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Abstract. I describe how we direct the evolution of non-natural enzyme activities, using chemical intuition and information on structure and
mechanism to guide us to the most promising reaction/enzyme systems. With synthetic reagents to generate new reactive intermediates and
just a few amino acid substitutions to tune the active site, a cytochrome P450 can catalyze a variety of carbene and nitrene transfer reactions.
The cyclopropanation, N–H insertion, C–H amination, sulfimidation, and aziridination reactions now demonstrated are all well known in
chemical catalysis but have no counterparts in nature. The new enzymes are fully genetically encoded, assemble and function inside of
cells, and can be optimized for different substrates, activities, and selectivities. We are learning how to use nature’s innovation mechanisms
to marry some of the synthetic chemists’ favorite transformations with the exquisite selectivity and tunability of enzymes.
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Nature’s approach to chemical
innovation
Genes, like ideas, move around. Good ones get picked up
quickly and spread even faster. If you do not believe it,
just try to keep ahead of drug resistance. All those microbes
whose very survival depends on solving chemical problems
add up to a potent source of chemical novelty. They create
new catalysts that we can admire, but cannot design.

Any of the millions, possibly billions, of species that popu-
late our guts, soils, and seas can invent a new catalyst. Four
billion years of such evolutionary innovations have gener-
ated a mind-boggling diversity: there are myriad enzymes
for any given biotransformation and a multitude of transfor-
mations catalyzed by any given organism. The biological
world is teeming with catalysts, and this cauldron of chem-
istry is a rich source for yet more. Crowd-sourcing
problem-solving is nothing new to the biological world.

But just how are new enzymes created? For one thing,
enzymes can be quite versatile; they are often capable of things

beyond what nature demands of them. For example, they are
catalytically ‘promiscuous’ in various ways,most of which are
not beneficial to the organism. But a promiscuous activity can
ignite the evolution engine. That enzymes’ serendipitous side
capabilities can become the basis for adaptation to a changing
environment or new niche opportunities such as using a new
food source or exploiting a new reactant has been recognized
for years (Copley, 2003; O’Brien & Herschlag, 1999). The
story of how such processes gave rise to the functionally di-
verse enzymes that populate the biological world and, increas-
ingly, our databases is being filled in in great detail.

Functionally diverse enzyme superfamilies are collections of
chemical novelty whose family trees illustrate how ancestral
functions spawned new ones (Bartlett et al. 2003; Gerlt &
Babbitt, 2009, 2011). We have learned that evolution is
economical: related enzymes that catalyze different reactions
share conserved functional elements, including catalytic or
metal-binding residues, cofactors, and key residues that
modulate the chemistry (Bartlett et al. 2003). And today’s
members of functionally diverse families exhibit the catalytic
promiscuity, often as a result of their mechanisms, confor-
mational diversity, etc., that presumably fueled their
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divergence in the past (Babtie et al. 2010; Baier & Tokuriki,
2014; Gatti-Lafranconi & Hollfelder, 2013; Tokuriki &
Tawfik, 2009). Experiments lend credence to the proposal
that promiscuity underlies much of enzyme innovation.
Numerous studies have shown that an enzyme optimized
for one reaction can adapt under laboratory mutation and
screening/selection to take on the function of a different
member of the superfamily, sometimes with efficiency that
rivals nature’s solutions (Aharoni et al. 2005; Gerlt &
Babbitt, 2009; Meier et al. 2013).

I am interested in how nature invents new enzymes, because
I want to exploit that process to create yet more. I would like
to expand the enzyme universe to encompass chemical reac-
tions that are not yet known in the natural world. Since de-
signing enzymes is still beyond our capabilities for anything
but the simplest of reactions, it makes sense to look to the
very effective evolutionary mechanisms nature has devised
and exploited.

Can we use evolution to access
non-natural functions?
Research has demonstrated that enzyme functions can
sometimes be interconverted when the enzymes share a
common ancestor; it is even easier when they still share
much of the catalytic machinery and even residual activities
left over from the ancestral form. The next step is to evolve
functions that are not catalyzed by other family members
or, even better, are altogether unknown in the biological
world. At first glance, that might seem much more difficult.
Directed evolution to engineer enzymes (or ‘molecular
breeding’) is regular business in the world of industrial
enzymes, where optimization of stability, selectivity, or
even activity is reliably routine. But how do we ‘evolve’
novelty? How can we use what we know of nature’s inven-
tive mechanisms to step into unknown territory, where nat-
ure has not already gone?

