THE SOLUTION OF CERTAIN TRIPLE INTEGRAL EQUATIONS
INVOLVING INVERSE MELLIN TRANSFORMSTY

by J. TWEED
(Received 9 June, 1971)

1. Introduction. In this paper, we shall be concerned with the solution of triple integral
equations of the type

M1 +5)"1A(s); r] =0 (0O<r<a),
M~ cot(ns/mA(s); r]=f(r) (a<r<b), (1.1
M (1 +5)"1A(s); r] =0 (b <r< o),

where .# ™! is the inverse Mellin transform, » is a positive integer, and —1 < Res < 0. The
use of these equations will be illustrated by their application to two well-known problems in
the mathematical theory of elasticity and further applications will be reported later.

2. We begin by considering the equations

ML +5)"1A(s); ] =0 0<r<a),
M eot(rs)A(s); r]=f() (a<r<b), (2.1)
M A +5) T A(s); r] =0 (b<r<m),

where —1 < Res < 0. The method of solution is similar to that used by Lowengrub and
Srivastava [1] for the solution of triple integral equations with trigonometric kernels and
involves the assumption of a solution of the form

A(s) = r p(DrE dt, 2.2)

where p(¢) is an unknown function to be determined later. It is clear that, with this choice
of A(s),

MU +5)T AGs); r] = Jbtp(t).//l"l[(l+s)"'; rt]dt

and therefore, since
MU +5)" ) =rH(1-r)  (Res> —1),

1 This paper was prepared as a part of the work of the Applied Mathematics Research Group at North
Carolina State University through the Grant AF~AFOSR-69-1779 and is under joint sponsorship of AFOSR, .
ARO and ONR through the Joint Services Advisory Group.

E

https://doi.org/10.1017/50017089500001749 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500001749

66 J. TWEED

we see that, if —1 < Res <0, then

[ b
rj p()dt (0<r<a),

r

M (1 +5)" A(s); 1] = rrp(t)dt (@<r<b), (2.3)

{ 0 (b<r< o).

It follows that the first and third of the equations (2.1) will be satisfied automatically by (2.2)
provided that

jb p(Hydt=0. 2.4)

a

Similarly, on making use of the result
M rcot(ns);rl=r(1—-r)"! (-1 <Res<0),

we see that

M cot(ns)A(s); r] = B (2.5)

rj” tp(t)dt

and therefore the second of the equations (2.1) will be satisfied if p(t) is chosen to be the
solution of the integral equation

1J"ﬁp(t)dt =f(_r)

(a<r<b). (2.6)

n t—r r

a

The solution of equation (2.6) is well known (see Tricomi [3]) and may be written in either of
the two alternative forms

_=1{1=a\* [*(b—y\}f(y) dy C,

tp(t)_7<b-t) J:, (y—a) y—t7+[(t—a)(b—t)]* @7
_=1(b=t\ [*(y—a\*f(y) dy C,

t(t __n_(t—a) L (b—y) y—t7+[(t—a)(b—t)]*’ (2.8)

where C, and C, are constants which are determined by the condition (2.4). On applying
this condition it is seen, after a little manipulation, that

or

C, = —EJ\b(t—yYJL’:)dy (2.9)
TJa\y—a y
and
b (*(y—a\f(y)
CFEL(b——}) el (2.10)

thus completing the solution of the problem.
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In those physical problems that can be reduced to the solution of equations such as (2.1)
we are usually interested in finding not only the solution of the equations but the values
taken by their left-hand sides in the intervals on which they are not prescribed. For complete-
ness we shall now do this. On substituting from (2.7) and (2.8) into (2.5) and changing the
order of integration it is easily seen that we may write

r(b=r\* [*(y—a\*f(y) dy rC,
‘E(a——_r) J (b—y) y—ry TTa=nG-np <

r(r—a\* (*(b—y\! f(y) dy rC,

5(7-7) I (y—a) y—ry [e=ae-pp 70
and on substituting the values of C, and C, given by (2.9) and (2.10) into these expressions
we find that

r’ [(y—a)(b— I/
n[(a—r)(b-r)]*fa —y p Y <
r’ *[o=a)b=-NTO),
Ar—ar—0F ).  r-y  F

Similarly, on substituting from (2.7) and (2.9) into (2.3) and performing some manipu-
lation, it can be shown that, for a < r < b,

M~ [cot(ns)A(s); r] =

M~ [cot(ns)A(s); r] = (2.11)

(r > D).

*[(b—y)y— a)]*JLf) dy.

