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Abstract

We consider an M/G/1 queue in which an arriving customer does not enter the system
whenever its virtual waiting time, i.e. the amount of work seen upon arrival, is larger
than a certain random patience time. We determine the busy period distribution for
various choices of the patience time distribution. The main cases under consideration are
exponential patience and a discrete patience distribution.
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1. Introduction

Impatience is a very natural and important concept in queueing models. There is a wide
range of situations in which customers may become impatient when they do not receive service
fast enough. We may think of customers at call centers or of customers representing perishable
goods, such as blood samples which wait to be tested and become obsolete after a certain due
date.

Most of the attention in the literature on queueing models with impatience has focused on
queue length and waiting time distributions, with relatively little attention given to the busy
period distribution. This important performance measure has been studied by Subba Rao [15]
for the M/G/1+M model, where the notation ‘+M’ indicates exponential patience, and in [8] for
the M/G/1 model with restricted accessibility: a customer is fully (or partially) rejected if the
workload at his arrival is below a certain fixed threshold. See [6] for the M/M/1+D case, and
[7] for several variants of the M/M/1+D and M/M/1+M cases.

A pioneering paper on queueing models with impatience is that of Barrer [3], who studied
the M/M/s+D model for the case where impatience refers to the waiting time and the M/M/1+D
model for the case where impatience refers to the sojourn time. In [1] and [2] necessary and suf-
ficient conditions for the existence of the virtual waiting time distribution in the G/G/1+G queue
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were obtained. The latter distribution is subsequently obtained for M/G/1+M and M/G/1+Ek
models. Finch [5] derived the waiting time distribution in the G/M/1+D queue. Stanford [12]
related the waiting time distribution of the (successful) customers and the workload seen by an
arbitrary arrival in the G/G/1+G queue. See[13] for a brief literature review.

In the present paper we focus on the busy period distribution for a single-server queue with
impatience. We consider the M/G/1+G model, in which the patience refers to the waiting (not
sojourn) time of the arriving customer. We first derive an integral equation for the distribution
of the busy period length, conditional on the initial workload in the system being v. We are
able to solve this equation in the case of exponential patience for a large class of service
time distributions. We thus obtain the Laplace–Stieltjes transform (LST) of the distribution
of the length of a busy period that starts with some workload v. Integration with respect to
the service time distribution gives the transform of the unconditional busy period length. In
the case of a discrete patience distribution, we follow another approach which is based on
transform methods, the Wald martingale, and stopping times. Again the LST of the busy period
distribution is obtained.

The paper is organized as follows. Section 2 contains a model description, and the derivation
of the integral equation for the distribution of the busy period length, conditional on the initial
workload in the system being v. In Section 3 we exploit this integral equation to obtain the
busy period distribution for the case of exponential patience, the service time being either
hyperexponential or Erlang distributed. Sections 4, 5, and 6 are devoted to the case of a discrete
patience distribution. Section 4 contains the preparations. In Section 5 we consider exponential
service times, while in Section 6 we consider generally distributed service times.

2. An integral equation: model description

Let {V (t), t ≥ 0} denote the virtual waiting time (the load) of an M/G/1 queue with arrival
intensity λ. The nth customer arrives with a vector of two random variables (Xn,Un), whereXn
is the length of service required and Un is the patience time. We assume that (X1, X2, . . . ) and
(U1, U2, . . . ) are two independent sequences of independent and identically distributed (i.i.d.)
random variables. The common distribution functions of theXi andUi are denoted byF andG,
respectively; for simplicity, we assume that they have densities f and g, respectively. Let V (t)
be the virtual waiting process. If the nth customer arrives at time t , he sees the workload V (t−)
in front of him and joins the queue if and only if V (t−) ≤ Un; in this case V (t) = V (t−)+Xn,
while, if V (t−) > Un, we have V (t) = V (t−).

We are interested in the distribution of the length, B, of the busy period in this M/G/1 queue
with customer impatience. First we note that P{B < ∞} = 1 if E(X1) < ∞. To see this,
consider the workloadWn just before the arrival of the nth customer. This embedded sequence
is Markovian and satisfies the recursion

Wn+1 = (Wn +Xn 1{Un>Wn} −Yn)+,
where Yn denotes the (exp(λ)-distributed) time between the arrivals of the nth and the (n+1)th
customer, and 1A is the indicator function ofA. Also (a)+ = max(0, a). We have, by dominated
convergence,

E(Wn+1 −Wn | Wn = w) = E(max[X1 1{U1>w} −Y1,−w]) → −1

λ
as w → ∞.

Hence, there is a w0 > 0 such that E(Wn+1 −Wn | Wn = w) ≤ −1/2λ for all w ≥ w0. It
follows that sequence Wn almost surely enters and leaves the interval [0, w0] infinitely often,
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and at any of these visits there is a positive probability that the system will become idle before
the workload exceeds w0 again. Therefore, P{B < ∞} = 1.

We now derive an integral equation for the distribution of the busy period durationB, initiated
by some workload v. Let

P(t, v) = P{B > t | V (0) = v}, t ≥ 0, v > 0.

