the current region, which ensures that θ is also an upper bound on the set of regions

affected by executing the function.

In the Bounded Region Calculus, the effect for which θ is an upper bound is

made manifest as ϕ. The antecedents ∆ �er ϕ � ρ′
1 and ∆ �ee ϕ ⊇ ϕ′ serve the same

purpose as the ∆ �rr θ � ρ′
1 and ∆ �rr θ � θ′, namely to ensure that the region of the

function closure and the latent effect are subsumed by the effect of the application.

4.5.3 Technical details

Figures B 1–B 4 in Appendix B contain additional judgements for ensuring that

places ρ, effects ϕ, boxed types µ, types τ, region contexts ∆, value contexts Γ, closed

values v, storable values w, stack types S and stacks S are well-formed.

4.5.4 Surface programs

Since surface programs should not admit syntax for naming regions, we adopt the

judgement �prog p ok given in Figure 21. The rule for top-level surface programs

requires that an expression evaluate to a boolean value in the context of distinguished

region H that remains live throughout the execution of the program. It also

serves as the single effect that bounds the effects of the entire program. Alternative

formulations of these “boundary conditions” exist; we have adopted these to simplify

the translation in Section 5.

It is useful to note that the static semantics can be greatly simplified given this rule

for surface programs. Pushing these empty stack types and stack domains through

the rules leads to the following simplifications:

∆; Γ; · : · �exp e : τ, θ =⇒ ∆; Γ �exp e : τ, θ

∆; · �btype µ =⇒ ∆ �btype µ ∆; · �type τ =⇒ ∆ �type τ

∆; · �rr ρ2 � ρ1 =⇒ ∆ �rr ρ2 � ρ1 ∆; · �re ρ � ϕ =⇒ ∆ �re ρ � ϕ

∆; · �place ρ =⇒ ∆ �place ρ ∆; · �eff ϕ =⇒ ∆ �eff ϕ

· �rctxt ∆ =⇒ �rctxt ∆ ∆; · �vctxt Γ =⇒ ∆ �vctxt Γ

�ctxt ∆; Γ; · : ·; θ =⇒ �ctxt ∆; Γ; θ

4.5.5 Translation of BRC to SEC

We can give a straightforward translation from the Bounded Region Calculus into

the Single Effect Calculus.

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

Monadic regions 523

Boxed types

�̂

�
τ1

ϕ′
−→ τ2

�
ρ

= Πϑ � ϕ′.ρ(�̂�τ1� ϑ−→ �̂�τ2� , ρ)

�̂
�
Π � ϕ.ϕ

′
τ
�
ρ

= Π � ϕ.ρ(Πϑ � ϕ′.ϑ�̂�τ� , ρ)

Types

�̂�(µ, ρ)� = (�̂�µ�ρ , ρ)

Expressions

�̂
�
λx : τ.ϕ

′
e at ρ

�
θ

= λϑ � ϕ′.ρ(λx : �̂�τ� .ϑ�̂�e�ϑ at ρ) at ρ

�̂�e1 e2�θ = �̂�e1�θ [θ] �̂�e2�θ
�̂�letregion in e�θ = letregion in �̂�e�
�̂

�
λ � ϕ.ϕ

′
u at ρ

�
θ

= λ � ϕ.ρ(λϑ � ϕ′.ϑ�̂�u�ϑ at ρ) at ρ

�̂�e [ρ]�θ = �̂�e�θ [ρ] [θ]

Programs

�̂�e� = �̂�e�H

Fig. 22. Translation from BRC to SEC (abbreviated)

At the type level, this transation expands every function type into a region

abstraction and function type:

�̂
	
(τ1

ϕ−→ τ2, ρ)

= (Πϑ � ϕ.ρ(�̂�τ1� ϑ−→ �̂�τ2� , ρ), ρ)

At the term level, source functions become region abstractions and functions, and

applications become region instantiations and applications. A similar approach deals

with region abstractions in the source language. Essentially, this translation works

by looking for the places where region sets are used in BRC and simply replacing

them by an abstraction bounded by that set. Clearly, this is not the most efficient

translation. For example, in places where we could statically identify an upper bound

on the region set (e.g., a singleton region set), we could elide the abstraction and

simply use the upper bound.

Figure 22 gives an abbreviated translation from the Bounded Effect Calculus to

the Single Effect Calculus (the translation is homomorphic on the other syntactic

forms). The translation witnesses each introduced bounded abstraction with the

current region, which is threaded through the translation by the θ component of

�̂�e�θ . We can prove that the translation is type- and meaning-preserving. (Note that

we adopt the simplified type-system for the Single Effect Calculus (see Section 4.5.4),

where we assume empty stack types and domains.)

Lemma 4.2 (Translation Preserves Types)

(1) If ∆; Γ �BRC
exp e : τ, ϕ, then forall ∆′ and θ,

if �SEC
ctxt �̂�∆� ,∆′; �̂�Γ� ; θ and �̂�∆� ,∆′ �SEC

re θ � ϕ,

then �̂�∆� ,∆′; �̂�Γ� �SEC
exp �̂�e�θ : �̂�τ� , θ.

(2) If �BRC
prog p ok, then �SEC

prog �̂�p� ok.

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

524 M. Fluet and G. Morrisett

5 The translation

In this section we present a type- and semantics-preserving translation from the

Single Effect Calculus to FRGN. Many of the key components of the translation

should be obvious from the suggestive naming of the previous sections. We clearly

intend letregion to be translated (in some fashion) to letRGN. Likewise, we can

expect types of the form (µ, ρ) to be translated to types of the form RGNLoc τr τa.

It further seems likely that the outlives relation ρ2 � ρ1 should be related to the

witness functions τr1 � τr2 . We present the translation in stages, as there are some

subtleties that require explanation.

We start with a few preliminaries. We assume injections from the sets RVarsSEC

and VarsSEC to the sets TVarsFRGN and VarsFRGN respectively. In the translation,

applications of such injections will be clear from context and we freely use variables

from source objects in target objects. We further assume two additional injections

from the set RVarsSEC to the set VarsFRGN ; the first, written h will denote the

handle for the region , while the second, written w will denote the witnesses which

coerce the region to its bounding regions. Finally, as a SEC program requires

exactly one region stack for evaluation, we assume that the corresponding stack in

the translated FRGN program is labelled by the stack name s.

The translation is a typed call-by-value monad translation, similar to the standard

translation given by Sabry and Wadler (1997). We have not attempted to optimize

the translation to avoid the introduction of “administrative” redexes. We feel that

this simplifies the translation, and it does not significantly complicate the proof

that the translation preserves the semantics, owing to the fact that only three

expression forms in the source calculus are value forms. The translation is given

by a number of functions: ��·� translates into types, ��·� translates into type

contexts, ��·� translates into value contexts, ��·� translates into expressions, and

��·� translates into towers, tower types, and tower domains. Technically, there are

separate functions for each syntactic class in the source calculus, but we elide this

detail as it is always clear from context. Additionally, to reduce notational clutter,

translations from judgements are often written in an abbreviated form giving only

the main component; the corresponding judgement should be clear from context.

