PERFECT DIFFERENCE SETS

by H. HALBERSTAM and R. R. LAXTON

(Received 12 August, 1963)

1. Introduction. If the set K of $r+1$ distinct integers $k_{0}, k_{1}, \ldots, k_{r}$ has the property that the $(r+1) r$ differences $k_{i}-k_{j}(0 \leqq i, j \leqq r, i \neq j)$ are distinct modulo $r^{2}+r+1, K$ is called a perfect difference set mod $r^{2}+r+1$. The existence of perfect difference sets seems intuitively improbable, at any rate for large r, but in 1938 J . Singer [1] proved that, whenever r is a prime power, say $r=p^{n}$, a perfect difference set mod $p^{2 n}+p^{n}+1$ exists. Since the appearance of Singer's paper several authors have succeeded in showing that for many kinds of number r perfect difference sets mod $r^{2}+r+1$ do not exist; but it remains an open question whether perfect difference sets exist only when r is a prime power (for a comprehensive survey see [2]).

In this note we shall be concerned solely with perfect difference (p.d.) sets $\bmod p^{2 n}+p^{n}+1$, where p is prime. From now on (except in §2), let r denote p^{n} and write

$$
\begin{equation*}
q=r^{2}+r+1=p^{2 n}+p^{n}+1 \tag{1.1}
\end{equation*}
$$

We shall lose no generality by assuming that $r>7$.
If K is a p.d. set $\bmod q$ and $K+s$ denotes the set $k_{0}+s, k_{1}+s, \ldots k_{r}+s$ then clearly $K+s$ is also a p.d. set $\bmod q$; since K contains two elements whose difference is congruent to $1(\bmod q)$, there exists a translation $K+s$ which takes these two elements into 0 and 1 . A p.d. set containing 0 and 1 is said to be reduced, and two p.d. sets $\bmod q$ which can be translated to the same reduced set are said to be equivalent.

Singer arrived at his p.d. sets in the following way. Let G_{3} and G_{1} denote respectively the Galois fields $G F\left(p^{3 n}\right)$ and $G F\left(p^{n}\right)$, so that G_{3} is a cubic extension of G_{1}. If ζ is a generator of G_{3}^{*}, the multiplicative cyclic group associated with G_{3}, ζ satisfies a monic cubic equation over G_{1} irreducible in G_{1}, and every element of G_{3} can be written in the form

$$
a+b \zeta+c \zeta^{2}, \quad a, b, c \in G_{1}
$$

moreover, every element of G_{3} other than 0 can also be expressed as a power of ζ. Consider then all the elements of G_{3} of the form

$$
\begin{equation*}
a+b \zeta=\zeta^{k} \tag{1.2}
\end{equation*}
$$

as a, b run independently through G_{1} but are not both 0 . We say that two such numbers are equivalent if there exists a number $c \neq 0$ in G_{1} such that one is c times the other. The equivalence relation induces a partition of all numbers of the form (1.2) into $r+1$ equivalence classes; for there are, in all, $p^{2 n}-1$ numbers of form (1.2) corresponding to the $p^{2 n}-1$ choices for the pair a, b, and on the other hand there are $r-1$ choices for c. Let

$$
a_{i}+b_{i} \zeta=\zeta^{k_{1}} \quad(i=0,1, \ldots, r)
$$

be a representative set chosen from these equivalence classes. Then the system K of exponents is a p.d. set $\bmod q$ (a simple proof is given in [3]; see also [4]). A p.d. set constructed in this way will be called a Singer p.d. set, or a p.d. set of Singer type.

N

Singer proposed the following two conjectures:
I. All p.d. sets $\bmod p^{2 n}+p^{n}+1$ are of Singer type.
II. There exist exactly $\phi(q) /(3 n)$ reduced Singer p.d. sets.

The chief aim of the present paper is to prove II (see Theorem 2 below). It may be that the method evolved below will be of help in a successful attack on the much more difficult conjecture I.