We start from the following renewal equation (cf., e.g. [9]):

P(t, v) = e−λt 1{v>t}

+ λ

∫ min(t,v)

0
e−λsḠ(v − s)

∫ ∞

0
P(t − s, v − s + x)f (x) dx ds

+ λ

∫ min(t,v)

0
e−λsG(v − s)P (t − s, v − s) ds, (2.1)

where Ḡ = 1 −G. Using Banach’s fixed point theorem, we can uniformly approximate the
function (t, v) �→ P(t, v) on [0, T ]× (0,∞) for arbitrary T > 0. Let BT be the Banach space
of all measurable and bounded real-valued functions on [0, T ] × (0,∞), endowed with the
supremum norm || · ||∞, and define an operator A : BT → BT as follows. Define (Ah)(t, v)
to be the right-hand side of (2.1), replacing P(·, ·) by h(·, ·) for h ∈ BT and (t, v) ∈ [0, T ] ×
(0,∞). A simple calculation shows that, for any h, h̄ ∈ BT ,

||Ah− Ah̄||∞ ≤ (1 − e−λT )||h− h̄||∞.
Thus, A is a contraction on BT , whose unique fixed point is the function P(t, v), (t, v) ∈
[0, T ] × (0,∞), and, for every initial function h0 ∈ BT , the sequence defined recursively by
hn+1 = Ahn, n ≥ 0, converges uniformly to the fixed point at a geometric rate.

We can obtain more explicit results in many important special cases by transforming (2.1)
into an integro-differential equation as follows. Introducing the Laplace transform P ∗(θ, v) =∫ ∞

0 e−θtP (t, v) dt , it follows after some manipulations that

P ∗(θ, v) = 1

λ+ θ
(1 − e−(λ+θ)v)

+ λe−(λ+θ)v
[∫ v

0
Ḡ(z)e(λ+θ)z

∫ ∞

z

f (y − z)P ∗(θ, y) dy dz

+
∫ v

0
G(z)e(λ+θ)zP ∗(θ, z) dz

]
. (2.2)

Differentiation with respect to v yields an integro-differential equation for P ∗(θ, ·):
d

dv
P ∗(θ, v) = e−(λ+θ)v − (λ+ θ)

[
P ∗(θ, v)− 1

λ+ θ
(1 − e−(λ+θ)v)

]

+ λe−(λ+θ)v
[
Ḡ(v)e(λ+θ)v

∫ ∞

v

f (y − v)P ∗(θ, y) dy +G(v)e(λ+θ)vP ∗(θ, v)
]

= −(λ+ θ)P ∗(θ, v)+ 1 + λḠ(v)

∫ ∞

v

f (y − v)P ∗(θ, y) dy + λG(v)P ∗(θ, v).

(2.3)
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3. Exponential patience

In this section we exploit the integral equation (2.3) to derive the busy period distribution
in the case of exponential patience. We shall consider the following service time distributions:
hyperexponential (case (a)), Erlang (case (b)), and finally exponential (case (c)). From the
analysis of cases (a) and (b), it is not difficult to figure out how more general combinations of
hyperexponential and Erlang service time distributions can be handled.

If G(v) = 1 − e−ξv, v > 0, then (2.3) reduces to

d

dv
P ∗(θ, v) = −(λe−ξv + θ)P ∗(θ, v)+ 1 + λe−ξv

∫ ∞

v

f (y − v)P ∗(θ, y) dy, v > 0.

(3.1)
Introduce the double Laplace transform

π(θ, α) =
∫ ∞

0
e−αvP ∗(θ, v) dv. (3.2)

Since P ∗(θ, 0) = 0, we obtain, from (3.1),

απ(θ, α) = −θπ(θ, α)− λπ(θ, α+ ξ)+ 1

α
+ λ

∫ ∞

v=0
e−(α+ξ)v

∫ ∞

y=v
f (y− v)P ∗(θ, y) dy dv.

(3.3)
We try to tackle this integral equation via the following observation. The inversion formula for
Laplace transforms (cf. [16]) reads, for some positive a,

P ∗(θ, y) = 1

2π i

∫ a+i∞

a−i∞
eysπ(θ, s) ds.

Substitution into (3.3) gives

(α + θ)π(θ, α) = −λπ(θ, α + ξ)+ 1

α

+ λ

2π i

∫ a+i∞

a−i∞
π(θ, s)

∫ ∞

v=0
e−(α+ξ)v

∫ ∞

y=v
f (y − v)eys dy dv ds

= −λπ(θ, α + ξ)+ 1

α
+ λ

2π i

∫ a+i∞

a−i∞
π(θ, s)

φ(−s)
α + ξ − s

ds, (3.4)

where φ(·) denotes the Laplace transform of the service time density. Here π(θ, s) and φ(−s)
are both well defined on Re s = 0.