Figure 23 shows the translation of types and Figure 24 gives the extension

of the translation to contexts. As expected, the type (µ, ρ) is translated to

RGNLoc ��ρ� ��µ�, whereby region allocated values in the source are also region

allocated in the target. The translations of primitive types and product types are

trivial. More interesting are the translations of function types and region abstraction

types. Functions with effects bounded by the region θ are translated into pure

functions that yield computations in the RGN monad indexed by θ, whereas region

abstractions are translated into type abstractions. Because the target calculus requires

explicit region handles for allocation, each time a region is in scope in the source

calculus, the region handle must be in scope in the target calculus. This explains the

appearance of the RGNHandle type in the translation. Likewise, the target calculus

makes witness functions explicit, whereas in the source calculus such coercions are

implied by � related regions. Hence, we interpret � {ρ1, . . . , ρn} as an n-tuple

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

Monadic regions 525

Translations yielding types

Places

�

�
S �rctxt ∆ ∈ dom(∆)

∆; S �place

�
=

�

�
S �rctxt ∆ r ∈ dom(S)

∆; S �place r

�
= s	r

�

�
S �rctxt ∆

∆; S �place •

�
=

{
◦	• if S = ·
s	• otherwise

Types

�

�
S �rctxt ∆

∆; S �type bool

�
= bool

�

�
∆; S �btype µ ∆; S �place ρ

∆; S �type (µ, ρ)

�
= RGNLoc ��ρ� ��µ�

Boxed types

�

�
S �rctxt ∆

∆; S �btype int

�
= int

�

�
∆; S �type τ1 ∆; S �place θ ∆; S �type τ2

∆; S �btype τ1
θ−→ τ2

�
= ��τ1� → RGN ��θ� ��τ2�

�

�
∆; S �type τ1 ∆; S �type τ2

∆; S �btype τ1 × τ2

�
= ��τ1� × ��τ2�

�

�
∆; S �eff ϕ ∆, � ϕ; S �place θ ∆, � ϕ; S �type τ

∆; S �btype Π � ϕ.θτ

�
=

∀.�� � ϕ� → RGNHandle → RGN ��θ� ��τ�
Witnesses

�
�
∆; S �rr ρ2 � ρ1

�
= ��ρ1� � ��ρ2� = ∀β.RGN ��ρ1� β → RGN ��ρ2� β

�

�� S �rctxt ∆

∆; S �rr ρ � ρi
i∈1...n

∆; S �re ρ � {ρ1, . . . , ρn}

��� = (��ρ � ρ1� × · · · × ��ρ � ρn�)
Fig. 23. Translation from the Single Effect Calculus to FRGN (Types)

of functions, each witnessing a coercion from region ρi to . This interpretation is

formalized by the �� � {ρ1, . . . ρn}� translation.4

We extend the type translation to contexts in the obvious way. In addition to

translating region variables to type variables and translating the types of variables

in value contexts, we have additional translations from region contexts to value

contexts. As explained above, region handles and witness functions are explicit

values in the target calculus. Hence, our translation maintains the invariant that

4 Note that we treat {ρ1, . . . , ρn} as a list with fixed order and not as a set, so we can realize the witness
with an ordered tuple.

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

526 M. Fluet and G. Morrisett

Translations yielding type contexts

Region contexts

�
	

S �rctxt ·

= ·

�

�
S �rctxt ∆ /∈ dom(∆) ∆; S �eff ϕ

S �rctxt ∆, � ϕ

�
= ��∆� ,

Translations yielding value contexts

Region contexts

�
	

S �rctxt ·

= ·

�

�
S �rctxt ∆ /∈ dom(∆) ∆; S �eff ϕ

S �rctxt ∆, � ϕ

�
=

��∆� , h : RGNHandle , w : �� � ϕ�
Value contexts

�

�
S �rctxt ∆

∆; S �vctxt ·

�
= ·

�

�
∆; S �vctxt Γ x /∈ dom(Γ) ∆; S �type τ

∆; S �vctxt Γ, x : τ

�
= ��Γ� , x:��τ�

Fig. 24. Translation from the Single Effect Calculus to FRGN (Contexts)

whenever a region variable � {ρ1, . . . , ρn} is in scope in the source calculus, the

variables h and w are in scope in the target calculus. The variable h (of type

RGNHandle) is the handle for the region and the variable w (of type �� � ϕ�)
is the tuple holding the witness functions that coerce to region .

Figure 25 shows the translation of witness terms. The first six translations map

the reflexive, transitive closure of the syntactic constraints in the source ∆ and S

into an appropriate coercion function. The final translation collects a set of coercion

functions into a tuple; such a term is suitable as an argument to the translation of a

region abstraction. Figure 26 translates a single region place into its corresponding

region handle.

Figures 27 and 28 and Figures C 1 and C2 in Appendix C give the translation of

terms. In order to make the translation easier to read, we introduce the following

notation, reminiscent of Haskell’s do notation:

bind f:τa ⇐ e1; e2 ≡ let k = e1 in

thenRGN [τr] [τa] [τb] k (λf:τa.e2)

where k fresh

where τr and τb are inferred from context. Note that this induces the following

derived rules:

T ; e1 ↪→ v

T ; bind f:τa ⇐ e1; e2 ↪→ thenRGN [τr] [τa] [τb] v (λf:τa.e2)

∆; Γ; T : T �exp e1 : RGN τr τa ∆; Γ, f:τa; T : T �exp e2 : RGN τr τb

∆; Γ; T : T �exp bind f:τa ⇐ e1; e2 : RGN τr τb

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

Monadic regions 527

Translations yielding expressions

Witnesses

�

�� S �rctxt ∆

(� {ρ1, . . . , ρi, . . . , ρn}) ∈ ∆

∆; S �rr � ρi

��� =

Λβ.λk : RGN ��ρi� β.let w = seli w in w [β] k

�

�� S �rctxt ∆

S = S1, r1 �→ R1, S2, r2 �→ R2, S3

∆; S �rr r2 � r1

��� =

Λβ.λk : RGN s	r1 β.witnessRGN s	r1 s	r2 [β] k

�

�
∆; S �re r � {r1, . . . , rn}

∆; S �rr r � ri

�
=

Λβ.λk : RGN ��ri� β.let w = seli ��r � {r1, . . . , rn}� in w [β] k

�

�
S �rctxt ∆ S = S1, r1 �→ R1, S2

∆; S �rr • � r1

�
=

Λβ.λk : RGN s	r1 β.witnessRGN s	r1 s	• [β] k

�

�
∆; S �place ρ

∆; S �rr ρ � ρ

�
= Λβ.λk : RGN ��ρ� β.k

�

�
∆; S �rr ρ2 � ρ′ ∆; S �rr ρ

′ � ρ1

∆; S �rr ρ2 � ρ1

�
=

Λβ.λk : RGN ��ρ1� β.let k′ = ��ρ′ � ρ1� [β] k in ��ρ2 � ρ′� [β] k′

�

�� S �rctxt ∆

∆; S �rr ρ � ρi
i∈1...n

∆; S �re ρ � {ρ1, . . . , ρn}

��� = (��ρ � ρ1� , . . . ,��ρ � ρn�)
Fig. 25. Translation from the Single Effect Calculus to FRGN (Witnesses)

Translations yielding expressions

Places

�

�
S �rctxt ∆ ∈ dom(∆)

∆; S �place

�
= h

�

�
S �rctxt ∆ r ∈ dom(S)

∆; S �place r

�
= handle(s	r)

�

�
S �rctxt ∆

∆; S �place •

�
=

{
handle(◦	•) if S = ·
handle(s	•) otherwise

Fig. 26. Translation from the Single Effect Calculus to FRGN (Places)

The translation of an integer constant is a canonical example of allocation in

the target calculus. The allocation is accomplished by the newRGNLoc command,

applied to the appropriate region handle and value. However, the resulting command

has type RGN ��ρ� (RGNLoc ��ρ� int), whereas the source typing judgement

requires the computation to be expressed relative to the region θ. We coerce the

computation using a witness function, whose existence is implied by the judgement

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

528 M. Fluet and G. Morrisett

Translations yielding expressions

Expressions

�

�� �ctxt ∆; Γ; S : S; θ

∆; S �place ρ ∆; S �rr θ � ρ

∆; Γ; S : S �exp i at ρ : (int, ρ), θ

��� =

��θ � ρ� [��(int, ρ)�] (newRGNLoc [��ρ�] [��int�] ��ρ� i)

�

�� �ctxt ∆; Γ; S : S; θ

x ∈ dom(Γ) Γ(x) = τ

∆; Γ; S : S �exp x : τ, θ

��� = returnRGN [��θ�] [��τ�] x
�

�� ∆; Γ, x : τ1; S : S �exp e′ : τ2, θ
′

∆; S �place ρ ∆; S �rr θ � ρ

∆; Γ; S : S �exp λx : τ1.
θ′
e′ at ρ : (τ1

θ′
−→ τ2, ρ), θ

��� =

��θ � ρ′� [�

�
(τ1

θ′
−→ τ2, ρ

′)

�
]

(newRGNLoc [��ρ′�] [�

�
τ1

θ′
−→ τ2

�
] ��ρ′� (λx:��τ1� .��e�))

�

��∆; Γ; S : S �exp e1 : (τ1
θ′

−→ τ2, ρ
′
1), θ ∆; S �rr θ � ρ′

1

∆; Γ; S : S �exp e2 : τ1, θ ∆; S �rr θ � θ′

∆; Γ; S : S �exp e1 e2 : τ2, θ

��� =

bind f:�

�
(τ1

θ′
−→ τ2, ρ

′
1)

�
⇐ ��e1� ;

bind g:�

�
τ1

θ′
−→ τ2

�
⇐ ��θ � ρ′

1� [�

�
τ1

θ′
−→ τ2

�
] (readRGNLoc [��ρ′

1�] [�

�
τ1

θ′
−→ τ2

�
] f);

bind a:��τ1� ⇐ ��e2� ;

let z = g a in

��θ � θ′� [��τ2�] z
where f, g, a, z fresh

Fig. 27. Translation from the Single Effect Calculus to FRGN (Terms (I))

∆; S �rr θ � ρ. Allocation of a function proceeds in exactly the same manner.

