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Abstract We study the sharp threshold for blow-up and global existence and the instability of standing
wave eiωtuω(x) for the Davey–Stewartson system

iφt + ∆φ + a|φ|2φ + E1(|φ|2)φ = 0 (DS)

in R
3, where uω is a ground state. By constructing a type of cross-constrained variational problem

and establishing so-called cross-invariant manifolds of the evolution flow, we derive a sharp criterion
for global existence and blow-up of the solutions to (DS), which can be used to show that there exist
blow-up solutions of (DS) arbitrarily close to the standing waves.
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1. Introduction

Consider the generalized Davey–Stewartson system:

iφt + ∆φ + a|φ|2φ + E1(|φ|2)φ = 0, t � 0, x ∈ R
3, (1.1)

where φ = φ(t, x) is a complex-valued function of (t, x) ∈ R
+×R

3, a > 0, E1 is the singu-
lar integral operator with symbol σ1(ξ) = ξ2

1/|ξ|2, ξ ∈ R
3, and E1(ψ) = F−1(ξ2

1/|ξ|2)Fψ,
F−1 and F are the Fourier inverse transform and Fourier transform on R

3, respectively
(see [4–6, 9]). When x ∈ R

2, system (1.1) describes the evolution of weakly nonlinear
water waves that travel predominantly in one direction (see [4–6]). More precisely, (1.1)
is the three-dimensional extension of the generalized Davey–Stewartson system in the
elliptic–elliptic case when p = 3, namely

iφt + λφxx + φyy + a|φ|p−1φ + φψx = 0,

ψxx + µψyy = (|φ|2)x,

}
(1.2)

where λ, µ > 0, φ is a complex-valued function of (t; x, y) ∈ R+×R
2 and ψ is a real-valued

function of (t; x, y) ∈ R+ ×R
2 (see [5]). The Davey–Stewartson system (1.2) is the model
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equation in the theory of shallow-water waves, and the functions φ and ψ are related to
the amplitude and the mean velocity potential of the water wave, respectively. A large
amount of work (see [6, 10, 13, 15]) has been devoted to the study of the generalized
Davey–Stewartson system (1.2). In 1990, Ghidaglia and Saut [6] studied the Cauchy
problem of (1.2) and, except for the case when λ, µ < 0, proved the solvability in the
Sobolev spaces H = H1(R2) when p = 3. In the elliptic-hyperbolic case, i.e. λ > 0
and µ < 0, Tsutsumi [15] obtained the Lp(R2)-decay estimates of solutions of (1.2)
(2 < p < ∞). In the elliptic–elliptic case, i.e. λ > 0 and µ > 0, Cipolatti [3] proved the
existence of the ground state for the N -dimensional extension of (1.2) by reducing the
extension to a single nonlinear equation of Schrödinger type. In [13] Ozawa presented
the exact blow-up solutions of the Cauchy problem for (1.2). Ohta [10] discussed the
existence of stable standing waves under certain conditions.

For system (1.1), Guo and Wang [9] established the local well-posedness of the Cauchy
problem in energy class H1(R3). Moreover, when x ∈ R

2, Ohta [12] proved that if
a(p − 3) > 0, there exists a blow-up solution of (1.1) arbitrarily close to the standing
wave. When x ∈ R

N (N = 2 or 3), Ohta [11] proved that if p � 1 + (4/N), the ground
state uω is unstable for any ω ∈ (0, ∞).

In this paper, we construct a type of cross-constrained variational problem and
establish its property, then apply it to the generalized Davey–Stewartson system (1.1).
Through studying the corresponding cross-invariant manifolds under the flow generated
by the system (1.1), we establish the sharp threshold for global existence and blow-
up of the solutions. By this threshold and the property of the cross-constrained varia-
tional problem, we also show the strong instability of ground states in § 5. Berestycki
and Cazenave [1] and Weinstein [16] have studied the similar problems of nonlinear
Schrödinger equations. However, in [1, 16], the related variational problems must be
solved and the Schwarz symmetrization and complicated variational computations must
be conducted. But in our new variational argument, we can refrain from inducing the
Schwarz symmetrization and complicated variational computations as well as from solv-
ing the attached variational problem, and can establish directly the sharp criterion for
global existence and blow-up of system (1.1). Furthermore, by using our sharp threshold
for blow-up, the strong instability of the standing waves of system (1.1) is also shown.
Moreover, the argument proposed here may be developed to treat system (1.1) with
3 � p < ∞ when x ∈ R

2 and 3 < p < 5 when x ∈ R
3.