Case (a): M/HN /1+M. In the case of a hyperexponential service time density,

f (y) =
N∑
i=1

piµie
−µiy, where pi > 0, i = 1, . . . , N, and

N∑
i=1

pi = 1,

(3.4) reduces to

(α + θ)π(θ, α) = −λπ(θ, α + ξ)+ 1

α
+ λ

2π i

∫ a+i∞

a−i∞
π(θ, s)

α + ξ − s

N∑
i=1

pi
µi

µi − s
ds. (3.5)
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The integrand has N + 1 poles s0 = α + ξ , si = µi, i = 1, . . . , N , all in the right-hand
half-plane. So replace the integral from a − i∞ to a + i∞ by the integral over the closed
contour consisting of a line through a, parallel to the imaginary axis, and the semi-circle in
the right-hand half-plane with the origin at a and radius R, and let R → ∞. Use Cauchy’s
theorem to conclude that, following the contour in the counterclockwise direction, the integral
equals minus the sum of the residues. The contribution of the integral along the semi-circle
disappears for R → ∞. Hence, (3.5) reduces to

(α + θ)π(θ, α) = −λπ(θ, α + ξ)+ 1

α
− λ

N∑
i=1

pi
µi

α + ξ − µi
π(θ, α + ξ)

+ λ

N∑
i=1

pi
µi

α + ξ − µi
π(θ, µi),

or

π(θ, α) = 1

α(α + θ)
− λ

α + θ

(
1 +

N∑
i=1

pi
µi

α + ξ − µi

)
π(θ, α + ξ)

+ λ

α + θ

N∑
i=1

pi
µi

α + ξ − µi
π(θ, µi).

This equation has the form

π(θ, α) = A1(θ, α)+ A2(θ, α)π(θ, α + ξ), (3.6)

where

A1(θ, α) = 1

α(α + θ)
+ λ

α + θ

N∑
i=1

pi
µi

α + ξ − µi
π(θ, µi),

A2(θ, α) = − λ

α + θ

(
1 +

N∑
i=1

pi
µi

α + ξ − µi

)
.

Note that, for any fixed θ > 0,

A1(θ, α) = O

(
1

α2

)
and A2(θ, α) = O

(
1

α

)
as α → ∞.

Upon iteration of (3.6) (replacing α by α + ξ on the left-hand side, etc.) we obtain

π(θ, α) =
∞∑
j=0

A1(θ, α + jξ)

j−1∏
i=0

A2(θ, α + iξ). (3.7)

Note that the j th term in the series in (3.7) is bounded by (C1/(1 + j)2)
∏j−1
i=0 (C2/(1 + i)) ≤

C1C
j
2/(j + 1)! for certain constants C1 and C2 depending on α and θ . Therefore, the conver-

gence of this series of products is ensured. The expression contains N unknowns π(θ, µi).
They can be found by substituting α = µi into (3.7) for i = 1, . . . , N , yielding N linear
equations for these N unknowns.
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Remark 3.1. Recall the meaning of the double Laplace transform π(θ, α) given in (3.2). Then
it is seen that a weighted sum of the π(θ, µi) yields the LST of the distribution of the length of
a busy period initiated by a customer arriving in an empty system:

N∑
i=1

piµiπ(θ, µi) =
∫ ∞

t=0
e−θt P{B > t} dt = 1 − E(e−θB)

θ
.

Case (b): M/Ek/1+M. The case of an Erlang service time density may be treated in a
similar way as the hyperexponential case, starting from (3.4). However, since the present
paper is methodologically oriented, aiming to explain various methods to handle the busy
period problem, we prefer to show an alternative method, which we could also have applied in
case (a). Substituting the Erlang-k density in (3.3) and interchanging integrals, it follows that

π(θ, α) = − λ

α + θ
π(θ, α + ξ)+ 1

α(α + θ)

+ λ

α + θ

∫ ∞

v=0
e−(α+ξ)v

∫ ∞

y=v
µk
(y − v)k−1

(k − 1)! e−µ(y−v)P ∗(θ, y) dy dv

= − λ

α + θ
π(θ, α + ξ)+ 1

α(α + θ)

+ λ

α + θ
µk
(−1)k−1

(k − 1)!
dk−1

dzk−1

[∫ ∞

v=0
e−(α+ξ)v

∫ ∞

y=v
e−z(y−v)P ∗(θ, y) dy dv

]∣∣∣∣
z=µ

= − λ

α + θ
π(θ, α + ξ)+ 1

α(α + θ)

+ λ

α + θ
µk
(−1)k−1

(k − 1)!
dk−1

dzk−1

[
1

α + ξ − z
(π(θ, z)− π(θ, α + ξ))

]∣∣∣∣
z=µ

= − λ

α + θ
π(θ, α + ξ)+ 1

α(α + θ)

+ λ

α + θ

µk

(µ− ξ − α)k
π(θ, α + ξ)+ λ

α + θ
µk
(−1)k−1

(k − 1)!
dk−1

dzk−1

π(θ, z)

α + ξ − z

∣∣∣∣
z=µ

.

Note that, after iterating, the structure of the resulting expression is the same as that of (3.7),
except that theπ(θ, µi) terms are replaced by (dj /dzj )π(θ, z)|z=µ terms. To determineπ(θ, µ)
and those k − 1 derivatives, we have to differentiate the resulting expression k − 1 times,
substituting α = µ.