The main step in the proof of II is Theorem 1 (see §3), and two proofs of this theorem have appeared recently. One proof is implicit in the results of Bruck [5] and Higman and McLaughlin [6]; the other is Theorem 5 of Gordon, Mills and Welch [7]. The proof given below is different from either of these, and appears to us more elementary in conception.

We are indebted to Dr M. C. R. Butler for a valuable suggestion.
2. The reduction lemma. We begin with a completely elementary result which will provide an essential step in the main argument below (see §3).

For the purpose of this section we may drop the restriction that r is a prime power.
We say that an integer is written in standard form mod $r^{2}+r+1$ when it is expressed modulo $r^{2}+r+1$ as

$$
\begin{equation*}
u+v r \text { or } u+r^{2} \text { or } r+r^{2} \tag{2.1}
\end{equation*}
$$

with integers u, v satisfying

$$
\begin{equation*}
0 \leqq u<r, \quad 0 \leqq v<r . \tag{2.2}
\end{equation*}
$$

We say that an integer t is of reduced type $\bmod r^{2}+r+1$ if

$$
t \equiv u+v r \quad\left(\bmod r^{2}+r+1\right)
$$

where u, v satisfy (2.2) and also

$$
\begin{equation*}
0<u+v \leqq r . \tag{2.3}
\end{equation*}
$$

Then
Lemma 1. Let r be a fixed integer greater than 1. Then every integer tgreater than 1 and coprime to $r^{2}+r+1$ has the property that t, tr or t^{2} is of reduced type mod $r^{2}+r+1$.

Proof. If $t \equiv u+r^{2}(\bmod q), 0 \leqq u<r$, then $t r \equiv u r+1(\bmod q)$ and $0<u+1 \leqq r$. If $t \equiv r+r^{2}$, then $t r^{2} \equiv 1+r$ and $0<2 \leqq r$. Thus in the first case $t r$, and in the second $t r^{2}$, are of reduced type $\bmod q$.

It remains to consider the case $t \equiv u+v r(\bmod q), 0 \leqq u, v<r$ and

$$
\begin{equation*}
u+v>r . \tag{2.4}
\end{equation*}
$$

From (2.4) $u+v \geqq r+1$, whence $u=0,1$ is impossible; hence $u \geqq 2$ and similarly $v \geqq 2$.
(i) Suppose that $u=v$. Then $t \equiv u(1+r) \equiv-u r^{2}$; therefore $t r \equiv-u \equiv(r-u)-r$ and $t r^{2} \equiv(r-u) r-r^{2} \equiv(r-u) r+1+r \equiv(r-u+1) r+1$. Hence $t r^{2} \equiv u^{\prime}+v^{\prime} r(\bmod q)$, with $u^{\prime}=1$, $v^{\prime}=r-u+1,0 \leqq u^{\prime}, v^{\prime}<r$ and $u^{\prime}+v^{\prime}=r-u+2 \leqq r$, since $u \geqq 2$. Therefore t^{2} is of reduced type.
(ii) Suppose that $u>v$. Then $u \geqq v+1$ and

$$
t r \equiv u r+v r^{2} \equiv(u-v) r-v=(u-v-1) r+(r-v) \equiv u^{\prime}+v^{\prime} r(\bmod q)
$$

with $u^{\prime}=r-v, v^{\prime}=u-v-1$ and $0 \leqq u^{\prime}, v^{\prime}<r$.