Novel function requires novel context, a new ‘niche’ so to
speak. Thus to find new reactions, we can explore outside
of the limited range of chemicals an enzyme naturally
encounters. When enzymes are challenged with substrates
that they have not evolved to discriminate against, opportu-
nities arise for serendipitous activities. We the breeders of
enzymes must provide these opportunities for innovation.

We must also know what to look for in the parent(s) we
choose to start with, just as if we were breeding rabbits or
racehorses. And, to be successful, we must be realistic about
what we expect to find in the progeny and patient about ac-
quiring and optimizing those features over multiple genera-
tions. Because evolution means accumulating improvements
brought about by a single or at most a few mutations per
generation, the breeder has to start close to the new activity.
How do we find an enzyme with the ability to catalyze a

chosen reaction, even if at a very low level? Of course, this
is where chemical intuition comes in (Kazlauskas, 2005;
Renata et al. 2015; Toscano et al. 2007).

Some enzymes are already teetering on the precipice of
novel function–we have to know how to recognize them
and push them along. Intuition based on mechanism or
chemical and structural similarities can help us identify
novel reactions for a given enzyme (or new enzymes for a
given reaction), as has been shown in (Hammer et al.
2015; Kazlauskas, 2005; Seebeck & Hilvert, 2003). In ad-
dition, we find that appropriate synthetic reagents can oc-
casion new reaction opportunities, for example via their
ability to generate novel reactive intermediates. Once a
new enzyme activity appears, the enzyme can evolve and di-
versify into a whole new family. Since Hans Renata, Jane
Wang, and I recently reviewed this topic more broadly
(Renata et al. 2015), I will use only examples from this lab-
oratory to illustrate how we think about evolving new
enzymes starting with cytochrome P450s.

New enzymes from old: adding to the
cytochrome P450’s (already expansive)
repertoire
Even a partial listing of cytochrome P450-catalyzed reac-
tions illustrates how effectively nature has molded this ver-
satile protein–iron–heme framework for new chemistry:
P450s catalyze aryl–aryl coupling, ring contractions and
expansions, S-, N-, and O-dealkylations, decarboxylation,
oxidative cyclization, alcohol and aldehyde oxidation, de-
saturation, sulfoxidation, nitrogen oxidation, epoxidation,
C–C bond scission, decarbonylation, and nitration (blue
reactions in Fig. 1). A P450 generates multiple reactive spe-
cies during its catalytic cycle, and these P450-derived oxidants
can react with substrates in different ways. We recently
outlined the intermediates used by P450 family members to
catalyze some of the different reactions shown in Fig. 1
(McIntosh et al. 2014). A particular P450’s specificity for
one reaction over others is determined by the protein se-
quence, including active site details, that directs the course
of reaction and molds substrate and product selectivity.

Nature fashioned all this diverse reactivity in one protein
scaffold, emerging from one common ancestor. Can we
take it even further? Following nature’s lead, we looked
into expanding the reactive intermediates this enzyme can
generate in order to expand its reaction repertoire. The
P450’s heme cofactor has been a favorite of biomimetic che-
mists since synthetic porphyrins were first studied as P450
models decades ago. More than a model, however, metallo-
porphyrins also catalyze a broad range of reactions that do
not have enzyme-catalyzed counterparts. A particularly inter-
esting set of reactions proceeds through metal-carbenoid
intermediates that had never been exploited for catalysis by
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heme proteins. The synthetic porphyrin systems relied on
synthetic activated reagents such as ethyldiazoacetate
(EDA) to generate the metal carbenoid, which could then
react with olefins or insert the carbene into various N–
H, C–H, or O–H bonds (Baumann et al. 2007; Chen
et al. 2004; Wolf et al. 1995). That the metal-carbenoid
intermediate resembles compound I in the native P450
catalytic cycle (Fig. 2) spurred us to test whether the
P450 and other heme proteins could catalyze cyclopropa-
nation of styrene by EDA (Fig. 1, non-natural reaction 1).
We found that a number of proteins, and even free iron–
heme, are catalytically promiscuous and can indeed do
this, albeit with low efficiency (Coelho et al. 2013a, b;
Heel et al. 2014).

New enzymes can be expected to start out with low efficiencies
– evolution can do the work of optimizing the enzyme for
its new role. For example, mutations can reconfigure the
active site to provide a stereoelectronic environment that
favors productive EDA and olefin binding and increases
effective substrate concentration for reaction, promotes
formation of the carbenoid intermediate, and assists sub-
sequent reactivity.