Case (c): M/M/1+M. The M/M/1 queue with exponential patience forms a special case of
both cases (a) and (b). If we do not wish to determine π(θ, α), but are satisfied with the busy
period LST, then the birth-and-death approach of [7] works well in the M/M/1+M case. That
approach in particular leads to the following expression for the mean busy period:

E(B) =
∞∑
k=0

λk

µ(µ+ ξ) · · · (µ+ kξ)
. (3.8)

On the other hand, it follows from (3.7) that

π(0, µ) =
∞∑
j=0

[
1

(µ+ jξ)2
+ λµ

(j + 1)ξ

π(0, µ)

µ+ jξ

] j−1∏
i=0

A2(0, µ+ iξ).
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Hence
E(B) = µπ(0, µ)

=
(
µ

∞∑
j=0

1

(µ+ jξ)2

j−1∏
i=0

A2(0, µ+ iξ)

)

×
(

1 −
∞∑
j=0

λµ

(j + 1)ξ

1

µ+ jξ

j−1∏
i=0

A2(0, µ+ iξ)

)−1

. (3.9)

Here

A2(0, z) = −λ
z

z+ ξ

z+ ξ − µ

and, hence,
j−1∏
i=0

A2(0, µ+ iξ) = (−λ/ξ)j
j !

µ+ jξ

µ
.

Substitution into (3.9) gives a second explicit series representation of E(B):

E(B) = eλ/ξ
∞∑
j=0

(−λ/ξ)j
j !

1

µ+ jξ
. (3.10)

The expressions in (3.8) and (3.10) agree. It can be shown, by complete induction, that

λk

µ(µ+ ξ) · · · (µ+ kξ)
= (λ/ξ)k

k!
k∑
j=0

(
k
j

)
(−1)j

µ+ jξ
.

Summing from k = 0 to ∞ and interchanging the sums on the right-hand side indeed confirms
the equivalence of (3.8) and (3.10).

Remark 3.2. Our analysis of the busy period in the M/G/1+M queue differs in several respects
from the analysis of Subba Rao [15]. Subba Rao considered the M/G/1+M queue with the
additional feature of balking with a constant probability. If, upon arrival, a customer finds n
customers present, with n ≥ 1, then it balks (i.e. leaves immediately) with a fixed probability
1 − β. If it finds an empty system, it always joins the system. Here β = 1 obviously removes
the balking feature from the model.

Using supplementary variable techniques and complex function theory, Subba Rao [15]
derived an expression for the double transform of the joint distribution of the number of
customers served during a busy period and the length of that period, given that it starts with
i+1 customers in the system. This expression is in the form of a quotient of double sums. Our
analysis does not consider the number of customers served, and starts from a given amount of
work at the beginning of the busy period (instead of a given number of customers). In [14],
Subba Rao considered the combined effects of balking and customer impatience (also called
reneging) for the case where the balking probability is bn if the arriving customer meets n
customers.

Remark 3.3. Equations (2.2) and (2.3) also hold in the M/G/1+G case, i.e. whenF orG or both
do not have Lebesgue densities. We only have to replace the term

∫ ∞
z
f (y − z)P ∗(θ, y) dy by∫ ∞

0 P ∗(θ, u+ z) dF(u). In particular, for the M/G/1+D system with deterministic impatience
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times, the above techniques can also be used for special choices of the service time distribution.
In the case of several patience levels, i.e. a discrete patience distribution, this technique becomes
very involved. In the next three sections we develop another approach which seems better suited
to deal with deterministic patience and can even handle models with several patience levels.

4. A discrete patience distribution

In this section and the next two sections we assume that the patience random variables
U1, U2, . . . have a discrete distribution concentrated on the set {v1, . . . , vK} with probabilities
pi = P{U = vi}, i = 1, . . . , K ,

∑K
i=1 pi = 1, where vi−1 < vi, i = 1, . . . , K , v0 ≡ 0, and

vK < ∞. Let P(u) be the corresponding cumulative distribution function (CDF), i.e.

P(u) =
∑
vi≤u

pi.

Consider the corresponding partition of the positive orthant {V1,V2, . . . ,VK+1}, where

Vi = {(t, v) : 0 ≤ t < ∞, vi−1 ≤ v < vi}, i = 1, . . . , K,

and
VK+1 = {(t, v) : 0 ≤ t < ∞, vK ≤ v < ∞},

where v0 ≡ 0. Accordingly, ifV (t) ∈ V1, all customers join the queue. Generally, ifV (t) ∈ Vi
(i = 1, . . . , K+1), the probability that a customer will join the queue isQi−1 = 1−P(vi−1).
Note thatQ0 = 1,Qi < Qi−1 for all i = 1, . . . , K , andQK = 0. We observe that an arbitrary
patience time distribution may be approximated by the above discrete distribution, by choosing
K and the probabilities pi such that the first moments of the patience time distribution match.

Customers arrive at the queue to an ordinary Poisson process (OPP) with intensity λ. Owing
to the strong Markov property, customers join the queue according to an OPP with intensity
λi = λQi−1 (i = 1, . . . , K + 1) during periods in which the {V (t)} process is in region Vi .
Let {V (i)(t)} designate the V (t) process in the region Vi (i = 1, . . . , K).

The busy period, with lengthB, starts withV (i)(0) = X1 and terminates as soon asV (1)(t) =
0. If V (1)(t) crosses from V1 to V2 before hitting the value zero then a new process, V (2)(t)
say, starts. This process will either return to V1 before hitting the upper boundary of V2, or
will enter V3 first, and so on. Our aim is to derive the LST of B. In the next section we start
with a recursive construction of this LST for an M/M/1 queue. We then generalize the results.