If $u^{\prime}+v^{\prime} \leqq r$, then $t r$ is of reduced type. If $u^{\prime}+v^{\prime}>r$, then $r+u-2 v-1>r$, that is, $u>2 v+1$. In this case
$t r^{2} \equiv u r^{2}+v \equiv(v-u)-u r \equiv(v-u)-u r+r^{2}+r+1 \equiv(r+v+1-u)+(r-u) r \equiv u^{\prime \prime}+v^{\prime \prime} r$
$(\bmod q)$,
with $u^{\prime \prime}=r+v+1-u$ and $v^{\prime \prime}=r-u$. Since $u>2 v+1$, we have $0<u^{\prime \prime}, v^{\prime \prime}<r$. Now $u^{\prime \prime}+v^{\prime \prime}=2 r+v+1-2 u>r$ if and only if $r+1+v>2 u$. However, if $u>2 v+1$, then

$$
2 u>2 v+u+1=(v+1)+(v+u)>v+1+r .
$$

It follows that $u^{\prime \prime}+v^{\prime \prime} \leqq r$ and hence $t r^{2}$ is of reduced type.
(iii) Suppose that $v>u$. Then $v \geqq u+1$ and
$t r \equiv u r+v r^{2} \equiv(u-v) r-v \equiv(u-v) r-v+r^{2}+r+1 \equiv(r-v+u) r+(r-v+1) \equiv u^{\prime}+v^{\prime} r(\bmod q)$, with $u^{\prime}=r-v+1, v^{\prime}=r-v+u, 0 \leqq u^{\prime}, v^{\prime}<r$ and $u^{\prime}+v^{\prime}=2 r-2 v+u+1$.

If $u^{\prime}+v^{\prime} \leqq r$, then $t r$ is of reduced type. If $u^{\prime}+v^{\prime}>r$, then $r+u+1>2 v$. In this case, $t r^{2} \equiv u r^{2}+v \equiv(v-u)-u r \equiv(v-u)-u r+r^{2}+r+1 \equiv(r-u+1) r+(v-u+1) \equiv u^{\prime \prime}+v^{\prime \prime} r$ $(\bmod q)$,
with $u^{\prime \prime}=v-u+1, v^{\prime \prime}=r-u+1,0 \leqq u^{\prime \prime}, v^{\prime \prime}<r$ and $u^{\prime \prime}+v^{\prime \prime}=r+v-2 u+2$.
If $u^{\prime \prime}+v^{\prime \prime} \leqq r$, then $t r^{2}$ is of reduced type. There remains the case when both $u^{\prime}+v^{\prime}>r$ and $u^{\prime \prime}+v^{\prime \prime}>r$, that is, when $r+u+1>2 v$ and $v+2>2 u$. The first inequality implies that $r+2 u+1 \geqq 2 v+u+1=v+1+(v+u)>v+1+r$, i.e. $2 u \geqq v+1$. This, together with the second inequality, shows that $2 u=v+1$ is the only possibility. Now if $2 u=v+1$ and

$$
r+u+1>2 v=4 u-2
$$

then $r+3>3 u$. Also $3 u=u+v+1>r+1$ and so we are left with the one case $3 u=r+2$ to consider. But then $3 v=6 u-3=2 r+4-3=2 r+1$ and therefore

$$
3 t \equiv 3 u+3 v r \equiv(r+2)+(2 r+1) r=2\left(r^{2}+r+1\right) \equiv 0(\bmod q)
$$

whence $(t, q)>1$.
3. Multipliers. We need to introduce the notion of a multiplier of a p.d. set (see [2]). Let $t K$ denote the set of integers $t k_{0}, t k_{1}, \ldots, t k_{r}$. If $(t, q)=1$, it is evident that $t K$ is also a p.d. set; we say that t is a multiplier of K if K and $t K$ are equivalent. Clearly, if t_{1} and t_{2} are multipliers, then so is $t_{1} t_{2}$. Singer himself showed in [1] that if t is congruent $\bmod q$ to a power of p, t is a multiplier of any p.d. set of Singer type. (This also follows at once from Lemma 3 in §4.) The object in this section is to prove the converse (see Theorem 1 below).