Note that the result about the instability of ground states in the present paper is not
new and the same result was proved by Cipolatti in [4].

For simplicity we denote
∫

R3 · dx by
∫

· dx throughout the present paper.

2. Preliminaries

We impose the initial data of (1.1) as follows:

φ(0, x) = φ0(x), x ∈ R
3. (2.1)

From [9] (see also [6]), we have the following local well-posedness for the Cauchy
problem (1.1)–(2.1).
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Proposition 2.1. Let φ0 ∈ H1(R3). There then exists a unique solution φ(t, x) of the
Cauchy problem (1.1)–(2.1) in C([0, T ); H1(R3)) for some T ∈ (0, ∞) (maximal existence
time), either T = ∞ or else T < ∞ and

lim
t→T −

‖φ(t)‖H1(R3) = ∞.

Furthermore, for all t ∈ [0, T ), we have conservation of momentum,∫
|φ(t, x)|2 dx =

∫
|φ0(x)|2 dx, (2.2)

and conservation of energy,

E(φ) = 1
2

∫
|∇φ|2 dx − a

4

∫
|φ|4 dx − 1

4

∫
|φ|2E1(|φ|2) dx = E(φ0). (2.3)

Remark 2.2. From [3, Lemma 2.1] we have E1(φ(λ ·))(x) = E1(φ)(λx), λ > 0. In
addition, from the definition of E1 and the Parseval identity,∫

f · ḡ dx =
∫

F [f ]F [g] dξ, dξ = (2π)−3 dx,

we have∫
|φ|2E1(|φ|2) dx =

∫
|φ|2F−1σ1(ξ)F (|φ|2) dx =

∫
σ1(ξ)|F (|φ|2)|2 dξ > 0.

Moreover, by a direct calculation (see [11,12]), we have the following.

Proposition 2.3. Let φ0(x) ∈ H1(R3) and let φ(t, x) be a solution of the Cauchy
problem (1.1)–(2.1) on [0, T ). Set

J(t) =
∫

|x|2|φ(t, x)|2 dx. (2.4)

Then
J ′′(t) = 8

∫
|∇φ|2 dx − 6a

∫
|φ|4 dx − 6

∫
|φ|2E1(|φ|2) dx. (2.5)

3. The cross-constrained variational problem

For u ∈ H1(R3), we define the following functionals:

I(u) := 1
2

∫
|∇u|2 dx +

ω

2

∫
|u|2 dx − a

4

∫
|u|4 dx − 1

4

∫
|u|2E1(|u|2) dx, (3.1)

S(u) :=
∫

|∇u|2 dx + ω

∫
|u|2 dx − a

∫
|u|4 dx −

∫
|u|2E1(|u|2) dx, (3.2)

Q(u) :=
∫

|∇u|2 dx − 3a

4

∫
|u|4 dx − 3

4

∫
|u|2E1(|u|2) dx. (3.3)
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From Sobolev’s embedding theorem, and∫
|u|2E1(|u|2) dx �

∫
|u|4 dx

(see also [11,12]), we see that the above functionals are well defined. Moreover, we define
a manifold N as

N := {u ∈ H1(R3) \ {0}, S(u) = 0}, (3.4)

and a cross-manifold M as

M := {u ∈ H1(R3), Q(u) = 0, S(u) < 0}. (3.5)

Then the following results are true.

Lemma 3.1. There exists u ∈ H1(R3) \ {0} such that S(u) = 0 and Q(u) = 0.

Proof. From [11,12], it follows that there exists u ∈ H1(R3) \ {0} such that u is a
solution of the following Euler–Lagrangian equation

−∆u + ωu − a|u|2u − E1(|u|2)u = 0. (3.6)

Thus, S(u) = 0. Moreover, from (3.6) we have the Pohozaev identity

1
3

∫
|∇u|2 dx + ω

∫
|u|2 dx − a

2

∫
|u|4 dx − 1

2

∫
|u|2E1(|u|2) dx = 0, (3.7)

which is obtained by multiplying (3.6) by x · ∇u, then integrating. Note that S(u) = 0.
Thus, Q(u) = 0. �

Lemma 3.2. M is not empty.