Function application, while notationally heavy, is simple. The thenRGN commands

(implicit in the bind expressions) sequence evaluating the function to a location,

reading the location, evaluating the argument, and applying the function to the

argument.

The translation of letregion in e is pleasantly direct. As described above, we

introduce , h, and w through Λ- and λ-abstractions. The region handle and

coercion function are supplied by the letRGN command when the computation is

executed.

The translation of region abstraction is similar to the translation of functions.

Once again, region handles and witness functions are λ-bound in accordance to

the invariants described above. During the translation of region applications, the

appropriate tuple of witness functions (constructed by �
�
∆; S �re ρ2 � ϕ

�
) and

region handle are supplied as arguments.

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

Monadic regions 529

Translations yielding expressions

Expressions

�

�� ∆; S �type τ �ctxt ∆; Γ; S : S; θ

∆, � {θ}; Γ; S : S �exp e : τ,

∆; Γ; S : S �exp letregion in e : τ, θ

��� =

letRGN [��θ�] [��τ�] (Λ.λw:�� � {θ}� .λh:RGNHandle .��e�)
�

�� ∆, � ϕ; Γ; S : S �exp u′ : τ, θ′

∆; S �place ρ ∆; S �rr θ � ρ

∆; Γ; S : S �exp λ � ϕ.θ
′
u′ at ρ : (Π � ϕ.θ

′
τ, ρ), θ

��� =

��θ � ρ� [�
�
(Π � ϕ.θ

′
τ, ρ)

�
]

(newRGNLoc [��ρ�] [�
�
Π � ϕ.θ

′
τ
�
]

��ρ� (Λ.λw:�� � θ� .λh : RGNHandle .��u�))
�

�� ∆; Γ; S : S �exp e1 : (Π � ϕ.θ
′
τ, ρ′

1), θ ∆; S �rr θ � ρ′
1

∆; S �place ρ2 ∆; S �re ρ2 � ϕ ∆; S �rr θ � θ′[ρ2/]

∆; Γ; S : S �exp e1 [ρ2] : τ[ρ2/], θ

��� =

bind f:�
�
(Π � ϕ.θ

′
τ, ρ′

1)
�

⇐ ��e� ;

bind g:�
�
Π � ϕ.θ

′
τ
�

⇐ ��θ � ρ′
1� [�

�
Π � ϕ.θ

′
τ
�
] (readRGNLoc [��ρ′

1�] [�
�
Π � ϕ.θ

′
τ
�
] f);

let z = (g [��ρ2�] ��ρ2 � ϕ� ��ρ2�) in

��θ � θ′[ρ2/]� [��τ[ρ2/]�] z
where f, g, z fresh

�

�
�ctxt ∆; Γ; S : S; θ r ∈ dom(S) l ∈ dom(S(r)) µ = S(r, l)

∆; Γ; S : S �exp 〈l〉r : (µ, r), θ

�
=

returnRGN [��θ�] [��(µ, r)�] 〈l〉s	r

�

�
�ctxt ∆; Γ; S : S; θ ∆; S �btype µ

∆; Γ; S : S �exp 〈l〉• : (µ, •), θ

�
=

{
returnRGN [��θ�] [��(µ, •)�] 〈l〉◦	• if S = ·
returnRGN [��θ�] [��(µ, •)�] 〈l〉s	• otherwise

Fig. 28. Translation from the Single Effect Calculus to FRGN (Terms (II))

Figures C 3 and C4 in Appendix C give the translations of closed and storable

values, which follow directly from the translations of expressions. Figure 29 gives

the translation of stacks, where each stored value is translated according to the

�sto derivation implied by the �stack derivation. There is one minor complication

due to the fact that a Single Effect Calculus program has an implicit region stack,

while FRGN explicitly introduces (and eliminates) a region stack with the runRGN

command. Hence, a stack domain, stack type, or stack may be translated to either

an empty tower or a tower with a single stack. We make this choice based on

whether or not any region is in the stack. A similar issue arises with occurences of

• in the source program, which may be translated either to s	•, within the scope of

the runRGN, where s is the name of the stack introduced by the runRGN, or to ◦	•,

outside the scope of the runRGN. All of the translations given in this section must

be given via translations on derivations, essentially to propagate the S stack domain

to each point where a • may appear. Again, we make the choice of translation based

on whether or not any region is in the S stack domain (see Figures 23 and 26).

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

530 M. Fluet and G. Morrisett

Translations yielding tower domains

Stack domains

�
�
S
�

=

{
· if S = ·
·, s �→ S otherwise

Translations yielding stack types

Stacks types

�

����
dom(S) = dom(S)

∀r ∈ dom(S). dom(S(r)) = dom(S(r))

∀r ∈ dom(S).∀l ∈ dom(S(r)). ·; S �btype S(r, l)

�stype S : S

����� = S∗

where dom(S) = dom(S∗)

∀r ∈ dom(S).dom(S (r)) = dom(S∗(r))

∀r ∈ dom(S).∀l ∈ dom(S(r)).S∗(r, l) = ��S(r, l)�
Translations yielding tower types

Stack types

�
�

�stype S : S
�

=

{
· if S = ·
·, s �→ �

�
�stype S : S

�
otherwise

Translations yielding stacks

Stacks

�
�

�stack S : S : S
�

= S ∗

where dom(S) = dom(S∗)

∀r ∈ dom(S).dom(S (r)) = dom(S∗(r))

∀r ∈ dom(S).∀l ∈ dom(S(r)).S∗(r, l) = ��S (r, l)�
Translations yielding towers

Stacks

�
�

�stack S : S : S
�

=

{
· if S = ·
·, s �→ �

�
�stack S : S : S

�
otherwise

Fig. 29. Translation from the Single Effect Calculus to FRGN (Stacks)

Translations yielding terms

Programs

�

�
·,H � {}; ·; · : · �exp p : bool,H

�prog p ok

�
=

runRGN [��·,H � {}; ·; · : · �type bool�] (ΛH.λhH:RGNHandle H.

let wH = () in

��·,H � {}; ·; · : · �exp p : bool,H�)
Fig. 30. Translation from the Single Effect Calculus to FRGN (Programs)

5.1 Surface Programs

Figure 30 shows the translation of programs. An entire region computation is

encapsulated and run by the runRGN expression. We bind wH to an empty tuple,

which corresponds to the absence of any coercion functions to the region H.

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

Monadic regions 531

When we are only interested in translating surface programs, then neither r nor •
can appear in types or expressions. This simplifies many of the translations. We no

longer require any translations of stack domains, stack types, or stacks. Furthermore,

the translations of region contexts, places (which must be of the form), types and

boxed types, and value contexts can all be given as syntactic translations (rather

than translations on derivations). The more complicated translation on derivations

given in this section is necessary only to establish the correctness of the translation.

5.2 Translation Properties

The translation is type preserving, in the sense formalized by the following lemma.

The proof is by (mutual) induction on the structure of the typing judgements,

making frequent appeals to various well-formedness lemmas.

Lemma 5.1 (Translation Preserves Types)

(1) If S �rctxt ∆, then �tctxt �
�
S �rctxt ∆

�
.

(2) If ∆; S �place ρ, then �
�
S �rctxt ∆

�
; �

�
S
�

�type �
�
∆; S �place ρ

�
.

(3) If S �rctxt ∆, then �
�
S �rctxt ∆

�
; �

�
S
�

�vctxt �
�
S �rctxt ∆

�
.

(4) If ∆; S �btype µ, then �
�
S �rctxt ∆

�
; �

�
S
�

�type �
�
∆; S �btype µ

�
.