We observe that t is a multiplier of K if and only if there exists an integer s such that $t K$ and $K+s$ are identical modulo q, i.e. such that for every element k_{i} of K there exists an element k_{j} of K such that

$$
t k_{i} \equiv k_{j}+s(\bmod q)
$$

Bearing in mind the construction of Singer p.d. sets described in §1, an equivalent necessary and sufficient condition for t to be a multiplier of the p.d. set of Singer type generated by ζ is:

Condition C. There exists an integer s with the following two properties: for every $a \in G_{1}$, there exist elements b, c of G_{1} such that

$$
\begin{equation*}
(a+\zeta)^{t}=\zeta^{s}(b+c \zeta) \tag{3.1}
\end{equation*}
$$

also, there exist elements b_{1}, c_{1} of G_{1} such that $\zeta^{-s}=b_{1}+c_{1} \zeta$.
We prove
Lemma 2. Let $t>1$ be an integer of reduced type mod q. Then t does not satisfy condition C unless t is congruent mod q to a power of p. In particular, t does not satisfy C if $t \equiv u+v r$ and $u+v=r$.

Proof. We may clearly suppose without loss of generality that

$$
1<t<q .
$$

Let \dagger

$$
F(x)=F(x, \zeta)=\prod_{a \in G_{1}}(x-\zeta-a)=x^{r}-x-\left(\zeta^{r}-\zeta\right)
$$

Then we have, modulo $F(x)$, that

$$
\begin{equation*}
x^{r} \equiv x+\zeta^{r}-\zeta \quad \text { and } \quad x^{r^{2}} \equiv x+\zeta^{r^{2}}-\zeta \tag{3.2}
\end{equation*}
$$

Further, let

$$
\begin{aligned}
H(x) & =H(x, \zeta)=\prod_{b, c \in G_{1}}\left(x-b \zeta^{s}-c \zeta^{s+1}\right) \\
& =x^{r^{2}}-x^{r \zeta \zeta^{(r-1) s}-\left(x^{r}-x \zeta^{(r-1) s}\right)\left(\zeta^{r(s+1)}-\zeta^{r s+1}\right)^{r-1},}
\end{aligned}
$$

so that

$$
\begin{equation*}
H\left(x^{\prime}\right)=x^{r 2 t}-x^{r t} \zeta^{r(r-1) s}-\left(x^{r t}-x^{\prime} \zeta^{(r-1) s}\right)\left(\zeta^{r(s+1)}-\zeta^{r s+1}\right)^{r-1} \tag{3.3}
\end{equation*}
$$

is the polynomial having as its zeros the t th roots of all the linear forms $\zeta^{s} b+\zeta^{s+1} c$. Then, by (3.1), t can satisfy the condition C for some s only if

$$
H\left(x^{t}\right) \equiv 0 \quad(\bmod F(x))
$$

By (3.2) and (3.3) we have

$$
\begin{equation*}
H\left(x^{t}\right) \equiv\left(x+\zeta^{r^{2}}-\zeta\right)^{t}-A\left(x+\zeta^{r}-\zeta\right)^{t}+B x^{t} \quad(\bmod F(x)) \tag{3.4}
\end{equation*}
$$

where

$$
\begin{equation*}
A=\zeta^{r(r-1) s}+\left(\zeta^{r(s+1)}-\zeta^{r s+1}\right)^{r-1}=\zeta^{r(r-1) s}\left(1+\left(\zeta^{r}-\zeta\right)^{r-1}\right), \tag{3.5}
\end{equation*}
$$

so that $A \neq 0$, and

$$
\begin{equation*}
B=\zeta^{(r-1) s}\left(\zeta^{r(s+1)}-\zeta^{r s+1}\right)^{r-1}=\zeta^{\left(r^{2}-1\right) s}\left(\zeta^{r}-\zeta\right)^{r-1} \tag{3.6}
\end{equation*}
$$

\dagger In the calculations below we make repeated use of the facts that $(x+y)^{p}=x^{p}+y^{p}$ for $x, y \in G_{3}$, and that $\prod_{a \in G_{1}}(y-a)=y^{r}-y$.