ML +5)7A(s); r] = zJ‘b dt
’ n r[(t_a)(b_t)]* a =y y

(2.12)

3. We shall now turn our attention to the equations
M (1+5)"1A(s); r] =0 O<r<a),
M [cot(ns/m)A(s); r]=f(r) (a<r<b), 3.1
MU +5)"tA(s); ] =0 (b <r< ),
where — 1< Res <0, and n 2 2. In this case we shall assume a solution of the form

A(®) = Jw p(FT" e, (3.2)

As before, we see that
© . |
rJ " 2p(dt  (0<r<a),

H I [(143)7AGs); 1] =1 r_[b = 2p(F7) dt

r

(a<r<b), (3:3)

0 (b<r<wm),]|
E2
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so that the first and third of the equations (3.1) will be satisfied if
b
'f "=2p(1") dt = 0. (3.4)

If we now substitute the expression (3.2) into the left-hand side of the second equation we
find that

M~ [cot(ns/n)A(s); r} = ;th "~ p(" M~ rcot(ms/n); s — r[t] dt

and therefore, on making use of the result
M ncot(ns/n); s> r]=nr"(1—r")"!  (—1<Res<0),

we see that, if —1 < Res <0,

" 1
M 1[cot(ns/n)A(s) ]——f — p(tM dt. 3.5)
It follows that the second equation will be satisfied if p(t") is the solution of the integral
equation
1 b . -
-f t"' () dt = f( D a<r<b) . (3.6)
n —

By making a simple change of variable, this equation can be transformed into one similar to
(2.6) and therefore it is easily seen that its solution may be written in either of the forms

mo _(r=a -\ f0) dy c,
(t ) - _<b" n) J; (y"__a") yn_ t,,'; +[(tn_an)(bn_ tn)]f 3.7
or
bt — " n_an + f(y) dy Cz
P( )_ ——<t" n) J (b"—y") n—tn7+[(t"—-a")(b"—t")]*’ (38)

where C, and C, are constants to be determined from the condition (3.4). The application
of this condition yields the results

n rb bn__yn *f(y) b P—a" B t""2
—_—— i t .
€ TII,,“,<y"—-a") y d,VJ-a b —p y"-—t"d (3.9)
and
n (b b —1" 4+ 1] yn_an + f(y) dy
= e tn-2 t ay .
CZ nInua (tn_an> d J:l (bn_yn) y"—t" y ’ (3 10)

where I, is the integral

r 21" = a")(b"~ )] dt.
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In this case, it is easily shown that a convenient way of writing the left-hand side of the
second equation is

M~ '[cot(ns[n)A(s); r]
nrt (P—a™\E (2 (5"~ y"\E f() dy Cur"
7@“»JXW%JVHG_W“ﬂMJW* >0,
—nrn (B e\ (Y= an\E 1O) dy Cyr” .
n (a"— "') f a (b"— y") y—ry ti@—me-mp <Y

There appears however, to be no such simple formula for the left-hand side of the first and
third equations.

(3.11)

4. In this section, we show how the results of the preceding sections may be used to find
the solutions of two well-known problems in the two-dimensional theory of elasticity under
the assumption of plane strain.

Problem 1. The first problem we consider is that of finding the stress intensity factors
and crack shape of a Griffith crack which is defined, in plane polar co-ordinates, by the
relations 8 =0, a < r < b and whose surfaces are loaded symmetrically. Due to symmetry,
this problem reduces to that of finding the solution of the equations of elasticity for the half
plane 0 £ r < o0, 0 £ 8 £ n which satisfies the conditions

(1) o, M) =0(r, W) =0 (O <1< 00),

(2) 0,4(r,0)=0 (0=r<wm),

(B) ofr,0)=—f(r) (a<r<b),

@ v(r,0)=0"* (O=r<aud<r<owm)

(5) All the stresses and displacements are bounded at the origin and tend to zero as r
tends to infinity.

But utilizing the properties of the Mellin transform, it can be shown that the solution of
the equations of elasticity in plane polar coordinates that satisfies condition (5) is such that
2

;—#ao(r, 8) = 0~ [s(s+ )T, 0); ], @.1)