(5) If ∆; S �type τ,

then �
�
S �rctxt ∆

�
; �

�
�sdom S

�
�type �

�
∆; S �type τ

�
.

(6) If �stype S : S, then �ttype �
�

�stype S : S
�

: �
�
S
�
.

(7) If ∆; S �vctxt Γ, then �
�
S �rctxt ∆

�
; �

�
S
�

�vctxt �
�
∆; S �vctxt Γ

�
.

(8) If ∆; S �vctxt Γ, then �
�
S �rctxt ∆

�
; �

�
S
�

�vctxt �
�
S �rctxt ∆

�
,�

�
∆; S �vctxt Γ

�
.

(9) If ∆; S �rr ρ2 � ρ1, then �
�
S �rctxt ∆

�
; �

�
S
�

�type �
�
∆; S �rr ρ2 � ρ1

�
.

(10) If ∆; S �re ρ � ϕ, then �
�
S �rctxt ∆

�
; �

�
S
�

�type �
�
∆; S �re ρ � ϕ

�
.

(11) If �stype S : S and ∆; S �rr ρ2 � ρ1,

then �
�
S �rctxt ∆

�
; �

�
S �rctxt ∆

�
; �

�
�stype S : S

�
: �

�
S
�

�exp �
�
∆; S �rr ρ2 � ρ1

�
:

�
�
∆; S �rr ρ2 � ρ1

�
.

(12) If �stype S : S and ∆; S �re ρ � ϕ,

then �
�
S �rctxt ∆

�
; �

�
S �rctxt ∆

�
; �

�
�stype S : S

�
: �

�
S
�

�type �
�
∆; S �re ρ � ϕ

�
:

�
�
∆; S �re ρ � ϕ

�
.

(13) If �stype S : S and ∆; S �place ρ,

then �
�
S �rctxt ∆

�
; �

�
S �rctxt ∆

�
; �

�
�stype S : S

�
: �

�
S
�

�exp �
�
∆; S �place ρ

�
:

handle(�
�
∆; S �place ρ

�
).

(14) If ∆; Γ; S : S �exp e : τ, θ,

then �
�
S �rctxt ∆

�
; �

�
S �rctxt ∆

�
,�

�
∆; S �vctxt Γ

�
; �

�
�sdom S : S

�
: �

�
S
�

�exp

�
�
∆; Γ; S : S �exp e : τ, θ

�
: RGN �

�
∆; S �place θ

�
�

�
∆; S �type τ

�
.

(15) If S : S �cval v : τ,

then ·; ·; �
�

�stype S : S
�

: �
�
S
�

�exp �
�
S : S �cval v : τ

�
: �

�
·; S �type τ

�
.

(16) If S : S �sto w : τ,

then ·; ·; �
�

�stype S : S
�

: �
�
S
�

�exp �
�
S : S �sto w : µ

�
: �

�
·; S �btype µ

�
.

(17) If �stack S : S : S, then �tower �
�

�stack S : S : S
�

: �
�

�stype S : S
�

: �
�
S
�
.

(18) If �prog p ok, then ·; ·; ·; · �exp ���prog p ok� : ��·,H � {}; · �type bool�.
Furthermore, the translation is meaning preserving, with respect to the dynamic

semantics of SEC and FRGN. The essence of this proof relies on a coherence lemma

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

532 M. Fluet and G. Morrisett

stating that the translation of witnesses yields functions that are operationally

equivalent to the identify function:

Lemma 5.2 (Coherence)
Suppose �stack S : S : S and ·; S �rr r � ri.

Let �
�
S
�

= ·, s �→ S
∗
, �

�
�stype S : S

�
= ·, s �→ S∗, �

�
�stack S : S : S

�
= ·, s �→ S ∗, and

�
�

·; S �rr r � ri
�

= v∗
w .

If ·; ·; ·, s �→ S∗ : ·, s �→ S
∗ �exp κ∗ : RGN s	ri τa and ·, s �→ S ∗; κ∗ ↪→κ S

′∗; v′∗,

then ·, s �→ S ∗; v∗
w [τa] κ

∗ ↪→ κ∗′ and ·, s �→ S ∗; κ∗′ ↪→κ S
′∗; v′∗.

Coherence is used throughout the proof of correctness to show that every

evaluation derivation for the source can be simulated by a derivation involving

the translation of the source:

Theorem 5.1 (Translation Preserves Semantics)
Suppose �stack S : S : S, ·; ·; S : S �exp e : τ, r′, and S ; e ↪→ S ′; v′.

Then there exists S
′ � S and S′ � S such that �stack S ′ : S′ : S

′
and S′ : S

′ �cval v
′ : τ.

Let �
�
S
�

= ·, s �→ S
∗
, �

�
�stype S : S

�
= ·, s �→ S∗, �

�
�stack S : S : S

�
= ·, s �→ S ∗, and

�
�

·; ·; S : S �exp e : τ, r′� = e∗.

Then ·, s �→ S ∗; e∗ ↪→ κ∗′ and ·, s �→ S ∗; κ∗′ ↪→κ S
′∗; v′∗,

where �
	
S

′

= S

′∗
, �

	
�stype S′ : S

′

= S′∗, �

	
�stack S ′ : S′ : S

′

= S ′∗, and

�
	
S′ : S

′ �cval v
′ : τ

= v′∗.

We note that the proof is greatly simplified by using large-step operational

semantics for both the source and target languages, since for many expression forms,

a single operational step in the source language is expanded to many operational

steps in the target language.

A simple application of this result shows that the when a source program evaluates

to a value, then encapsulating and running its translation also evaluates to the

value:

Theorem 5.2 (Translation Correctness (Programs))
Suppose �prog e ok and e ↪→ v′.

Let ���prog e ok� = e∗.

Then ·; e∗ ↪→ v′∗, where ��· : · �cval v
′ : bool� = v′∗.

Full details of this development are given in the report (Fluet, 2004).

6 Expressiveness

An important issue to consider is the expressiveness of the Single Effect Calculus

relative to Tofte and Talpin’s original region calculus. Tofte and Talpin’s formulation

of the region calculus as the implicit target of an inference system makes a direct

comparison difficult. Fortunately, there has been sufficient interest in region-based

memory management to warrant direct presentations of region calculi (Helsen &

Thiemann, 2000; Calcagno, 2001; Calcagno et al., 2002; Henglein et al., 2005), which

are better suited for comparison. Three aspects of the region calculus are highlighted

as essential features: region polymorphism, region polymorphic recursion, and

effect polymorphism. Additionally, we believe that region bounds, presented in

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

Monadic regions 533

Terms e ::= . . . | fix f:τ.u

S ; e ↪→ S ′; e

r ∈ dom(S) l /∈ dom(S (r))

S ; fix f:(τ1
θ′

−→ τ2, ρ).λx:τ1.
θ′
e′ at r ↪→ S{(r, l) �→ λx:τ1.

θ′
e′[〈l〉r/f]}; 〈l〉r

r ∈ dom(S) l /∈ dom(S (r))

S ;fix f:(Π � ϕ.θ
′
τ, ρ).λ � ϕ.θ

′
u′ at r ↪→ S{(r, l) �→ λ � ϕ.θ

′
u′[〈l〉r/f]}; 〈l〉r

∆; Γ; S : S �exp e : τ, θ

∆; Γ, f:τ; S : S �exp u : τ, θ

∆; Γ; S : S �exp fix f:τ.u : τ, θ

Fig. 31. Extensions to SEC for fix

Cyclone (Grossman et al., 2001) and adopted by the Single Effect Calculus, are a

natural generalization that provide additional insight into region calculi.

6.1 Region Polymorphic Recursion

Region polymorphic recursion can be supported in the Single Effect Calculus by

adding fix and fixing a region abstraction (as is shown by Henglein, Makholm, and

Niss for the Tofte-Talpin region calculus (2005)); Figure 31 presents the extensions

to SEC necessary to support fix.