Since t is of reduced type and $t<q$, we may substitute $u+v r$ for t in (3.4) and obtain, after applying (3.2),

$$
\begin{align*}
0 & \equiv H\left(x^{t}\right)=H\left(x^{u+v r}\right) \\
& \equiv\left(x+\zeta^{r^{2}}-\zeta\right)^{u} x^{v}-A\left(x+\zeta^{r}-\zeta\right)^{u}\left(x+\zeta^{r^{2}}-\zeta\right)^{v}+B x^{u}\left(x+\zeta^{r}-\zeta\right)^{v} \quad(\bmod F(x)) \tag{3.7}
\end{align*}
$$

The polynomial on the right has degree less than or equal to $u+v$ and so less than or equal to r, and the degree of F is r. Accordingly, if $u+v=r$, this polynomial and F are essentially the same, and, if $u+v<r$, all the coefficients of the polynomial vanish. This is the situation which we now proceed to exploit. Since $1<u+v r$ and $u+v \leqq r$, we have to consider the following three cases: (i) $u=0$ or $v=0$; (ii) $u>0, v>0, u+v<r$; (iii) $u>0, v>0, u+v=r$.

Case (i). The proof of the lemma in this case has been given in [3]. It can also be proved independently by the methods used below. To be precise, the main result of [3] is that if $t \equiv u, 0<u<r$, then t cannot satisfy C unless it is congruent $\bmod q$ to a power of p; and this result also settles the case $t \equiv v r, 0<v<r$.

Case (ii). Since both u and v are positive and $u+v<r$, the constant term in the polynomial on the right of (3.7) must vanish, that is, $A\left(\zeta^{r}-\zeta\right)^{u}\left(\zeta^{r^{2}}-\zeta\right)^{v}=0$. Since none of $A, \zeta^{r}-\zeta$ and $\zeta^{2}-\zeta$ is 0 , this is impossible. Hence t cannot, in this case, satisfy condition C.

Case (iii). Here both u and v are positive and $u+v=r$. If the coefficient of $x^{u+v}\left(=x^{r}\right)$ is zero, we refer back to case (ii). If the coefficient of x^{r} is non-zero, the polynomial on the right of (3.7) must be a constant multiple of F, and the ratios of the pairs of corresponding coefficients are equal. Since $r>7$ (by hypothesis-see $\S 1$) at least one of u, v exceeds 2; suppose first that both do. Equating the ratios of the coefficients of x and the constant term, we obtain

$$
\frac{1}{a_{1}}=\frac{v}{a_{2}}+\frac{u}{a_{1}}
$$

where $a_{1}=\zeta^{r}-\zeta$ and $a_{2}=\zeta^{r^{2}}-\zeta$. It follows that

$$
\begin{equation*}
a_{1}=a_{2}^{r} \quad \text { and } \quad v a_{2}^{(r-1)}=(u-1) . \tag{3.8}
\end{equation*}
$$

Since $a_{2} \neq 0, u \equiv 1(\bmod p)$ if and only if $v \equiv 0(\bmod p)$, and $u+v \equiv 1(\bmod p)$ contradicts $u+v=r$. Hence $u \neq 1(\bmod p), v \neq 0(\bmod p)$ and $p \neq 2$.

We consider the coefficient of x^{2} in (3.7). The coefficient is zero in F since $r>7$; and since $u \geqq 3, v \geqq 3, a_{1} \neq 0, a_{2} \neq 0, p \neq 2$, we have

$$
a_{2}^{2} u(u-1)+2 a_{1} a_{2} u v+a_{1}^{2} v(v-1)=0 .
$$

Applying (3.8), we see that this reduces to $a_{2}^{2(r-1)} v(v-1)=u(u-1)$, and a second application of (3.8) gives $(u-1)((u-1)(v-1)-u v)=0$. But $u \neq 1(\bmod p)$; hence

$$
0 \equiv(v-1)(u-1)-u v=u v-u-v+1-u v=-(u+v-1) \quad(\bmod p) .
$$

Since $u+v=r \equiv 0(\bmod p)$, we have arrived at a contradiction.
It remains to consider the special possibilities

$$
u=1, v=r-1 ; u=2, v=r-2 ; u=r-1, v=1 \quad \text { and } \quad u=r-2, v=2 .
$$