Proof. From Lemma 3.1, there exists u ∈ H1(R3) \ {0} such that both S(u) = 0 and
Q(u) = 0. Now we let uλ = λu(λx) for λ > 0, we get

S(uλ) = λ

( ∫
|∇u|2 dx − a

∫
|u|4 dx −

∫
|u|2E1(|u|2) dx

)
+ λ−1ω

∫
|u|2 dx, (3.8)

Q(uλ) = λ

( ∫
|∇u|2 dx − 3a

4

∫
|u|4 dx − 3

4

∫
|u|2E1(|u|2) dx

)
. (3.9)

Thus, S(u) = 0 implies that there exists λ∗ > 1 such that S(uλ∗) < 0.
On the other hand, from λ∗ > 1, we still have Q(uλ∗) = 0. So uλ∗ ∈ M . This proves

that M is not empty. �

Now we consider the constrained variational problem

dN = inf
u∈N

I(u), (3.10)

and the cross-constrained minimization problem

dM = inf
u∈M

I(u). (3.11)

First we have the following two lemmas.
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Lemma 3.3. dN > 0.

Proof. From (3.1), (3.2), (3.4) and (3.10) on N one has

I(u) = 1
4

∫
|∇u|2 dx +

ω

4

∫
|u|2 dx =

a

4

∫
|u|4 dx + 1

4

∫
|u|2E1(|u|2) dx > 0. (3.12)

It follows from
∫

|u|2E1(|u|2) dx �
∫

|u|4 dx and Sobolev’s inequality that

1
4

∫
|∇u|2 dx +

ω

4

∫
|u|2 dx =

a

4

∫
|u|4 dx + 1

4

∫
|u|2E1(|u|2) dx

� a

4

∫
|u|4 dx + 1

4

∫
|u|4 dx

� c

(
1
4

∫
|∇u|2 dx +

ω

4

∫
|u|2 dx

)2

,

where c is a positive constant. Thus, we have

1
4

∫
|∇u|2 dx +

ω

4

∫
|u|2 dx � 1

c
,

so I(u) � 1/c > 0. That is, dN > 0. �

Lemma 3.4. dM � dN .

Proof. Let
u ∈ M and uλ = λu(λx). (3.13)

Then

S(uλ) = λ

( ∫
|∇u|2 dx − a

∫
|u|4 dx −

∫
|u|2E1(|u|2) dx

)
+ λ−1ω

∫
|u|2 dx, (3.14)

Q(uλ) = λ

( ∫
|∇u|2 dx − 3a

4

∫
|u|4 dx − 3

4

∫
|u|2E1(|u|2) dx

)
. (3.15)

Thus, S(u) < 0 implies that there exists a unique 0 < λ∗ < 1 such that S(uλ∗) = 0,
S(uλ) > 0 for λ ∈ (0, λ∗) and S(uλ) < 0 for λ ∈ (λ∗, 1). It is clear that u �= 0 and
uλ∗ �= 0. By (3.10) it follows that

I(uλ∗) � dN . (3.16)

At the same time, Q(u) = 0 implies that, for any λ > 0, Q(uλ) = 0. It follows that

I(uλ) = 1
8

∫
(|uλ|4 + |uλ|2E1(|uλ|2)) dx +

ω

2

∫
|uλ|2 dx, (3.17)

S(uλ) = −1
4

∫
(|uλ|4 + |uλ|2E1(|uλ|2)) dx + ω

∫
|uλ|2 dx. (3.18)
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By (3.17) we have

λ
d
dλ

I(uλ) =
λ

8

∫
(|u|4 + |u|2E1(|u|2)) dx − λ−1ω

2

∫
|u|2 dx. (3.19)

Then (3.18) and (3.19) imply that

λ
d
dλ

I(uλ) = − 1
2S(uλ). (3.20)

So I(uλ) makes the minimal value at λ = λ∗ since S(uλ∗) = 0, S(uλ) > 0 for λ ∈ (0, λ∗)
and S(uλ) < 0 for λ ∈ (λ∗, 1). Thus, for λ = 1 > λ∗, we have I(u) = I(uλ) � I(uλ∗).
Recalling (3.16), we obtain I(u) � dN . Therefore, dM � dN . �

Now we define a cross-invariant manifold

K := {φ ∈ H1(R3), I(φ) < dN , Q(φ) < 0, S(φ) < 0}.