5. The busy period LST for an M/M/1 queue with discrete patience

5.1. Auxiliary results

The M/M/1 queue is based on the compound Poisson process Y (t) = ∑N(t)
n=0 Xn, where

{N(t), t ≥ 0} is an OPP with intensity λ, 0 < λ < ∞, and X0 ≡ 0, X1, X2, . . . are
i.i.d. random variables having an exponential distribution, exp(µ), where E(X1) = 1/µ. For
constants 0 < β1, β2 < ∞, we define the stopping variables

TL(β1) = inf{t > 0 : Y (t) = −β1 + t} (5.1)

and
TU(β2) = inf{t > 0 : Y (t) ≥ β2 + t}. (5.2)
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In addition, let
T (β1, β2) = min{TL(β1), TU (β2)},

and observe that
P{T (β1, β2) < ∞} ≥ P{TL(β1) < ∞} = 1.

We need formulae for the transforms

ψ∗
L(ω | β1, β2) = E(e−ωTL(β1) 1{TL(β1)<TU (β2)})

and
ψ∗
U(ω | β1, β2) = E(e−ωTU (β2) 1{TL(β1)>TU (β2)}).

In the M/M/1 case, the Wald martingale [10] yields the identity

E

(
exp

{
−θY (T (β1, β2))+ λT (β1, β2)θ

µ+ θ

})
= 1

for all θ > −µ. From this fundamental identity we obtain the formulae

ψ∗
L(ω | β1, β2) = (µ+ θ2(ω))e−β2θ1(ω) − (µ+ θ1(ω))e−β2θ2(ω)

D(ω | β1, β2)
(5.3)

and

ψ∗
U(ω | β1, β2) = eβ1θ2(ω) − eβ1θ1(ω)

D(ω | β1, β2)
,

where
θ1,2(ω) = 1

2 (λ− µ+ ω)± 1
2

√
(λ− µ+ ω)2 + 4ωµ

and
D(ω | β1, β2) = (µ+ θ2(ω)) exp{−β2θ1(ω)+ β1θ2(ω)}

− (µ+ θ1(ω)) exp{−β2θ2(ω)+ β1θ1(ω)}. (5.4)

5.2. The busy period LST when K = 1

The case in which K = 1 corresponds to an M/M/1 queue with deterministic (v1) patience;
see also [6] for a treatment of this case. In this case, λ1 = λ and λ2 = 0. Let δ1 = v1, and
consider the cases where X1 < v1 and X1 ≥ v1.

Case 1: X1 < v1. Since V (1)(0) = X1 < v1, set β1 = X1 and β2 = δ1 −X1. Substituting
these into (5.3) and (5.4) we obtain, after some algebraic manipulations,

ψ∗
L(ω | X, δ1 −X) = ζ1(ω)e

−Xθ2(ω) − ζ2(ω)e
−Xθ1(ω),

where

ζ1(ω) = (µ+ θ2(ω))e−δ1θ1(ω)

(µ+ θ2(ω))e−δ1θ1(ω) − (µ+ θ1(ω))e−δ1θ2(ω)
,

ζ2(ω) = (µ+ θ1(ω))e−δ1θ2(ω)

(µ+ θ2(ω))e−δ1θ1(ω) − (µ+ θ1(ω))e−δ1θ2(ω)
.

Similarly,

ψ∗
U(ω | X, δ1 −X) = e−Xθ1(ω) − e−Xθ2(ω)

(µ+ θ2(ω))e−δ1θ1(ω) − (µ+ θ1(ω))e−δ1θ2(ω)
.
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Whenever V (t) jumps over the boundary v1, the overshoot R is independent of TU(β2) and
exponentially distributed. The sojourn time of V (t) in V2 is exactly R. The LST of R is
µ/(µ+ ω). The time interval (0, TU (β2) + R) is called an initial phase. At the end of the
initial phase the process V (1)(t) may jump again above v1, or may go down to 0. The times
between consecutive returns to V1 are called renewal cycles. If after an initial or a renewal
cycle V (1)(t) hits 0, then the time interval is called a terminal phase. The lengths of renewal
cycles are i.i.d. random variables. Thus, the conditional LST of B given X1 is, in case 1,

M(1)(ω | X1, δ1) = ψ∗
L(ω | X1, δ1 −X1)

+ µ

µ+ ω
ψ∗
U(ω | X1, δ1 −X1)

ψ∗
L(ω | δ1, 0)

1 − µψ∗
U(ω | δ1, 0)/(µ+ ω)

. (5.5)

Case 2: X1 ≥ v1. Let R1 = X1 − v1. The initial phase consists only of R1. Here R1 is
independent of the following cycles. Thus, when X1 ≥ v1, the LST is

M̃(1)(ω | δ1) = µ

µ+ ω

ψ∗
L(ω | δ1, 0)

1 − µψ∗
U(ω | δ1, 0)/(µ+ ω)

. (5.6)

Finally, the LST of B, when K = 1, is

M(1)(ω | δ1) = µ

∫ δ1

0
e−µxM(1)(ω | x, δ1) dx + e−µv1M̃(1)(ω | δ1). (5.7)