If $u+v r$ is a multiplier, then so is $r(u+v r)$. In the first case

$$
r(u+v r)=r(1+(r-1) r)=r^{3}-r^{2}+r \equiv 2+2 r \quad(\bmod q)
$$

and in the second

$$
r(u+v r)=r(2+(r-2) r)=r^{3}-2 r^{2}+2 r \equiv 3+4 r \quad(\bmod q) .
$$

But from case (ii) above, neither $2+2 r$ nor $3+4 r$ is a multiplier (we recall that $r>7$) and so the same can be said of $1+(r-1) r$ and $2+(r-2) r$. If $u+v r$ is a multiplier, then so is $r^{2}(u+v r)$. In the third case

$$
r^{2}(u+v r)=r^{2}((r-1)+r)=2 r^{3}-r^{2} \equiv 2-r^{2} \equiv 3+r \quad(\bmod q),
$$

and in the fourth case

$$
r^{2}(u+v r)=r^{2}((r-2)+2 r)=3 r^{3}-2 r^{2} \equiv 3-2 r^{2} \equiv 5+2 r \quad(\bmod q)
$$

Again, by case (ii), neither $3+r$ nor $5+2 r$ is a multiplier if $r>7$ and so the same can be said of $(r-1)+r$ and $(r-2)+2 r$.

Hence t cannot, in case (iii), satisfy condition C. Thus, to sum up, t can satisfy C only in case (i), and then only when one of u, v is zero and the other is a power of p. The proof of the lemma is thus complete.

We are now in a position to prove
Theorem 1. The only multipliers of perfect difference sets mod q of Singer type are the powers of $p(\bmod q)$.

Proof. It suffices to prove that if t is a multiplier of a p.d. set of Singer type, then t is congruent mod q to a power of p. By Lemma 2 this is certainly true if t is of reduced type $\bmod q$. Moreover, if t is a multiplier, so is each of $t r, t r^{2}$; and by Lemma 1 , if t is not of reduced type, then at least one of these two must be. The theorem follows at once on appealing again to Lemma 2.
4. Proof of conjecture II. It remains to prove our main result and, incidentally, to establish another conjecture given in [1], namely, that any two Singer p.d. sets ($\bmod q$) are connected, i.e. that if K_{1}, K_{2} are two such sets, there exists an integer t such that K_{1} and $t K_{2}$ are equivalent. We require

Lemma 3. Given a generator ζ of G_{3}^{*}, then, for any integer t coprime with q, there exists an integer s such that, for every pair $a, b \in G_{1}$, there exists a pair $c, d \in G_{1}$ such that

$$
\begin{equation*}
a+b \zeta^{t}=\zeta^{s}(c+d \zeta) \tag{4.1}
\end{equation*}
$$

Proof. Let

$$
\zeta^{m}=\alpha_{m} \zeta^{2}+\beta_{m} \zeta+\gamma_{m}, \quad \alpha_{m}, \beta_{m}, \gamma_{m} \in G_{1} \quad(m=1,2, \ldots),
$$

and write α, β, γ for $\alpha_{3}, \beta_{3}, \gamma_{3}$ respectively, so that $\zeta^{3}-\alpha \zeta^{2}-\beta \zeta-\gamma=0$ is the irreducible cubic satisfied by ζ (see introduction). The α 's, β 's and γ 's satisfy the following recurrence relations

$$
\alpha_{m+1}=\alpha \alpha_{m}+\beta_{m}, \quad \beta_{m+1}=\beta \alpha_{m}+\gamma_{m}, \quad \gamma_{m+1}=\gamma \alpha_{m}
$$