Noting that cytochrome P450BM3 catalyzed this non-natural
cyclopropanation reaction with selectivity very different
from that of free iron–heme (and therefore likely catalyzed
the reaction in its malleable active site), we proceeded to ex-
plore the effects of mutations. While creating a version that
could function inside of a cell, utilizing endogenous reduc-
tant NADPH, we discovered that the identity of the iron-
ligating amino acid residue (which is always Cys in P450s)
is very important: Ser- (Coelho et al. 2013b) and
His-ligated (Wang et al. 2014a) enzymes are easily generated
and are much better cyclopropanation catalysts. Of course,
these mutations obliterate the P450’s native monooxygenase
activity; they also shift the characteristic Soret peak at 450
nm. The resulting ‘P411’ (for Ser ligation, His ligation shifts
the peak to a slightly longer wavelength) is no longer a cyto-
chrome P450 and is in fact a whole new enzyme in function,
even though its sequence is 99·8% identical to its monoox-
ygenase ancestor.

Fasan’s group recently reported that myoglobin, which nat-
urally uses histidine as the axial ligand to the iron-heme, can
also be engineered for cyclopropanation (Bordeaux et al.
2015), at least in vitro. Both labs have now demonstrated

Fig. 1. Natural reactions catalyzed by cytochrome P450s (blue) and new, non-natural reactions catalyzed by enzymes derived from cyto-
chrome P450 by protein engineering and evolution (red).
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that optimized cyclopropanating enzymes catalyze tens of
thousands of turnovers for various olefins, with substrate
range and product selectivity that are tunable by protein en-
gineering (Bordeaux et al. 2015; Coelho et al. 2013b). The
P450-derived enzyme functions very well in whole bacterial
cells, where a His-ligated variant has been used for
preparative-scale synthesis of a pharmaceutical intermediate
(Wang et al. 2014a). We have also gone on to demonstrate
that other carbene transfer reactions, including N–H inser-
tion (Wang et al. 2014b) (Fig. 1 reaction 2), can be catalyzed
by enzymes derived from a P450.

We reasoned that different synthetic reagents could be used
to drive the formation of metal-nitrenoid intermediates in
heme proteins (see Fig. 2), possibly enabling them to cata-
lyze nitrene insertion reactions (Fig. 1, reactions 3–5). In
choosing our first reaction targets we were inspired by
early work of Breslow and Gellman, with iron-tetraphenyl
porphyrin complexes (Breslow & Gellman, 1983), and
then Dawson and coworkers (Svastits et al. 1985), who
reported that rabbit liver P450 enzymes catalyze low levels
(<5 total turnovers, TTN) of intramolecular nitrene transfer
to make benzosultams when provided with iminoiodinane
nitrene precursors. As far as we can tell, no one followed
up on Dawson’s observations until we (McIntosh et al.
2013) and Rudi Fasan (Singh et al. 2014) showed that cyto-
chrome P450BM3 catalyzes low levels of intramolecular C–H
amination to yield the same benzosultams from the more
atom-efficient azide-based nitrene precursors (Fig. 1, reac-
tion 5). Again, we found mutations that strongly modulated
C–H amination activity, leading to biocatalysts exhibiting
several hundred turnovers in vitro and roughly double
that in vivo. Mutation of the conserved axial cysteine to
Ser was highly activating for this C–H amination, as it
was for cyclopropanation. Mutation of the active site

threonine (T268), which in native P450s helps to catalyze
O–O bond scission via protonation, also greatly increased
activity for both C–H amination and cyclopropanation.
The active site can be re-molded to promote the new chem-
istry, and beneficial mutations can be accumulated in an
evolutionary fashion.

In principle, an enzyme provides the opportunity for unpre-
cedented control over reaction selectivity. This is true in
practice as well. We showed, for example, that engineering
the active site could override the preference for amination
at C–H bonds with lower bond dissociation energies that
often governs regioselectivity with small molecule cata-
lysts. One P411BM3 variant catalyzed C–H amination
of arylsulfonylazide substrates at the homo-benzylic po-
sition with high regio- and enantioselectivity, despite
the fact that the bond dissociation energy for this C–H
is more than 10 kcal mol−1 higher than that of the
benzylic C–H (Hyster et al. 2014) (Fig. 3). A second vari-
ant was engineered to show strong preference for C–H
amination at the benzylic position, also with excellent
enantioselectivity.