Note that

µ

∫ δ1

0
e−µxψ∗

L(ω | x, δ1 − x) dx = µ

µ+ θ2(ω)
ζ1(ω)(1 − e−δ1(µ+θ2(ω)))

− µ

µ+ θ1(ω)
ζ2(ω)(1 − e−δ1(µ+θ1(ω))). (5.8)

Also,

µ

∫ δ1

0
e−µxψ∗

U(ω | x, δ1 − x) dx

= 1

(µ+ θ2(ω))e−δ1θ1(ω) − (µ+ θ1(ω))e−δ1θ2(ω)

×
[

µ

µ+ θ1(ω)
(1 − e−δ1(µ+θ1(ω)))− µ

µ+ θ2(ω)
(1 − e−δ1(µ+θ2(ω)))

]
. (5.9)

5.3. The busy period LST when K = 2

If K = 2, there are K + 1 = 3 regions, V1, V2, and V3. The instant V (t) enters (V2 ∪ V3)

the process changes the intensity of arrival to λ2 = λQ1 or λ3 = 0. The time until the first
return to V1 will be called B(2). The LST of B(2) is obtained using (5.7), replacing δ1 by
δ2 = v2 − v1, λ by λ2, and v1 = δ1 by δ2. We denote this LST by M(1)

2 (ω | δ2).
Let X1 denote the service requirement of the first customer. Consider first the case where

0 < X1 < v1. In this case either V (t) hits 0 before crossing v1 or crosses v1 first. If V (t)
crosses v1 before hitting 0, the ‘initial phase’ is the time interval from 0 till the first entry back
to V1. Renewal cycles are between consecutive re-entrances to V1. Thus, the conditional LST,
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given X1, for X1 < v1, is

M(2)(ω | X1, δ1) = ψ∗
L(ω | X1, δ1 −X1)

+ ψ∗
U(ω | X1, δ1 −X1)M

(1)
2 (ω | δ2)

× ψ∗
L(ω | δ1, 0)[1 − ψ∗

U(0 | δ1, 0)M(1)
2 (ω | δ2)]−1. (5.10)

On the other hand, the LST given that {X1 ≥ v1} is

M̃(2)(ω | δ1) = M
(1)
2 (ω | δ2)ψ

∗
L(ω, δ1, 0)[1 − ψ∗

U(ω | δ1, 0)M(1)
2 (ω | δ2)]−1. (5.11)

Finally, the LST of B for K = 2 is

M(2)(ω | δ1) = µ

∫ δ1

0
e−µxM(2)(ω | x, δ1) dx + e−µδ1M̃(2)(ω | δ1). (5.12)

5.4. The busy period LST for general K

We start by computing the LST for the Kth region VK , according to formulae (5.5)–(5.9),
in which we substitute λK = λQK−1 and δK = vK − vK−1. We denote this LST as
M
(1)
K (ω | δK, λK). We then proceed to determine the LST for VK−1, namelyM(2)

K−1(ω | δK−1,

λK−1), according to (5.10)–(5.12). Recursively, for j = 2, . . . , K , we compute, for X <

δK+1−j ,

M
(j)

(K+1−j)(ω | X, δK+1−j , λK+1−j )
= ψ∗

L(ω | X, δK+1−j −X, λK+1−j )

+ ψ∗
U(ω | X, δK+1−j −X, λK+1−j )M(j−1)

K+2−j (ω | δK+2−j , λK+2−j )
× ψ∗

L(ω | δK+1−j , 0, λK+1−j )

× [1 − ψ∗
U(ω | δK+1−j , 0, λK+1−j )M(j−1)

K+2−j (ω | δK+2−j , λK+2−j )]−1,

and, for X ≥ δK+1−j , we determine

M̃(j)(ω | δK+1−j , λK+1−j )

= M
(j−1)
K+2−j (ω | δK+2−j , λK+2−j )ψ∗

L(ω | δK+1−j , 0, λK+1−j )

× [1 − ψ∗
U(ω | δK+1−j , 0, λK+1−j )M(j−1)

K+2−j (ω | δK+2−j , λK+2−j )]−1

and

M
(j)
K+1−j (ω | δK+1−j , λK+1−j )

= µ

∫ δK+1−j

0
e−µxM(j)

K+1−j (ω | x, δK+1−j − x, λK+1−j ) dx

+ e−µδK+1−j M̃(j)(ω | δK+1−j , λK+1−j ).

In the present section we formulated the variables λK+1−j , j = 1, . . . , K , in LST functional
form, to emphasize the dependence on the different intensities λl , l = 1, . . . , K .
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6. The busy period LST for an M/G/1 queue with discrete patience

In this section we no longer assume that service times are exponentially distributed. In
determining the busy period LST, we follow the same approach as in the previous section. In
Subsection 6.1 we again consider the stopping variables introduced in (5.1) and (5.2). We now
also need an expression for the joint distribution ofTU(β2) and the overshootY2−(β2+TU(β2)),
which is no longer exponentially distributed. We subsequently consider K = 1 (deterministic
patience), K = 2, and general K , in Subsections 6.2, 6.3, and 6.4, respectively.