We write (4.1) in the form

$$
a+b\left(\alpha_{t} \zeta^{2}+\beta_{t} \zeta+\gamma_{t}\right)=c\left(\alpha_{s} \zeta^{2}+\beta_{s} \zeta+\gamma_{s}\right)+d\left(\alpha_{s+1} \zeta^{2}+\beta_{s+1} \zeta+\gamma_{s+1}\right)
$$

and note that this relation is equivalent to the three simultaneous equations

$$
\begin{aligned}
b \alpha_{t} & =c \alpha_{s}+d \alpha_{s+1}, \\
b \beta_{t} & =c \beta_{s}+d \beta_{s+1} \\
a+b \gamma_{t} & =c \gamma_{s}+d \gamma_{s+1} .
\end{aligned}
$$

For given a, b, these equations are soluble if and only if

$$
\left|\begin{array}{lll}
\alpha_{s} & \alpha_{s+1} & b \alpha_{t} \\
\beta_{s} & \beta_{s+1} & b \beta_{t} \\
\gamma_{s} & \gamma_{s+1} & b \gamma_{t}+a
\end{array}\right|=0
$$

and if a, b now vary over G_{1}, this is true only if

$$
\left|\begin{array}{lll}
\alpha_{s} & \alpha_{s+1} & \alpha_{t} \\
\beta_{s} & \beta_{s+1} & \beta_{t} \\
\gamma_{s} & \gamma_{s+1} & \gamma_{t}
\end{array}\right|=0 \quad \text { and } \quad \alpha_{s} \beta_{s+1}-\alpha_{s+1} \beta_{s}=0
$$

and it is easy to check that these two relations determine ζ^{s} uniquely to within a factor from G_{1}.

Lemma 4. \dagger If K is a Singer p.d. set mod q, and $(t, q)=1$, then $t K$ is also a Singer p.d. set mod q.

Proof. Suppose that K is generated by ξ, a generator of G_{3}^{*}, so that

$$
\begin{equation*}
a+b \xi=\xi^{k} \quad(k \in K) \tag{4.2}
\end{equation*}
$$

for any pair $a, b \in G_{1}((a, b) \neq(0,0))$. Now solve $\zeta^{t}=\xi$ for ζ, giving another generator of G_{3}^{*}. (There is no loss in generality in assuming that $\left(t, r^{3}-1\right)=1$, for $(t, q)=1$ and so $(t+m q, r-1)=1$ for some positive integer m (by Dirichlet's theorem on primes in an arithmetic progression), so that we use $t+m q$ in place of t if $(t, r-1)>1$.) Then (4.2) now reads

$$
a+b \zeta^{t}=\zeta^{k} \quad(k \in K)
$$

and by Lemma 3 it follows that there exists s such that, for given $a, b \in G_{1}$, there exist $c, d \in G_{1}$ such that $a+b \zeta^{r}=\zeta^{s}(c+d \zeta)$, i.e. we have

$$
\zeta^{t \mathrm{k}}=\zeta^{s}(c+d \zeta)
$$

But, on varying c, d over G_{1}, this means that $t K-s$ is the p.d. set generated by ζ, i.e. $t K$ is a p.d. set of Singer type.

We mention in passing that Lemma 3 also implies the result to which we referred earlier, namely that every number congruent $\bmod q$ to a power of p is a multiplier of Singer p.d. sets $\bmod q$. To see this we have only to note that if $t \equiv p^{m}(\bmod q),(3.1)$ of condition C reads
\dagger This result is proved in [4] using the theory of projective planes.

$$
a^{\prime}+\zeta^{t}=\zeta^{s}(b+c \zeta)
$$

the relation discussed in Lemma 3.
Let K denote a fixed Singer p.d. set $\bmod q$, and let t run through a reduced set of residues $\bmod q$, thereby giving rise to $\phi(q)$ p.d. sets $t K$, each of Singer type by Lemma 4. By Theorem 1 , these $\phi(q)$ sets fall into $\phi(q) / 3 n$ non-overlapping classes, with $t_{1} K, t_{2} K$ belonging to the same class if and only if $t_{1} \equiv p^{m} t_{2}(\bmod q)$ for some m; two of these sets are equivalent or not according as they belong to the same or to different classes. Hence it follows that there exist at least $\phi(q) / 3 n$ non-equivalent p.d. sets mod q of Singer type.