ﬁaﬂ,(; 0) = ./l"[( +1)d"(s .9, ] (4.2)

and
3=
ru(r, 0)= .ﬂ- [(_TI)(S_-I-_ZS{(l )d Z(es; 0)"‘[(1 11)5 +(s+1)(s+2)]dX(r 0)}’ ']’ (43)

where —1 < Res <0, and (s, 8), which is the Mellin transform of the Airy stress function, is
given by

x(s, 8) = C, sins0+ C, cos s8+ C5 sin(s+2)0+ C, cos (s +2)0
(see Tranter [2}).
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1f we now put
_(s+24 _(s+2)4
17 as(s+ 1)’ 27 4s(s+1)
A A
) R

it is easily shown that the conditions (1) and (2) are satisfied automatically and that

cot(ns),

cot(s+2)m,

oq(r, 0) = '%.ll"[A(s) cot(ns); r] (4.4)

and

v(r, 0) = —1—:—'-’.11"[(1 +5)1A(s); r). 4.5)

It now follows that the remaining boundary conditions will be satisfied if A(s) is the
solution of the triple integral equations

M (1 +5)"1A(s); r] =0 (0<r<a),
M~ [eot(ns)A(s);r] = —u~'r¥f(r) (a<r<b), (4.6)
ML +5)" A(s);r] =0 (b<r<m),

where —~1 <Res < 0.
These equations are of the type studied in §2 and therefore we can conclude that

1 ”[(y—a)(b—.v)]*
fdy (r<a),
BT _
ay(r,0) = n{(a r)(b g y=r 4.7

af(r— a)(r b)]*_[ Lt a)( —-y)] fdy (r>Db),

o, 0) = —L= n)r

and that

f (=A=', “8)

(- a)(b— ]t
foragr<hb.

Of interest to workers in fracture mechanics are the stress intensity factors K, and K,
which are defined by the relations

K, = lim (a—r)¥e,(r, 0) (4.9)
and
K, = lim (r—b)o,(r, 0). (4.10)
r—+b+
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From the result (4.7) above it is clear that in this case

1 by}t
K,= Z—a)t ), (y—a) J(»)dy 4.11)
and
1 " (y—a\t
K"=1r(b—a)*”(b—y) J()dy. 4.12)

Problem 2. The second problem we deal with is that of finding the stress intensity factors
of a pair of Griffith cracks whose surfaces are loaded symmetrically and are defined by the
relations 0 =0,a<r <b; 6 ==, a <r <b. In this case, the symmetry in the problem leads
us to seek a solution of the equations of elasticity for the quarter plane0 S r < 00,0 < 0 < /2
which satisfies the conditions

(1) o5(r,7/2) = 0(r,n/2)=0 (0 r <),

(2) Urs(", 0) =0 (0 é r< w),

Q) o(r,0)=~f(r) (a<r<b),

@ v(r,00=0 (O<r<a)ud<r<owm),

(5) All the stresses and displacements are bounded at the origin and tend to zero as r
tends to infinity.

As in Problem 1 above it is easily shown that the solution of the equations of elasticity
satisfying conditions (1), (2) and (5) is such that

2

%ao(r, 0) = A~ '[cot (ns/2)A(s); r], (4.13)

ﬁv(r, 0) = —u " '[(L+5)""A(s); 1], (4.14)

where —1 < Res < 0.

It follows that conditions (3) and (4) will be satisfied if A(s) is the solution of the triple
integral equations

M1 +5)7 A(s); r] =0 O<r<a),
M cot(ns[QA(s); r] = —p~'r3f(r)  (a<r<b), (4.15)
A [(1+5)"A(s); r] =0 (b<r< ),

where —1 < Res < 0.
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But these equations are of the type studied in §3 and therefore, by (3.9), (3.10), (3.11) and
(4.13) we see that

2(rt—a*\! [* (b2 - ¥\ yf(y) uC, .
};(W) J;(;z_az) r2_)2 dy'[(rz_az)(rz_bz)]f (r>b),

ay(r, 0) 2 g b r2 g (4.16)
—2(b"—r y—a N @) o HC, (r<a)
z \a2—r2) | \p?=)2) =2 4 [@ =)o =) ’
where
2 b b2_y2 + b t2_a2 + dt
= ——— ——— -5 . 7
Cl 717#12 a(yz_az) Yf(Y)d.VJ; (bz_tz) tz_yz’ (4| )
2 (P/b2=1\*  [P/y*—a*\! yf(y)
C,=—— - | dt ) —5d 18
: wIJa (tz—a2> f (b’—)") -yt @19
and

b dt
hh= I = —my = b

where F is the complete elliptic integral F[n/2, b~ '(b*~a*)*). 1t now follows easily that in

this case
K =3<b2—-a2>" [*___Wdy G
“a\ 2a ) JJ [0 -y Ny —aP)]t  [2a(b*-a)]*
and
K =3<b2—az)" ®  ydy uG
PTa\ 26 ) L [0y =) [26(67-a))}t
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