Then we have the following.

Proposition 3.5. K is an invariant manifold of (1.1). More precisely, from φ0 ∈ K

it follows that the solution φ(t, x) of the Cauchy problem (1.1)–(2.1) satisfies φ(t, ·) ∈ K

for any t ∈ [0, T ).

Proof. Let φ0 ∈ K. By Proposition 2.1, there exists a unique

φ(t, ·) ∈ C([0, T ); H1(R3))

with T � ∞ such that φ(t, x) is a solution of the Cauchy problem (1.1)–(2.1). From (2.2)
and (2.3) we have

I(φ(t, ·)) = I(φ0(x)), t ∈ [0, T ). (3.21)

Thus, I(φ0) < dN implies that I(φ(t, ·)) < dN for any t ∈ [0, T ).
Now we show S(φ(t, ·)) < 0 for t ∈ [0, T ). Otherwise, from the continuity, there would

be a t0 ∈ [0, T ) such that S(φ(t0, ·)) = 0. By (3.21), φ(t0, ·) �= 0. From (3.10), it follows
that I(φ(t0, ·)) � dN . This contradicts I(φ(t, ·)) < dN for any t ∈ [0, T ). Therefore,
S(φ(t, ·)) < 0 for all t ∈ [0, T ).

Finally, we show that Q(φ(t, ·)) < 0 for t ∈ [0, T ). Otherwise, from the continuity, there
would be a t1 ∈ [0, T ) such that Q(φ(t1, ·)) = 0. Because we have shown that S(φ(t1, ·)) <

0, it follows that φ(t1, ·) ∈ M . Thus, (3.11) and Lemma 3.4 imply that I(φ(t1, ·)) �
dM � dN . This contradicts I(φ(t, ·)) < dN for t ∈ [0, T ). Therefore, Q(φ(t, ·)) < 0 for all
t ∈ [0, T ).

By the above we have proved that φ(t, ·) ∈ K for any t ∈ [0, T ).
By the argument in Proposition 3.5, we get the following result. �

Proposition 3.6. Define

K+ := {φ ∈ H1(R3), I(φ) < dN , Q(φ) > 0, S(φ) < 0},

R− := {φ ∈ H1(R3), I(φ) < dN , S(φ) < 0},

R+ := {φ ∈ H1(R3), I(φ) < dN , S(φ) > 0}.

Then K+, R− and R+ are all invariant manifolds of (1.1).
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By the definition of K, R+ and R−, as well as (3.10) and Lemma 3.4, we can easily
obtain the following result.

Proposition 3.7. {φ ∈ H1(R3) \ {0}, I(φ) < dN} = R+ ∪ K+ ∪ K.

4. Sharp threshold for global existence and blow-up

Theorem 4.1. If φ0 ∈ K+∪R+, then the solution φ(t, x) of the Cauchy problem (1.1)–
(2.1) exists globally in t ∈ (0, ∞).

Proof. Firstly we let φ0 ∈ K+. Thus, Proposition 3.6 implies that the solution φ(t, x)
of the Cauchy problem (1.1)–(2.1) satisfies the condition that φ(t, ·) ∈ K+ for t ∈ [0, T ).
For fixed t ∈ [0, T ), define φ(t, ·) = φ. Thus, we have I(φ) < dN , Q(φ) > 0. If follows
from (3.1) and (3.3) that

1
6

∫
|∇φ|2 dx +

ω

2

∫
|φ|2 dx < dN . (4.1)

From (2.2) and (4.1) we always get∫
|∇φ|2 dx < c. (4.2)

Therefore, Proposition 2.1 implies that φ(t, x) exists globally in t ∈ [0, T ). Thus, for
φ0 ∈ K+, we have proved that the solution φ(t, x) of the Cauchy problem (1.1)–(2.1)
exists globally in t ∈ (0, ∞).

Now we see that φ0 ∈ R+. By φ0 ∈ R+, Proposition 3.6 implies that the solution
φ(t, x) of the Cauchy problem (1.1)–(2.1) satisfies the condition that φ(t, ·) ∈ R+ for
t ∈ [0, T ). We then have I(φ) < dN , S(φ) > 0. It follows that

1
4

∫
(|∇φ|2 + ω|φ|2) dx < dN . (4.3)

Therefore, Proposition 2.1 implies that φ(t, x) exists globally in t ∈ [0, ∞). �

Theorem 4.2. If φ0 ∈ K and satisfies |x|φ0(x) ∈ L2(R3), then the solution φ(t, x) of
the Cauchy problem (1.1)–(2.1) blows up in a finite time.