6.1. Auxiliary results

The arrival of customers at the queue follows a homogeneous Poisson process {N(t), t ≥ 0}
with intensity λ. The required service times of customers are i.i.d. random variablesX1, X2, . . .

having distribution F , with density f . Let Yt = ∑N(t)
n=0Xn, where X0 ≡ 0. The density of

Yt on (0,∞) is hλ(y; t) = ∑∞
n=1p(n; λt)f (n)(y), where p(n; λt) is the probability density

function of Poisson (λt) and f (n)(y) is the nth-fold convolution of f at y, i.e. f (n)(y) =∫ y
0 f

(n−1)(y − x)f (x) dx, n ≥ 1, where f (0)(y) ≡ 1. Let Hλ(y; t) denote the CDF of Yt ,
i.e. Hλ(y, t) = ∑∞

n=0p(n; λt)F (n)(y). Note that Hλ(y, t) has an atom at y = 0, Hλ(0; t) =
e−λt , and Hλ(y, t) is absolutely continuous on (0,∞). For nonnegative constants 0 ≤ β1,
β2 < ∞, define the stopping variables

TL(β1) = inf{t ≥ 0 : Yt = −β1 + t}
and

TU(β2) = inf{t ≥ 0 : Yt ≥ β2 + t}.
Moreover, let T (β1, β2) = min{TL(β1), TU (β2)}. We need explicit equations for the LSTs

ψ∗
L(ω;β1, β2, λ) = Eλ(e

−ωTL(β1) 1{TL(β1)<TU (β2)})

and
ψ∗
U(ω;β1, β2, λ) = Eλ(e

−ωTU (β2) 1{TL(β1)>TU (β2)}).
Moreover, we need a formula for the joint distribution of TU(β2) and the overshoot R =
YTU (β2) − (β2 + TU(β2)). These equations are given below.

Let

gβ2(y; t, λ) = d

dy
Pλ{Yt ≤ y, TU (β2) > t}

and

gλ(y; t, β1, β2) = d

dy
Pλ{Yt ≤ y, T (β1, β2) > t}.

As proven by Stadje and Zacks [11],

g0(y; t, λ) = (t − y)+

t
hλ(y; t), t > 0.

Moreover, for β2 > 0 and 0 < y < t + β2,

gβ2(y; t, λ) = hλ(y; t)− 1(β2,β2+t)(y)
[

e−λ(t+β2−y)hλ(y; y − β2)

+
∫ y

β2

hλ(u; u− β2)g0(y − u; t + β2 − u, λ) du

]
.
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The function gλ(y; t, β1, β2) can be written in terms of gβ(y; t, λ). Let δ = β1 + β2. Then,
for (t − β1)

+ < y < t + β2,

gλ(y; t, β1, β2) = gβ2(y; t, λ)
− 1(β1,∞)(t)

[
e−λβ1gδ(y; t − β1, λ)

+ β1

∫ y

β1

1

s
gβ2(s − β1; s, λ)gδ(y − s + β1; t − s, λ) ds

]
.

The joint density of (TU (β2), R) is then

pλ(t, r;β1, β2)

= 1{t≤β1}
[
λe−λtf (t + β2 + r)+ λ

∫ t+β2

0
gβ2(y; t, λ)f (t + β2 + r − y) dy

]

+ 1{t>β1} λ
∫ t+β2

t−β1

gλ(y; t, β1, β2)f (t + β2 + r − y) dy.

In addition, as in [4],

ψ∗
L(ω;β1, β2, λ) = e−(λ+ω)β1 +

∫ ∞

β1

e−ωt t − β1

t
gβ2(t − β1; t, λ) dt.

Similarly,

ψ∗
U(ω;β1, β2, λ) = λ

∫ β1

0
e−(λ+ω)t F̄ (t + β2) dt

+ λ

∫ β1

0
e−ωt

∫ t+β2

0
gβ2(y; t, λ)F̄ (t + β2 − y) dy dt

+ λ

∫ ∞

β1

e−ωt
∫ t+β2

t−β1

gλ(y; t, β1, β2)F̄ (t + β2 − y) dy dt.

6.2. The busy period LST when K = 1

The case in which K = 1 corresponds to an M/G/1 queue with deterministic (v1) patience;
see also Model II of [8] for this case. We have

T
(1)
U = TU(v1 −X1), T

(2)
U = T

(1)
U + R(1) + TU(0).

In the case T (1)U < T
(0)
L (X1) and 0 < X1 < v1 we have an initial phase CI consisting of

T
(1)
U and R1. The point T (1)U + R1 is a regeneration point, where a new phase starts. We denote

it as CR . If T (2)L (v1) < T
(2)
U (0), the busy period ends; otherwise the phase CR consists of

T
(2)
U (0)+ R2, etc.

We define, for 0 < X < v1,

ψ∗
UI (ω;X, v1 −X, λ1) =

∫ ∞

0
e−ωt

∫ ∞

0
e−ωrpλ1(t, r;X, v1 −X) dr dt.