As an example, consider the following term to compute a factorial (in which we

elide the type annotation on fact):

fix fact .(Πi � {}.ρf (Πo � {}.ρf (Πb � {ρf, i, o}.ρf
(λn:(int, i).

b

if letregion in n � (1 at)

then 1 at o
else letregion i′ in (letregion o′ in

(fact [i′] [o′] [o′] (letregion in n − (1 at) at i′))) ∗ n at o
) at ρf) at ρf) at ρf) at f

The function fact is parameterized by three regions: i is the region in which the

input integer is allocated, o is the region in which the output integer is to be

allocated, and b is a region that bounds the latent effect of the function. (Region

ρf is assumed to be bound in an outer context and holds the closure.) We see that

the bounds on i and o indicate that they are not constrained to be outlived by any

other regions. On the other hand, the bound on b indicates that ρf , i, and o must

outlive b. Hence, b suffices to bound the effects within the body of the function,

in which we expect regions ρf (at the recursive call) and i to be read from and

region o to be allocated in. Note that the regions passed to the recursive call of

fact satisfy the bounds, as o′ outlives ρf (through i′ and b), i′ is allocated before

(and deallocated after) o′ , and o′ clearly outlives itself.

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

534 M. Fluet and G. Morrisett

This extension of SEC can be translated into FRGN extended with fixRGNLoc (see

Section 3.6.2). The translation of Section 5 is extended with the following:

�

������
∆; Γ, f:(τ1

θ′
−→ τ2, ρ), x : τ1; S : S �exp e′ : τ2, θ

′

∆; S �place ρ ∆; S �rr θ � ρ

∆; Γ, f:(τ1
θ′

−→ τ2, ρ); S : S �exp λx:τ1.
θ′
e′ at ρ : (τ1

θ′
−→ τ2, ρ), θ

∆; Γ; S : S �exp fix f:τ1
θ′

−→ τ2.λx:τ1.
θ′
e′ at ρ : (τ1

θ′
−→ τ2, ρ), θ

������� =

��θ � ρ� �

�
(τ1

θ′
−→ τ2, ρ)

�
(fixRGNLoc [��ρ�] [�

�
τ1

θ′
−→ τ2

�
]

��ρ� (λf : �

�
(τ1

θ′
−→ τ2, ρ)

�
.λx : ��τ1� .��e�))

�

����
∆, � ϕ; Γ, f:(Π � ϕ.θ

′
τ, ρ); S : S �exp u′ : τ, θ′

∆; S �place ρ ∆; S �rr θ � ρ

∆; Γ, f:(Π � ϕ.θ
′
τ, ρ); S : S �exp λ � ϕ.θ

′
u′ at ρ : (Π � ϕ.θ

′
τ, ρ), θ

∆; Γ; S : S �exp fix f:(Π � ϕ.θ
′
τ, ρ).λ � ϕ.θ

′
u′ at ρ : (Π � ϕ.θ

′
τ, ρ), θ

����� =

��θ � ρ� �
�
(Π � ϕ.θ

′
τ, ρ)

�
(fixRGNLoc [��ρ�] [�

�
Π � ϕ.θ

′
τ
�
]

��ρ� (λf : �
�
(Π � ϕ.θ

′
τ, ρ)

�
.

Λ.λw:�� � θ� .λh : RGNHandle .��u�)
6.2 Effect Polymorphism

Recall that effect polymorphism provides a means to abstract over an effect (a

set of regions). Effect instantiation applies an effect abstraction to an effect. Effect

polymorphism is especially useful for typing higher-order functions. For example, the

type of the list map function should be polymorphic in the effect of the functional

argument. We note that effect polymorphism is most useful in the presence of

type polymorphism. While we have presented the region calculi as a monomorphic

languages, adding type polymorphism is entirely orthogonal to the development

thus far.

Our translation from the Single Effect Calculus to FRGN was simplified by using a

single type (variable) for the index of the RGN monad. As the translation eliminates

subtyping through coercions, we introduced the type of witness functions. One

interesting aspect of the current translation is that there are no terms for nontrivial

witnesses between RGN computations in (the surface syntax of) FRGN. The only way

to acquire a term of type τr � τs ≡ ∀β.RGN τr β → RGN τs β is through letRGN.

The two trivial casts (corresponding to reflexivity and transitivity) can be written in

(pure) System F:

refl :: ∀γr.γr � γr
refl ≡ Λγr.Λβ.λk:RGN γr β.k

trans :: Λγr1 , γr2 , γr3 .(γr1 � γr2) → (γr2 � γr3) → (γr1 � γr3)

trans ≡ Λγr1 , γr2 , γr3 .λf:γr1 � γr2 .λg:γr2 � γr3 .Λβ.λk:RGN γr1 β.g [β] (f [β] k)

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

Monadic regions 535

If we were to adopt a source calculus with effects given by

ϕ ::= ∅ | {ρ} | ε | ϕ1 ∪ ϕ2

where effects may be any combination of regions and effect variables, then an

“obvious” translation would be something like:

��∅� = unit

��{ρ}� = ρ

��ε� = ε

��ϕ1 ∪ ϕ2� = ��ϕ1� × ��ϕ2�
Now we would require some interpretation for effect relations. For example, the

rule

∆ �ee ϕ ⊇ ϕ1 ∆ �ee ϕ ⊇ ϕ2

∆ �ee ϕ ⊇ ϕ1 ∪ ϕ2

needs to translate to a term with the type

(��ϕ1� � ��ϕ�) → (��ϕ2� � ��ϕ�) → (��ϕ1 ∪ ϕ2� � ��ϕ�)
≡ (��ϕ1� � ��ϕ�) → (��ϕ2� � ��ϕ�) → (��ϕ1� × ��ϕ2� � ��ϕ�)

which can be seen as an instance of the type

∀γ, γ1, γ2.(γ1 � γ) → (γ2 � γ) → (γ1 × γ2 � γ).

As there is no (pure) System F term with that type, we would need to introduce a

number of witness terms (at the surface syntax) in order to accomodate all of the

necessary coercions.

Simply put, in witnessing “sub-effecting” through explicit coercions, we need to

introduce additional terms into the language. We note that the situation is really

no better in a language with subtyping (e.g., System F�), as the subset relation is

“richer” than the subtype relation on standard types (e.g., product types).

7 Related work

The work in this paper draws heavily from two lines of research. The first is the

work done in type-safe region-based memory management, introduced by Tofte

and Talpin (1994; 1997). Our Single Effect Calculus draws inspiration from the

Capability Calculus (Crary et al., 1999) and Cyclone (Grossman et al., 2001), where

the “outlives” relationship between regions is recognized as an important component

of type systems for region calculi.

The work of Banerjee, Heintze and Riecke (1999) deserves special mention. They

show how to translate the Tofte-Talpin region calculus into an extension of the

polymorphic λ-calculus called F#. A new type operator # is used as a mechanism

to hide and reveal the structure of types. Capabilities to allocate and read values

from a region are explicitly passed as polymorphic functions of types ∀α.α → (α#ρ)

and ∀α.(α#ρ) → α; however, regions have no run-time significance in F# and there

is no notion of deallocation upon exiting a region. The equality theory of types in

F# is nontrivial, due to the treatment of #; in contrast, type equality on FRGN types

is purely syntactic. Furthermore, their proof of soundness is based on denotational

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

536 M. Fluet and G. Morrisett

techniques, whereas ours are based on syntactic techniques which tend to scale more

easily to other linguistic features. Finally, it is worth noting that there is almost

certainly a connection between the F# lift and seq expressions and the monadic

return and bind operations, although it is not mentioned or explored in their paper.

The second line of research on which we draw is the work done in monadic

encapsulation of effects (Moggi, 1989; Moggi, 1991; Riecke & Viswanathan, 1995;

Launchbury & Peyton Jones, 1995; Wadler, 1995; Launchbury & Peyton Jones, 1994;

Launchbury & Sabry, 1997; Sabry & Wadler, 1997; Ariola & Sabry, 1998; Kieburtz,

1998; Semmelroth & Sabry, 1999; Moggi & Sabry, 2001; Wadler & Thiemann, 2003).

The majority of this work has focused on effects arising from reading and writing

mutable state, which we reviewed in Section 2. While recent work (Wadler, 1995;

Moggi & Sabry, 2001; Wadler & Thiemann, 2003) has considered more general

combinations of effects and monads, only a small amount of work has examined

the combination of regions and monads (Kagawa, 1997; Kagawa, 2001; Ganz,

forthcoming).