In the opposite direction, any Singer p.d. set $\bmod q$ is generated by some generator ζ of G_{3}^{*}, and there exist in all $\phi\left(p^{3 n}-1\right)$ distinct generators of G_{3}^{*} which can be written as ζ^{r} with t running through a reduced set of residues $\bmod \left(p^{3 n}-1\right)$. However, if $\zeta^{t_{1}}$ and $\zeta^{t_{2}}$ are generators of G_{3}^{*} with $t_{1} \equiv t_{2}(\bmod q), \zeta^{t_{1}}$ and $\zeta^{t_{2}}$ evidently give rise to the same p.d. set; hence we need concern ourselves only with $\phi(q)$ generators ζ^{t}, any two having exponents non-equivalent $\bmod q$. However, if $\zeta^{t_{1}}$ and $\zeta^{t_{2}}$ are two of these generators and $t_{1} \equiv t_{2} p^{m}(\bmod q)$, then $\zeta^{t_{1}}$ and $\zeta^{t_{2}}$ generate equivalent p.d. sets; for if $a+b \zeta^{t_{1}}=\zeta^{t_{1} k}$,

$$
\zeta^{t_{1} k}=a+b^{\prime} \zeta^{t_{2} p^{m}}=\left(a^{\prime \prime}+b^{\prime \prime} \zeta^{t_{2}}\right)^{p^{m}}=\left(\zeta^{t_{2} l}\right)^{p^{m}},
$$

where $/$ runs through the p.d. set generated by $\zeta^{t_{2}}$, and so $\zeta^{t_{1} k}=\zeta^{t_{1} 1+d q}$-in other words, $\{k\}$ and $\{l\}$ are equivalent sets. Hence there exist at most $\phi(q) / 3 n$ non-equivalent Singer p.d. sets $\bmod q$. It follows from the previous paragraph that there exist precisely $\phi(q) / 3 n$ non-equivalent Singer p.d. sets $\bmod q$ and that any two of these are connected. We have proved

Theorem 2. There exist precisely $\phi(q) / 3 n$ reduced Singer p.d. sets mod q, any two of which are connected. Two generators ζ and ζ^{t} of $G F^{*}\left(p^{3 n}\right)$ give rise to equivalent p.d. sets if and only if t is congruent mod q to a power of p.

We remark in conclusion that the reduction lemma (Lemma 1) is relevant to the study of multipliers of p.d. sets mod $r^{2}+r+1$ even when r is not a prime power; in testing whether or not a given t is a multiplier, we know that $t r$ or $t r^{2}$ possesses the same multiplier properties as t and one of $t, t r, t r^{2}$ is of reduced type $\bmod r^{2}+r+1$.

REFERENCES

1. J. Singer, A theorem of finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc. 43 (1938), 377-385.
2. M. Hall, Jr, A survey of difference sets, Proc. Amer. Math. Soc. 7 (1956), 975-986.
3. H. Halberstam and R. R. Laxton, On perfect difference sets, Quart. J. Oxford Ser. (2) 14 (1963), 86-90.
4. G. Berman, Finite projective plane geometries and difference sets, Trans. Amer. Math. Soc. 74 (1953), 492-499.
5. R. H. Bruck, Difference sets in a finite group. Trans. Amer. Math. Soc. 78 (1955), 464-481.
6. D. G. Higman and J. E. McLaughlin, Geometric ABA-groups, Illinois J. Math. 5 (1961), 382397.
7. B. Gordon, W. H. Mills and L. R. Welch, Some new difference sets, Canad. J. Math. 14 (1962), 614-625.

Trinity College, Dublin
University of Michigan and University of Sussex

