Proceedings of the Edinburgh Mathematical Society (1982) 25, 69-71 ©

A REMARK ON THE RADICAL OF A GROUP ALGEBRA

by PETER BROCKHAUS

(Received 5th July 1980)

This paper contains a new proof of a theorem of D. A. R. Wallace [5] in case of a *p*-solvable group. An alternative proof has been given by K. Motose [4].

Let G be a finite group, F a field with prime characteristic p, P a Sylow p-subgroup of G. JFG will denote the Jacobson radical of FG.

Lemma 1. Let Q be a p-group acting on a p'-group H such that Q stabilises each conjugacy class of H. Then Q acts trivially.

Proof. Let K be a conjugacy class of H. By assumption Q acts on K. Since $p_{k}^{\prime}|K|$ there exists $k \in K$ such that $k \in C_{H}(Q)$ implies

$$K = k^H \subseteq \bigcup_{h \in H} [C_H(Q)]^h$$

It follows $H = \bigcup_{h \in H} [C_H(Q)]^h$. By [2], p. 12, Aufgabe 4, $H = C_H(Q)$.

Lemma 2. Assume G = PN where $N := O_{p'}(G)$. Then

$$\dim_F JFG = |G| - |N| \Rightarrow p \trianglelefteq G.$$

Proof. Since $FN \cap JFG \subseteq JFN = 0$ (by Maschke's theorem) the map

$$\varphi: FN \to FG/JFG \quad \alpha \mapsto \alpha + JFG$$

is an F-algebra monomorphism. φ is an isomorphism, since dim_F (FG/JFG) = $|G| - \dim_F JFG = |N|$. Define $\Psi: FG \to FN$ by $\Psi(\alpha) := \varphi^{-1}(\alpha + JFG)$ ($\alpha \in FG$). Ψ is an F-algebra homomorphism with property $\Psi|_{FN} = 1_{FN}$. Let K be a conjugacy class of N and $x \in P$.

$$c:=\sum_{k\in K}k\in ZFN.$$

 $c^x = \Psi(c^x) = \Psi(x^{-1})\Psi(c)\Psi(x) = c^u = c$, where $u := \Psi(x)$, a unit in $FN \Rightarrow K^x = K \Rightarrow P$ acts on K by conjugation. By Lemma 1 $N = C_N(P)$.

Lemma 3.

(a) $H \leq G \Rightarrow \dim_F JFG \leq \dim_F JFH + |G| - |H|$;

(b) $\dim_F JFG \leq |G| - |G:P|$, if G has a p-complement;

(c) $H \leq G$, $p \mid |G: H| \Rightarrow \dim_F JFG = |G: H| \dim_F JFH$;

(d) $Q \leq G$, $Q \neq g$

Proof. (a) $x + JFG \cap FH \mapsto x + FH$ for all $x \in JFG$ defines an *F*-monomorphism from the *F*-vector space $JFG/JFG \cap FH$ into the *F*-vector space FG/FH. Therefore, since $JFG \cap FH \subseteq JFH$,

 $\dim_F JFG = \dim_F (JFG/JFG \cap FH) + \dim_F (JFG \cap FH)$ $\leq \dim_F (FG/FH) + \dim_F JFH = |G| - |H| + \dim_F JFH.$

- (b) Let H be a *p*-complement. Apply (a) and Maschke's theorem.
- (c) follows from [3], p. 524.
- (d) follows easily from [1], p. 71–72.

Theorem (Wallace [5]). Let G be p-solvable. Then

 $P \leq G \Leftrightarrow \dim_F JFG = |G| - |G:P|.$

Proof. " \Rightarrow ":

 $\dim_F JFG = \dim_F JF(G/P) + |G| - |G:P| \quad (by \text{ Lemma 3(d)})$ $= |G| - |G:P| \quad (by \text{ Maschke's theorem})$

" \Leftarrow ": We use induction on |G|. The case |G| = 1 is clear. Assume that ||G| > 1 and the result holds for p-solvable groups of smaller order. As G is p-solvable, there exists $H \not\cong G$: p/|G: H| or |G: H| = p.

Case 1: p/|G:H|. Then $P \in Syl_p(H)$.

$$\dim_F JFH = |G: H|^{-1} \dim_F JFG \quad \text{(by Lemma 3(c))} \\ = |G: H|^{-1} (|G| - |G: P|) = |H| - |H: P|$$

 $\Rightarrow P \trianglelefteq H$ (by induction) $\Rightarrow P \trianglelefteq G$ (since P char $H \trianglelefteq G$).

Case 2: |G:H| = p.

Case 2a: p/|H|. Then $H = O_{p'}(G)$ and, by Lemma 2, $P \leq G$.

Case 2b: p | |H|. Let $Q \in Syl_p(H)$.

 $\dim_F JFH \ge \dim_F JFG + |H| - |G| \quad \text{(by Lemma 3(a))} \\ = |G| - |G: P| + |H| - |G| = |H| - |G: P| = |H| - |H: Q|$

$$\Rightarrow \dim_F JFH = |H| - |H: Q| \quad \text{(by Lemma 3(b))}$$

$$\Rightarrow Q \trianglelefteq H \quad \text{(by induction)} \Rightarrow Q \trianglelefteq G \quad \text{(since } Q \text{ char } H \trianglelefteq G)$$

$$\Rightarrow \dim_F JF(G/Q) = \dim_F JFG + |G: Q| - |G| \quad \text{(by Lemma 3(d))}$$

$$= |G| - |G: P| + |G: Q| - |G|$$

$$= |G/Q| - |G/Q: P/Q|.$$

By induction $P/Q \leq G/Q$ (since $P/Q \in Syl_p(G/Q)$) and therefore $P \leq G$.

70

In conclusion I wish to thank Professor G. Michler for helpful discussions, Dr. M. Lorenz for improvements of the original version and the referee for a useful hint.

REFERENCES

1. W. HAMERNIK. Group Algebras of Finite Groups Lectures given at the University of Giessen, Winter 1973/74.

2. B. HUPPERT, Endliche Gruppen I (Springer, Berlin, Heidelberg, New York, 1967).

3. G. MICHLER, Blocks and Centers of Group Algebras (Lecture Notes in Mathematics 246, Springer, 1972).

4. K. MOTOSE, On a Theorem of Wallace and Tsushima, Proc. Japan Acad. 50 (1974), 572-575.

5. D. A. R. WALLACE, On the Radical of a Group Algebra, Proc. Amer. Math. Soc. 12 (1961), 133-137.

DEPARTMENT OF MATHEMATICS ESSEN UNIVERSITY 4300 ESSEN FEDERAL REPUBLIC OF GERMANY