P411 variants can also catalyze intermolecular nitrene trans-
fer, as demonstrated recently for sulfimidation (Farwell et al.
2014) and aziridination (Farwell et al. 2015). In these reac-
tions, sulfides and alkenes serve as nucleophilic acceptors for
the nitrene intermediate (Fig. 1, reactions 3 and 4). For exam-
ple, a P411 enzyme optimized by sequential rounds of muta-
genesis and screening exhibited very high enantioselectivity
(99% ee) for aziridination of various styrene derivatives
(Fig. 4).

A significant undesired side reaction in these reactions is
enzyme-catalyzed azide reduction, particularly with less re-
active nitrene acceptors. Engineering the enzyme can

Fig. 2. New enzyme activities use reactive enzyme intermediates generated using synthetic diazo and azide reagents. Metalcarbenoid
(middle) and metal-nitrenoid (RHS) intermediates resemble the natural P450 reactive Compound I (LHS) and can transfer the carbene or
nitrene to acceptor substrates in the enzyme active site. Synthetic reagents that drive formation of these reactive intermediates can be
thought of as providing a new ‘niche’ for evolution of new enzymes.
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significantly reduce side product formation and increase the
yield of the desired product, either by increasing the effec-
tive concentration of nitrene acceptor and effectively orient-
ing it in the enzyme active site for productive reaction or by
reducing the relative rate of competing azide reduction.
These studies all demonstrate the critical role that mutations
and evolution play in modulating the new enzyme activity
and selectivity. Nature could do the same, given a good
reason.

Outlook
We have directed the evolution of a cytochrome P450 to dis-
play a broad set of new, non-natural activities (Fig. 1), all
enabled by the enzyme’s ability to generate new reactive
intermediates in the presence of reagents not found in the
natural environment. The ease with which we could

enhance very low levels of promiscuous activities – by ac-
cumulating just a few mutations – demonstrates how rap-
idly this biological catalyst can adapt to new challenges.
We simply coaxed nature’s evolvable protein framework
for catalysis to show off more of its impressive versatility.
None of the new reactions I have described here, however,
has been fully optimized. It will be fascinating to see what
further improvements are possible and the mutational and
functional pathways these new enzymes take to achieve
those.

The new enzymes catalyze enantioselective carbene and nitrene
transfer reactions that are synthetically useful, and they com-
pare favorably to small-molecule catalysts. Furthermore, they
can be tuned to exhibit selectivities that may be difficult for
the small molecule catalyst to achieve. The vast metallopor-
phyrin catalysis literature (e.g. Lu & Zhang, 2011) provides a
rich source of inspiration and ideas for future work.

Fig. 4. Substrate scope of a P411 variant of cytochrome P450BM3 engineered for aziridination, in whole Escherichia coli cells (Farwell
et al. 2015). (% ee determined as (S – R)/(S + R), all products are S-enriched).

Fig. 3. Engineered P411 variants exhibit regio-divergent selectivities in intramolecular C–H amination (Hyster et al. 2014). One enzyme
targets primarily the homo-benzylic C–H position (BDE = 98 kcal mol−1) with high enantioselectivity, whereas another targets the benzylic
C–H (BDE = 86 kcal mol−1), also with high enantioselectivity.
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Chemists have invented myriad clever catalytic systems,
many of which have no biological counterparts. But they
should! Our collective challenge will be to create enzymes
to catalyze some of these important reactions, and efforts
underway in various laboratories already sketch just a few
of the possibilities (e.g. as reviewed by Renata et al. 2015).
I am sure that many enzyme families can be expanded to
encompass new chemistry, and that directed evolution can
optimize their functions and generate whole new catalyst
families. With new enzymes, we can expect to carry out
more reactions under mild, aqueous conditions. We will
be able to build highly selective coupled enzyme ‘cascades’
for synthesis. Furthermore, with new enzymes that assemble
and function inside a cell, we will be able to expand the
scope of metabolic engineering and biosynthesis to create
a multitude of new products or find alternative routes to
natural products. By coupling the new chemistry to natural
and engineered metabolic pathways, we will be able to as-
semble new routes to utilizing renewable (e.g. plant, algal,
methane, CO2) resources to make fuels and chemicals. We
have just begun to import human-invented chemistry into
biological systems; many opportunities remain to learn
from evolution.
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