Similarly, let

ψ∗
UR(ω; v1, λ1) =

∫ ∞

0
e−ωt

∫ ∞

0
e−ωrpλ1(t, r; v1, 0) dr dt.
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The conditional LST of B, when 0 < X1 < v1, is then

M
(1)
I (ω;X1, v1 −X1, λ1) = ψ∗

L(ω;X1, v1 −X1, λ1)

+ ψ∗
UI (ω;X1, v1 −X1, λ1)

ψ∗
L(ω; v1, 0, λ1)

ψ∗
UR(ω; v1, λ1)

. (6.1)

In the case v1 ≤ X1 < ∞, the conditional LST of B is

M
(1)
II (ω;X1, λ1) = e−ω(X1−v1)

ψ∗
L(ω; v1, 0, λ1)

ψ∗
UR(ω; v1, λ1)

. (6.2)

Finally, the LST of B is

M(1)(ω; v1, λ1) =
∫ v1

0
f (x)ψ∗

L(ω; x, v1 − x, λ1) dx

+ ψ∗
L(ω; v1, 0, λ1)

ψ∗
UR(ω; v1, λ1)

(∫ v1

0
f (x)ψ∗

UI (ω; x, v1 − x, λ1) dx

+ eωv1

∫ ∞

v1

f (x)e−ωx dx

)
.

6.3. The busy period LST when K = 2

For 0 < X1 < v1, the conditional LST is, with δ2 = v2 − v1,

M
(2)
I (ω;X1, v1 −X1, λ1)

= ψ∗
L(ω;X1, v1 −X1, λ1)

+
[∫ ∞

0
e−ωt

∫ δ2

0
M
(1)
I (ω; r, δ2 − r, λ2)pλ1(t, r;X1, v1 −X1) dr dt

+
∫ ∞

0
e−ωt

∫ ∞

δ2

M
(1)
II (ω; r, λ2)pλ1(t, r;X1, v1 −X1, λ1) dr dt

]

×
[∫ ∞

0
e−ωt

∫ δ2

0
M
(1)
I (ω; r, δ2 − r, λ2)pλ1(t, r; v1, 0) dr dt

+
∫ ∞

0
e−ωt

∫ ∞

δ2

M
(1)
II (ω; r, λ2)pλ1(t, r; v1, 0) dr dt

]−1

ψ∗
L(ω; v1, 0, λ1).

For X1 ≥ v1, the conditional LST is

M
(2)
II (ω;X1, λ1)

= [1{v1<X1<v2}M
(1)
I (ω;X1 − v1, v2 −X1, λ2)

+ 1{X1≥v2}M
(1)
II (ω;X1 − v2, λ2)]

×
[∫ ∞

0
e−ωt

∫ δ2

0
M
(1)
I (ω; r, δ2 − r, λ2)pλ1(t, r; v1, 0) dr dt

+
∫ ∞

0
e−ωt

∫ ∞

δ2

M
(1)
II (ω, r, λ2)pλ1(t, r; v1, 0) dr dt

]−1

ψ∗
L(ω; v1, 0, λ1).

Finally, the LST of the busy period length, when K = 2, is

M(2)(ω; v1, λ1) =
∫ v1

0
f (x)M

(2)
I (ω; x, v1 − x, λ1) dx +

∫ ∞

v1

M
(2)
II (ω; x, λ1)f (x) dx.

https://doi.org/10.1239/jap/1269610821 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1269610821


144 O. BOXMA ET AL.

6.4. The busy period LST for general K

In the general case we have δj = vj −vj−1, j = 1, . . . , K (v0 ≡ 0), and λj = λQj−1, j =
1, . . . , K . We first computeM(1)

I (ω; x, δk − x, λK) andM(1)
II (ω; x, λK) according to (6.1) and

(6.2). Afterwards, for each j = 1, . . . , K , we compute recursively the functions

M
(j)
UI (ω; x, δj , λj ) =

∫ ∞

0
e−ωt

∫ δj+1

0
M
(j−1)
I (ω; r, δj+1 − r, λj+1)pλj (t, r; x, δj − x) dr dt

+
∫ ∞

0
e−ωt

∫ ∞

δj+1

M
(j−1)
II (ω; r, λj+1)pλj (t, r; x, δj − x) dr dt,

D(j)(ω; λj ) =
∫ ∞

0
e−ωt

∫ δj+1

0
M
(j−1)
I (ω; r, δj+1 − r, λj+1)pλj (t, r; δj , 0) dr dt

+
∫ ∞

0
e−ωt

∫ ∞

δj+1

M
(j−1)
II (ω; r, λj+1)pλj (t, r; δj , 0) dr dt,

and

M
(j)
I (ω; x, δj − x, λj ) = ψ∗

L(ω; x, δj − x, λj )+ M
(j)
UI (ω; x, δj , λj )
D(j)(ω; λj ) ψ∗

L(ω; δj , 0, λ2),

M
(j)
II (ω; x, λj ) = [1{vj<x<vj+1}M

(k−1)
I (ω; x − vj , vj+1 − x, λj+1)

+ 1{x≥vj+1}M
(k−1)
II (ω; x − vj+1, λj+1)]ψ

∗
L(ω; δj , 0, λj )

D(j)(ω; λj ) .

Finally, the LST of B is

M(K)(ω; λ) =
∫ v1

0
f (x)M

(K)
I (ω; x, v1 − x, λ1) dx +

∫ ∞

v1

f (x)M
(K)
II (ω; x, λ1) dx.

Note that λ1 ≡ λ.
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