Proof. According to Ginibre and Velo [7,8], from |x|φ0(x) ∈ L2(R3), one has |x|φ ∈
L2(R3). From φ0 ∈ K, Proposition 3.5 implies that φ(t, ·) ∈ K with t ∈ [0, T ). Now we
set

J(t) =
∫

|x|2|φ(t, x)|2 dx; (4.4)

then (2.4) and (2.5) imply that

J ′′(t) = 8Q(φ(t, ·)). (4.5)
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Fix t ∈ [0, T ) and define φ(t, ·) = φ. φ(t, x) satisfies the condition that Q(φ) < 0 and
S(φ) < 0. For λ > 0, we let φλ = λ3/2φ(λx). Thus,

S(φλ) = λ2
∫

|∇φ|2 dx + ω

∫
|φ|2 dx − aλ3

∫
|φ|4 dx − λ3

∫
|φ|2E1(|φ|2) dx, (4.6)

Q(φλ) = λ2
∫

|∇φ|2 dx − 3
4aλ3

∫
|φ|4 dx − 3

4λ3
∫

|φ|2E1(|φ|2) dx. (4.7)

Since S(φ) < 0, this yields that there exists 0 < λ∗ < 1 such that S(φλ∗) = 0 and, when
λ ∈ [λ∗, 1], S(φλ) � 0. For λ ∈ [λ∗, 1], Q(φλ) has the following three possibilities:

(i) Q(φλ) < 0 for λ ∈ [λ∗, 1];

(ii) Q(φλ∗) = 0;

(iii) there exist µ ∈ (λ∗, 1) such that Q(φµ) = 0.

For cases (i) and (ii) we have S(φλ∗) = 0 and Q(φλ∗) � 0. It follows that I(φλ∗) � dN .
Moreover, by

I(φλ) =
λ2

2

∫
|∇φ|2 dx +

ω

2

∫
|φ|2 dx − a

4
λ3

∫
|φ|4 dx − λ3

4

∫
|φ|2E1(|φ|2) dx,

we have

I(φ) − I(φλ∗) = 1
2 (1 − λ∗2)

∫
|∇φ|2 dx − 1

4 (1 − λ∗3)
∫

(a|φ|4 + |φ|2E1(|φ|2)) dx,

(4.8)

Q(φ) − Q(φλ∗) = (1 − λ∗2)
∫

|∇φ|2 dx − 3
4 (1 − λ∗3)

∫
(a|φ|4 + |φ|2E1(|φ|2)) dx (4.9)

and 0 < λ∗ < 1 implies that

I(φ) − I(φλ∗) � 1
2Q(φ) − 1

2Q(φλ∗) � 1
2Q(φ). (4.10)

For case (iii), we have Q(φµ) = 0 and S(φµ) < 0. Thus, Lemma 3.4 implies that
I(φµ) � dM � dN and

I(φ) − I(φµ) � 1
2Q(φ) − 1

2Q(φµ) � 1
2Q(φ). (4.11)

Since I(φλ∗) � dN , I(φµ) � dN , from (4.10) and (4.11), we get

Q(φ) � 2[I(φ) − dN ]. (4.12)

From (2.2), (2.3) and (3.1), I(φ) = I(φ0). Thus, by φ0 ∈ K and (4.5), we have

J ′′(t) = 8Q(φ) < 2[I(φ0) − dN ] < 0. (4.13)

Obviously, J(t) cannot verify (4.13) for all time. Therefore, from Proposition 2.1 it must
be the case that T < ∞, which implies that

lim
t∈T

‖φ(t, ·)‖H1(R3) = ∞.

From Proposition 3.7 and Theorem 4.2, it follows that if |x|φ0(x) ∈ L2(R3), then Theo-
rem 4.1 is sharp. �
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Corollary 4.3. Let φ0 ∈ H1(R3) and let φ0 satisfy
∫

|∇φ0|2 dx + ω
∫

|φ0|2 dx < 2dN .
Then the solution φ(t, x) of the Cauchy problem (1.1)–(2.1) exists globally in t ∈ [0, ∞).