We note that Wadler and Thiemann (2003) advocate marrying effects and monads

by translating a type τ1
σ−→ τ2 to the type ��τ1� → Tσ ��τ2�, where Tσ τ represents

a computation that yields a value of type τ and has effects delimited by (the set)

σ. As with the work of Banerjee et. al. described above, this introduces a nontrivial

theory of equality (and subtyping) on types; the types Tσ τ and Tσ′
τ are equal so

long as σ and σ′ are equivalent sets. However, few programming languages allow

one to express such nontrivial equalities between types.

Kagawa (1997; 2001) anticipates a number of themes from this work, although

a formal treatment is left to future work. As a means of bridging the work of

Wadler (1992) and Launchbury and Peyton Jones (1995), Kagawa (1997) suggests

extending the ST monad with the following type and operations:

τ ::= . . . | Mutable τs τt

appR :: ∀s, t.∀a.Mutable s t → ST t a → ST s a

cmpR :: ∀s, t, u.Mutable s t → Mutable t u → Mutable s u

extendST :: ∀t.∀a.(∀s.Mutable s t → ST t a) → ST t a

The intention is that the type Mutable s t is equivalent to the type (s → t) × (s →
t → s); hence, it serves as a witness to the embedding of the state t into a larger

state s. extendST generalizes blockST of Section 2 in the same manner as our

letRGN. appR coerces a state transformer, given the appropriate witness, while

cmpR composes witnesses; hence, the latter is a “proof” of the transitivity of the

state embedding. In our setting, the transparency of the r1 � r2 type obviates the

need for these explicit operations. The lack of formal dynamic and static semantics

makes a thorough evaluation difficult; in particular, the relationship between the

global state “conjured up” by runST and an individual mutable object is rather ad

hoc. In the computation syntax of FRGN, a witnessRGN term concretely captures the

relationship between an older and a younger region.

In later work, Kagawa (2001) argues that these techniques can be extended to

accomodate region-based memory management. In spite of the title and notation,

the paper does not present an explicitly monadic language. Rather, the language is

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

Monadic regions 537

presented with a type-and-effect system, and the connection to a monadic setting is

left (vaguely) implicit in the choice of notation and reference to the previous work.

A dynamic semantics and type system, along with a proof that the new letextend

operator can safely deallocate the extended region, is left to future work. Our present

work addresses all these deficiencies by giving clear descriptions of both the Single

Effect Calculus and FRGN, proving the soundness of the FRGN type system, and giving

a type- and meaning-preserving translation between the two languages. On the other

hand, Kagawa presents a type inference algorithm for the language, which may sug-

gest a means of reducing the notational overhead of passing witnesses and handles.

Ganz (forthcoming) relates the type-and-effect system of Tofte and Talpin to

monad transformers. Ganz distinguishes among encapsulation with a single monad,

encapsulation with a monad per region, and encapsulation with a monad transformer

per region. He concludes that only a monad transformer per region is expressive

enough to encode nested regions. This corresponds to our presentation where

runRGN introduces a monad per stack of regions and letRGN introduces a monad

transformer per region. Ganz imposes a peculiar restriction: upward references (i.e.,

allocating a reference to an inner region at an outer region) are not allowed. This is

a severe restriction for a region-based language; it appears to arise from a failure to

distinguish encapsulation of a stack of regions from encapsulation of a single region.

Recall that while runRGN computations may be nested, it is not possible for the

outer computation to have references to the inner computation; on the other hand,

there may be arbitrary references among regions of a single stack. Finally, Ganz

claims to support early deallocation of regions, a facet of region-based memory

management that is not available in FRGN.

Finally, other researchers have utilized the power of System F as a target language.

For example, Washburn and Weirich (2003) demonstrate how to encode higher-order

abstract syntax using parametric polymorphism, while Tse and Zdancewic (2004)

show how to encode the dependency core calculus.

8 Conclusions and future work

We have given a type- and meaning-preserving translation from the Single Effect

Calculus to FRGN. Both the source and the target calculi use a static type-system

to delimit the effects of allocating in and reading from regions. The Single Effect

Calculus uses the partial order implied by the “outlives” relation on regions to use

single regions as bounds for sets of effects. We feel that this is an important insight

that leads to a relatively straight-forward translation into the monadic setting. FRGN

draws from the work on monadic encapsulation of state to give parametric types to

runRGN and letRGN that prevent access of regions beyond their lifetimes. Explicit

functions witness the outlives relationship between regions, enabling computations

from outer regions to be cast to computations in inner regions. Witness functions

cannot be forged and are only introduced via letRGN.

There are numerous directions for future work. One idea is to provide the RGN

monad to Haskell programmers and to try to leverage type classes so that witnesses

and handles can be passed implicitly, thereby reducing the notational overhead of

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

538 M. Fluet and G. Morrisett

programming with nested stores. While a direct encoding of subtyping leads to

undecidable and overlapping instances, the use of type-indexed products (Kiselyov

et al., 2004) may provide a partial solution, at the expense of reintroducing a product

type (see comments at the end of Section 2). Obviously, a language that incorporates

subtyping directly, such as F�, would simplify the encoding.

Finally, as is well known, Tofte and Talpin’s original region calculus can lead to

inefficient memory usage for some programs. In practice, additional mechanisms are

required to achieve good space utilization. Cyclone incorporates a number of these

enhancements, including unique pointers and dynamic regions, and it remains to be

seen whether these features can also be encoded into a simpler setting.

Acknowledgements

A preliminary version of this work appeared in the informal Proceedings of the 2nd

Workshop on Semantics, Program Analysis, and Computing Environments for Memory

Management (SPACE’04). Thanks to Oleg Kiselyov for suggestions on using Haskell

type classes to pass handles and witnesses. The anonymous reviewers provided

helpful comments that have improved the presentation.

Supported in part by National Science Foundation Grants 0204193 and 9875536,

AFOSR Grants F49620-03-1-0156 and F49620-01-1-0298, and ONR Grant N00014-

01-1-0968. The views and conclusions contained herein are those of the authors

and should not be interpreted as necessarily representing the official policies

or endorsements, either expressed or implied, of these organizations or the U.S.

Government.

A Static Semantics of FRGN

Figures A 1 and A 2 contain additional judgements for the static semantics of FRGN.

∆; T �type τ

�tctxt ∆

∆; T �type int

�tctxt ∆

∆; T �type bool

∆; T �type τ1∆; T �type τ2

∆; T �type τ1 → τ2

�tctxt ∆ ∆; T �type τi
i∈1...n

∆; T �type τ1 × · · · × τn

�tctxt ∆ α ∈ dom(∆)

∆; T �type α

∆, α; T �type τ

∆; T �type ∀α.τ

∆; T �type τr ∆; T �type τa

∆; T �type RGN τr τa

∆; T �type τr ∆; T �type τa

∆; T �type RGNLoc τr τa

∆; T �type τr

∆; T � RGNHandle τr

�tctxt ∆

∆; T � ◦	•
�tctxt ∆ s ∈ dom(T)

∆; T � s	•

�tctxt ∆ s ∈ dom(T) r ∈ dom(T(s))

∆; T � s	r

Fig. A 1. Static semantics of FRGN (types)

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

Monadic regions 539

�tctxt ∆

�tctxt ·
�tctxt ∆ α /∈ dom(∆)

�tctxt ∆, α

∆; T �vctxt Γ

�tctxt ∆

∆; T �vctxt ·
∆; T �vctxt Γ x �∈ dom(Γ) ∆; T �type τ

∆; T �vctxt Γ, x : τ

�ctxt ∆; Γ; T : T

�ttype T : T ∆; T �vctxt Γ

�ctxt ∆; Γ; T : T

Fig. A 2. Static semantics of FRGN (contexts)

B Static Semantics of SEC

Figures B 1, B 2, B 3, and B 4 contain additional judgements for the static semantics

of the Single Effect Calculus.