Proof. From
∫

|∇φ0|2 dx + ω
∫

|φ0|2 dx < 2dN , we have I(φ0) < dN . Moreover, we
claim that S(φ0) > 0. Otherwise, there would be a 0 < λ � 1 such that S(λφ0) = 0.
Thus, I(λφ0) � dN . On the other hand,

λ2
( ∫

|∇φ0|2 dx + ω

∫
|φ0|2 dx

)
� 2dN .

It follows that I(λφ0) < dN . This is a contradiction. Therefore, we have φ0 ∈ R+. Thus,
Theorem 4.1 implies this corollary. �

5. Instability of the standing waves

Using the methods in [1,14], one can easily find that the variational problem (3.10) is
attained. Let u be a solution of (3.10), that is we have

dN = min
u∈N

I(u). (5.1)

Then, by a standard variational computation, we have that u is a solution of the following
nonlinear Euclidean scalar equation

−∆u + ωu − a|u|2u − E1(|u|2)u = 0. (5.2)

Thus, φ(t, x) = eiωtu(x) is a standing wave solution of (1.1). Since u is a minimizer
of (5.1), we call u(x) a ground state solution of (5.2). Using the method in [1] as well
as [2], we can prove the strong instability of the standing wave, but the proof has to rely
on the solvability of the following variational problem:

dQ := inf
{u∈H1(R3)\{0}, Q(u)=0}

I(u). (5.3)

But here, by Lemma 3.4 and Theorem 4.2, we can refrain from solving problem (5.3),
and show the instability of the standing waves directly. First we give two lemmas.

Lemma 5.1. Let φ ∈ H1(R3) \ {0}. There then exists a unique µ > 0 such that
S(µφ) = 0 and I(µφ) > I(λφ) for any λ > 0 and λ �= µ.

Proof. For λ > 0, we have

S(λφ) = λ2
∫

|∇φ|2 dx + λ2ω

∫
|φ|2 dx − aλ4

∫
|φ|4 dx − λ4

∫
|φ|2E1(|φ|2) dx, (5.4)

d
dλ

I(λφ) = λ−1S(λφ). (5.5)

From (5.4) and (5.5), Lemma 5.1 is obtained. �

Lemma 5.2. Let u be a minimizer of (5.1). Then Q(u) = 0.
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Proof. Since u is a minimizer of (5.1), u is also a solution of (5.2). Thus, we have the
Pohozaev identity,

ω

2

∫
|u|2 dx + 1

6

∫
|∇u|2 dx − a

4

∫
|u|4 dx − 1

4

∫
|u|2E1(|u|2) dx = 0, (5.6)

which is obtained from multiplying (5.2) by x ·∇u, then integrating. Note that S(u) = 0.
Thus, Q(u) = 0. �

Now we give the following blow-up theorem.

Theorem 5.3. Let u be a minimizer of (5.1). Then, for any ε > 0, there exists
φ0 ∈ H1(R3) with ‖φ0 − u‖H1(R3) < ε such that the solution φ(t, x) of the Cauchy
problem (1.1)–(2.1) blows up in a finite time.

Proof. By Lemma 5.2, Q(u) = 0. Thus, we have S(u) = 0 and Q(u) = 0. It follows
that, for any λ > 1, we have

S(λu) < 0, Q(λu) < 0, λ > 1. (5.7)

On the other hand, from Lemma 5.1, S(u) = 0 implies that I(λu) < I(u) for any λ > 1.
Note that I(u) = dN . Thus, for any λ > 1 we have λu ∈ K. Furthermore, it is clear that
|x|u( ·) ∈ L2(R3), and thus λ|x|u( ·) ∈ L2(R3). Now we take λ > 1, and λ is sufficiently
close to 1 such that

‖λu − u‖H1(R3) = (λ − 1)‖u‖H1(R3) < ε. (5.8)

Then we take φ0 = λu(x). From Theorem 4.2, the solution φ(t, x) of the Cauchy prob-
lem (1.1)–(2.1) blows up in a finite time. �
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9. B. L. Guo and B. X. Wang, The Cauchy problem for Davey–Stewartson systems,
Commun. Pure Appl. Math. 52 (1999), 1477–1490.

10. M. Ohta, Stability of standing waves for the generalized Davey–Stewartson system, J.
Dynam. Diff. Eqns 6 (1994), 325–334.

11. M. Ohta, Instability of standing waves for the generalized Davey–Stewartson system,
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