The judgement �stype S : S asserts that stack type S is well-formed with stack

domain S. In particular, the judgement asserts that S has the domain specified by S

and each (boxed) type in the range of S is well-formed. Note that the judgement is

made with respect to the entire stack domain S. This allows types “lower” in the stack

∆; S �place ρ

S �rctxt ∆ ∈ dom(∆)

∆; S �place

S �rctxt ∆ r ∈ dom(S)

∆; S �place r

S �rctxt ∆

∆; S �place •

∆; S �eff ϕ

S �rctxt ∆ ∆; S �place ρi
i∈1...n

∆; S �eff {ρ1, . . . , ρn}

∆; S �btype µ

S �rctxt ∆

∆; S �btype int

∆; S �type τ1 ∆; S �place θ ∆; S �type τ2

∆; S �btype τ1
θ−→ τ2

∆; S �type τ1 ∆; S �type τ2

∆; S �btype τ1 × τ2

∆; S �eff ϕ ∆, � ϕ; S �place θ ∆, � ϕ; S �type τ

∆; S �btype Π � ϕ.θτ

∆; S �type τ

S �rctxt ∆

∆; S �type bool

∆; S �btype µ ∆; S �place ρ

∆; S �type (µ, ρ)

Fig. B 1. Static semantics of SEC (types)

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

540 M. Fluet and G. Morrisett

S �rctxt ∆

S �rctxt ·
S �rctxt ∆ /∈ dom(∆) ∆; S �eff ϕ

S �rctxt ∆, � ϕ

∆; S �vctxt Γ

S �rctxt ∆

∆; S �vctxt ·
∆; S �vctxt Γ x /∈ dom(Γ) ∆; S �type τ

∆; S �vctxt Γ, x : τ

�ctxt ∆; Γ; S : S; θ

�stype S : S ∆; S �vctxt Γ ∆; S �place θ

�ctxt ∆; Γ; S : S; θ

Fig. B 2. Static semantics of SEC (contexts)

S : S �cval v : τ

�stype S : S

S : S �cval tt : bool

�stype S : S

S : S �cval ff : bool

�stype S : S ·; S �btype µ

S : S �cval 〈l〉• : (µ, •)

�stype S : S r ∈ dom(S) l ∈ dom(S(r)) µ = S(r, l)

S : S �cval 〈l〉r : (µ, r)

S : S �sto w : µ

�stype S : S

S : S �sto i : int

·; ·, x:τ1; S : S �exp e′ : τ2, θ
′

S : S �sto λx:τ1.
θ′
e′ : τ1

θ′
−→ τ2

S : S �cval v1 : τ1 S : S �cval v2 : τ2

S : S �sto (v1, v2) : τ1 × τ2

·, � ϕ; ·; S : S �exp u′ : τ, θ′

S : S �sto λ � ϕ.θ
′
u′ : Π � ϕ.θ

′
τ

Fig. B 3. Static semantics of SEC (closed and storable values)

�stype S : S

dom(S) = dom(S)

∀r ∈ dom(S). dom(S(r)) = dom(S(r))

∀r ∈ dom(S).∀l ∈ dom(S(r)). ·; S �btype S(r, l)

�stype S : S

�stack S : S : S

�stype S : S

dom(S) = dom(S) = dom(S)

∀r ∈ dom(S). dom(S(r)) = dom(S(r)) = dom(S (r))

∀r ∈ dom(S).∀l ∈ dom(S(r)). S : S �sto S (r, l) : (S(r, l), r)

�stack S : S : S

Fig. B 4. Static semantics of SEC (stacks and regions)

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

Monadic regions 541

to reference region names that appear “higher” in the stack. This corresponds to

the fact that one can have arbitrary pointers between region allocated data. Finally,

the judgement �stack S : S : S asserts that the stack S is well-formed with stack type

S and stack domain S. Like the judgement �stype, it asserts that S has the domain

specified by S and each stored value in the range of S has the type specified by S.

C The translation

Figures C 1, C 2, C 3, and C4 contain additional translations from the Single Effect

Calculus to FRGN.

Translations yielding expressions

Expressions

�

�� �ctxt ∆; Γ; S : S; θ

∆; S �place ρ ∆; S �rr θ � ρ

∆; Γ; S : S �exp i at ρ : (int, ρ), θ

��� =

��θ � ρ� [��(int, ρ)�] (newRGNLoc [��ρ�] [��int�] ��ρ� i)

�

��∆; Γ; S : S �exp e1 : (int, ρ1), θ ∆; S �rr θ � ρ1

∆; Γ; S : S �exp e2 : (int, ρ2), θ ∆; S �rr θ � ρ2

∆; Γ �exp e1 � e2 : bool, θ

��� =

bind a:��(int, ρ1)� ⇐ ��e1� ;

bind a′:��int� ⇐ ��θ � ρ1� [��int�] (readRGNLoc [��ρ1�] [��int�] a);
bind b:��(int, ρ2)� ⇐ ��e2� ;

bind b′:��int� ⇐ ��θ � ρ2� [��int�] (readRGNLoc [��ρ2�] [��int�] b);
let z = a′ � b′ in

returnRGN [��θ�] [��bool�] z
where a, a′, b, b′, z fresh

�

�
�ctxt ∆; Γ; S : S; θ

∆; Γ; S : S �exp tt : bool, θ

�
= returnRGN [��θ�] [��bool�] tt

�

�
�ctxt ∆; Γ; S : S; θ

∆; Γ; S : S �exp ff : bool, θ

�
= returnRGN [��θ�] [��bool�] ff

�

�� ∆; Γ; S : S �exp eb : bool, θ

∆; Γ; S : S �exp et : τ, θ ∆; Γ; S : S �exp ef : τ, θ

∆; Γ; S : S �exp if eb then et else ef : τ, θ

��� =

bind z:��bool� ⇐ ��eb� ; if z then ��et� else ��ef�
where z fresh

Fig. C 1. Translation from the Single Effect Calculus to FRGN (Terms (III))

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

542 M. Fluet and G. Morrisett

Translations yielding expressions

Expressions

�

����
∆; Γ; S : S �exp e1 : τ1, θ

∆; Γ; S : S �exp e2 : τ2, θ

∆; S �place ρ ∆; S �rr θ � ρ

∆; Γ; S : S �exp (e1, e2) at ρ : (τ1 × τ2, ρ), θ

����� =

bind a:��τ1� ⇐ ��e1� ;

bind b:��τ2� ⇐ ��e2� ;

��θ � ρ� [��(τ1 × τ2, ρ)�] (newRGNLoc [��ρ�] [��τ1 × τ2�] ��ρ� (a, b))

where a, b fresh

�

��∆; Γ; S : S �exp e : (τ1 × τ2, ρ), θ

∆; S �rr θ � ρ

∆; Γ; S : S �exp fst e : τ1, θ

��� =

bind x:��(τ1 × τ2, ρ)� ⇐ ��e� ;

bind y:��τ1 × τ2� ⇐ ��θ � ρ� [��τ1 × τ2�] (readRGNLoc [��ρ�] [��τ1 × τ2�] a);
let z = sel1 y in

returnRGN [��θ�] [��τ1�] z
where x, y, z fresh

�

��∆; Γ; S : S �exp e : (τ1 × τ2, ρ), θ

∆; S �rr θ � ρ

∆; Γ; S : S �exp snd e : τ2, θ

��� =

bind x:��(τ1 × τ2, ρ)� ⇐ ��e� ;

bind y:��τ1 × τ2� ⇐ ��θ � ρ� [��τ1 × τ2�] (readRGNLoc [��ρ�] [��τ1 × τ2�] a);
let z = sel2 y in

returnRGN [��θ�] [��τ2�] z
where x, y, z fresh

Fig. C 2. Translation from the Single Effect Calculus to FRGN (Terms (IV))

Translations yielding closed values

Closed values

�

�
�stype S : S

S : S �cval tt : bool

�
= tt

�

�
�stype S : S

S : S �cval ff : bool

�
= ff

�

�
�stype S : S r ∈ dom(S) l ∈ dom(S(r)) µ = S(r, l)

S : S �cval 〈l〉r : (µ, r)

�
= 〈l〉s	r

�

�
�stype S : S ·; S �btype µ

S : S �cval 〈l〉• : (µ, •)

�
=

{
〈l〉◦	• if S = ·
〈l〉s	• otherwise

Fig. C 3. Translation from the Single Effect Calculus to FRGN (Closed values)

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

Monadic regions 543

Translations yielding closed values

Storable values

�

�
�stype S : S

S : S �sto i : int

�
= i

�

�
·; ·, x:τ1; S : S �exp e′ : τ2, θ

′

S : S �sto λx:τ1.
θ′
e′ : τ1

θ′
−→ τ2

�
= λx:��τ1� .��e�

�

�
S : S �cval v1 : τ1 S : S �cval v2 : τ2

S : S �sto (v1, v2) : τ1 × τ2

�
= (��v1� ,��v2�)

�

�
·, � ϕ; ·; S : S �exp u′ : τ, θ′

S : S �sto λ � ϕ.θ
′
u′ : Π � ϕ.θ

′
τ

�
=

Λ.λw:�� � ϕ� .λh:RGNHandle .��u′�
Fig. C 4. Translation from the Single Effect Calculus to FRGN (Storable values)

References

Ariola, Zena & Sabry, Amyr (1998) Correctness of monadic state: An imperative call-by-need

calculus. Pages 62–74 of: Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (POPL’98). San Diego, CA: ACM Press.

Banerjee, Anindya, Heintze, Nevin & Riecke, Jon (1999) Region analysis and the polymorphic

lambda calculus. Pages 88–97 of: Proceedings of the 14th IEEE Symposium on Logic in

Computer Science (LCS’99). Trento, Italy: IEEE Computer Society Press.

Calcagno, Cristiano (2001) Stratified operational semantics for safety and correctness of

the region calculus. Pages 155–165 of: Proceedings of the 28th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL’01). London, England: ACM

Press.

Calcagno, Cristiano, Helsen, Simon & Thiemann, Peter (2002) Syntactic type soundness

results for the region calculus. Information and Computation, 173(2), 199–332.

Crary, Karl, Walker, David & Morrisett, Greg (1999) Typed memory management in a

calculus of capabilities. Pages 262–275 of: Proceedings of the 26th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL’99). ACM Press.

Fluet, Matthew (2004) Monadic regions: Formal type soundness and correctness. Tech. rept.

TR2004-1936. Department of Computer Science, Cornell University.

Fluet, Matthew & Morrisett, Greg (2004) Monadic regions. Pages 103–114 of: Proceedings of

the 9th ACM SIGPLAN International Conference on Functional Programming (ICFP’04).

ACM Press.

Ganz, Steven E. (forthcoming) Monadic encapsulation of state. PhD thesis, Indiana University,

Bloomington, Indiana.

Girard, Jean-Yves, Taylor, Paul & Lafont, Yves (1989) Proofs and Types. Cambridge University

Press.

Grossman, Dan, Morrisett, Greg, Wang, Yanling, Jim, Trevor, Hicks, Michael & Cheney,

James (2001) Formal type soundness for Cyclone’s region system. Tech. rept. 2001-1856.

Department of Computer Science, Cornell University.

Grossman, Dan, Morrisett, Greg, Jim, Trevor, Hicks, Michael, Wang, Yanling & Cheney,

James (2002) Region-based memory management in Cyclone. Pages 282–293 of: Proceedings

of the ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI’02). ACM Press.

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

544 M. Fluet and G. Morrisett

Helsen, Simon & Thiemann, Peter (2000) Syntactic type soundness for the region calculus.

Pages 1–19 of: Proceedings of the 4th International Workshop on Higher Order Operational

Techniques in Semantics (HOOTS’00). Electronic Notes in Theoretical Computer Science,

vol. 41. Montreal, Canada: Elsevier Science Publishers.

Henglein, Fritz, Makholm, Henning & Niss, Henning (2005) Effect types and region-based

memory management. Chap. 3, pages 87–135 of: Pierce, Benjamin (ed), Advanced Topics in

Types and Programming Languages. Cambridge, MA: MIT Press.

Kagawa, Koji (1997) Compositional references for stateful functional programming. Pages

217–226 of: Proceedings of the 2nd ACM SIGPLAN International Conference on Functional

Programming (ICFP’97). ACM Press.

Kagawa, Koji (2001) Monadic encapsulation with stack of regions. Pages 264–279 of:

Proceedings of the 5th International Symposium on Functional and Logic Programming

(FLOPS’01). Lecture Notes in Computer Science, vol. 2024. Tokyo, Japan: Springer-Verlag.

Kieburtz, Richard (1998) Taming effects with monadic typing. Pages 51–62 of: Proceedings of

the 3rd ACM SIGPLAN International Conference on Functional Programming (ICFP’98).

Baltimore, MD: ACM Press.

Kiselyov, Oleg, Lämmel, Ralf & Schupke, Keean (2004) Strongly typed heterogeneous

collections. Pages 96–107 of: Proceedings of the ACM SIGPLAN Workshop on Haskell.

ACM Press.

Launchbury, John & Peyton Jones, Simon (1994) Lazy functional state threads. Pages 24–35

of: Proceedings of the ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI’94). Orlando, FL: ACM Press.

Launchbury, John & Peyton Jones, Simon (1995) State in Haskell. Lisp and Symbolic

Computation, 8(4), 293–341.

Launchbury, John & Sabry, Amr (1997) Monadic state: Axiomatization and type safety. Pages

227–237 of: Proceedings of the 2nd ACM SIGPLAN International Conference on Functional

Programming (ICFP’97). Amsterdam, The Netherlands: ACM Press.

Moggi, Eugino (1989) Computational lambda calculus and monads. Pages 14–23 of:

Proceedings of the 4th IEEE Symposium on Logic in Computer Science (LCS’89).

Moggi, Eugino (1991) Notions of computation and monads. Information and Computation,

93(1), 55–92.

Moggi, Eugino & Sabry, Amr (2001) Monadic encapsulation of effects: a revised approach

(extended version). Journal of Functional Programming, 11(6), 591–627.

Reynolds, John (1974) Towards a theory of type structure. Pages 408–425 of: Programming

symposium. Lecture Notes in Computer Science, vol. 19. Paris, France: Springer-Verlag.

Riecke, Jon & Viswanathan, Ramesh (1995) Isolating side effects in sequential languages.

Pages 1–12 of: Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (POPL’95). San Francisco, CA: ACM Press.

Sabry, Amr & Wadler, Philip (1997) A reflection on call-by-value. ACM Transactions on

Programming Languages and Systems, 19(6), 916–941.

Semmelroth, Miley & Sabry, Amr (1999) Monadic encapsulation in ML. Pages 8–17 of:

Proceedings of the 4th ACM SIGPLAN International Conference on Functional Programming

(ICFP’99). Paris, France: ACM Press.

Smith, Geoffrey & Volpano, Dennis (1998) A sound polymorphic type system for a dialect

of C. Science of Computer Programming, 32(1-3), 49–72.

Tofte, Mads & Talpin, Jean-Pierre (1994) Implementation of the typed call-by-value λ-calculus

using a stack of regions. Pages 188–201 of: Proceedings of the 21st ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL’94). Portland, OR:

ACM Press.

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

Monadic regions 545

Tofte, Mads & Talpin, Jean-Pierre (1997) Region-based memory management. Information

and Computation, 132(2), 109–176.

Tofte, Mads, Birkedal, Lars, Elsman, Martin, Hallenberg, Niels, Olesen, Tommy Højfeld &

Sestoft, Peter (2002) Programming with regions in the ML Kit (for version 4). Tech. rept.

IT University of Copenhagen.

Tse, Stephen & Zdancewic, Steve (2004) Translating dependency into parametricity. Pages

115–1125 of: Proceedings of the 9th ACM SIGPLAN International Conference on Functional

Programming (ICFP’04). ACM Press.

Volpano, Dennis & Smith, Geoffrey (1997) Eliminating covert flows with minimum typings.

Pages 156–168 of: Proceedings of the 10th IEEE Computer Security Foundations Workshop

(CFSW’97). IEEE Computer Society Press.

Wadler, Philip (1992) The essence of functional programming. Pages 1–14 of: Proceedings

of the 19th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL’92). ACM Press.

Wadler, Philip (1995) The marriage of effects and monads. Pages 63–74 of: Proceedings of

the 3rd ACM SIGPLAN International Conference on Functional Programming (ICFP’98).

Baltimore, MD: ACM Press.

Wadler, Philip & Thiemann, Peter (2003) The marriage of effects and monads. Transactions

on Computational Logic, 4(1), 1–32.

Washburn, Geoffrey & Weirich, Stephanie (2003) Boxes go bannanas: Encoding higher-order

abstract syntax with parametric polymorphism. Pages 249 – 262 of: Proceedings of the 8th

ACM SIGPLAN International Conference on Functional Programming (ICFP’03). ACM

Press.

https://doi.org/10.1017/S095679680600596X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680600596X

