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1. Introduction. If the set K of r+1 distinct integers k0, ku ..., kr has the property that
the (r+l)r differences k( — kj (0 ^ /,_/^ r, / + / ) are distinct modulo r2 + r+l, K is called a
perfect difference set mod r2 + r+1. The existence of perfect difference sets seems intuitively
improbable, at any rate for large r, but in 1938 J. Singer [1] proved that, whenever r is a prime
power, say r = p", a perfect difference set mod p2n +p" +1 exists. Since the appearance of
Singer's paper several authors have succeeded in showing that for many kinds of number r
perfect difference sets mod r2 + r+l do not exist; but it remains an open question whether
perfect difference sets exist only when r is a prime power (for a comprehensive survey see [2]).

In this note we shall be concerned solely with perfect difference (p.d.) sets mod p2"+p"+ 1,
where p is prime. From now on (except in §2), let r denote p" and write

= p2"+pn+l. (1.1)

We shall lose no generality by assuming that r > 7.
If AT is a p.d. set mod*? and K+s denotes the set ko+s, &i +s> ••• kr+s then clearly K+s

is also a p.d. set mod q; since K contains two elements whose difference is congruent to
1 (mod q), there exists a translation K+s which takes these two elements into 0 and 1. A p.d.
set containing 0 and 1 is said to be reduced, and two p.d. sets mod q which can be translated to
the same reduced set are said to be equivalent.

Singer arrived at his p.d. sets in the following way. Let G3 and (7, denote respectively
the Galois fields GF(p3") and GF(p"), so that G3 is a cubic extension of G,. If £ is a generator
of G*, the multiplicative cyclic group associated with G3, £ satisfies a monic cubic equation
over C, irreducible in Gu and every element of C3 can be written in the form

a + b£+c(,2, a, b, ceGjj

moreover, every element of G3 other than 0 can also be expressed as a power of £. Consider
then all the elements of C73 of the form

(k (1.2)

as a, b run independently through Gt but are not both 0. We say that two such numbers are
equivalent if there exists a number c#= 0 in GL such that one is c times the other. The equiva-
lence relation induces a partition of all numbers of the form (1.2) into r+1 equivalence classes;
for there are, in all, p2n—l numbers of form (1.2) corresponding to the p2" — 1 choices for the
pair a, b, and on the other hand there are r— 1 choices for c. Let

be a representative set chosen from these equivalence classes. Then the system K of exponents
is a p.d. set mod q (a simple proof is given in [3]; see also [4]). A p.d. set constructed in this
way will be called a Singer p.d. set, or a p.d. set of Singer type.

https://doi.org/10.1017/S2040618500034985 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500034985


178 H. HALBERSTAM AND R. R. LAXTON

Singer proposed the following two conjectures:
I. All p.d. sets mod p2"+p"+1 are of Singer type.

II. There exist exactly 0(^)/(3«) reduced Singer p.d. sets.
The chief aim of the present paper is to prove II (see Theorem 2 below). It may be that

the method evolved below will be of help in a successful attack on the much more difficult
conjecture I.

The main step in the proof of II is Theorem 1 (see §3), and two proofs of this theorem
have appeared recently. One proof is implicit in the results of Bruck [5] and Higman and
McLaughlin [6]; the other is Theorem 5 of Gordon, Mills and Welch [7]. The proof given
below is different from either of these, and appears to us more elementary in conception.

We are indebted to Dr M. C. R. Butler for a valuable suggestion.

2. The reduction lemma. We begin with a completely elementary result which will pro-
vide an essential step in the main argument below (see §3).

For the purpose of this section we may drop the restriction that r is a prime power.
We say that an integer is written in standard form modr2 + r +1 when it is expressed modulo

r2 + r+l as

u + vr or u + r1 or r+r2 (2.1)

with integers u, v satisfying

0<u<r, O^ixr. (2.2)

We say that an integer / is of reduced type mod r2 + r+1 if

t = u + vr (modr2 + r + l ) ,

where u, v satisfy (2.2) and also

0<u + v^r. (2.3)
Then

LEMMA 1. Let r be a fixed integer greater than 1. Then every integer t greater than 1 and
coprime to r2 + r+\ has the property that t, tr or tr2 is of reduced type mod r2 + r +1.

Proof. If t = u + r2 (mod q), 0 ̂  u < r, then tr = ur+1 (mod q) and 0 < u+1 S r. If
t = r+r2, then tr2 = 1 + r and 0 < 2 ̂  r. Thus in the first case tr, and in the second tr2, are
of reduced type mod q.

It remains to consider the case t = u+vr (mod q), 0 Si u, v < r and

u+v>r. (2.4)

From (2.4) u + v ̂  r +1, whence u - 0,1 is impossible; hence u ̂  2 and similarly v ̂  2.
(i) Suppose that u = v. Then t = «(1 + r) = -ur2; therefore tr = -u ==(/•-«)-r and

tr2 ==(r-u)r-r2 = (r-u)r+l+r = (r—« + l)r+l. Hence tr2 = u' + vV (modq), with u' = 1,
v' = r—u+l, 0 ̂  u', v' < r and u' + v' = r—u + 2 ̂  r, since u ̂  2. Therefore tr2 is of reduced
type.

(ii) Suppose that u > v. Then u ̂  v +1 and

tr = ur+vr2 = (u-v)r-v = (u-v-l)r+(r-v) = «' + v'r (mod q),

with u' = r — v, v' = u — v — l and 0 ̂  «', v' < r.
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If u' + v' ^ r, then tr is of reduced type. If u' + v' > r, then r+u — 2v—l > r, that is,
« > 2 u + l . In this case

tr2 = ur2 + v s (v-u)-ur = {v-u)-ur + r2 + r+\ = (r + y+1 -«) + (/•-«)/• = M" + y'V
(mod <?),

with «" = r+y+l—w and v" = r—u. Since « > 2 y + l , we have 0 < u", v" < r. Now
u" + v" = 2r+v+\-2u > r if and only if r+l+v > 2w. However, if u > 2v+\, then

2M > 2u + w+l = ( y + l ) + (u + « )> y + l + r .

It follows that u" + v" ^ r and hence Z/-2 is of reduced type,
(iii) Suppose that v > u. Then v ^ u +1 and

//• = ur + vr2 = (M —y)r —y = (M —y)r —y + r2 + r + l = (/• — !) + «)/•+(/• — u+1) = u' + v'r (mod q),

with M' = r — u + 1, u' = r — v + u, 0 ^ M', y' < r a n d «' + y' = 2r —
If u' + v' £ r, then //• is of reduced type. If u' + v' > r, then r + u+l > 2v. In this case,

tr2 = ur2 + v = (v — u) — ur s (y —i/) —M/- + /-2 + / - + 1 = (r — w+ l)r + (y — M + 1 ) = u" + v"r
(mod 9),

with M" = v — u+l, v" = r — u+\, 0 ^ M", y" < r and u" + v" = r + v — 2u + 2.
If «" + y" ^ r, then /r2 is of reduced type. There remains the case when both u' + v' > r

and u" + v" > r, that is, when r+u+l > 2v and y + 2 > 2M. The first inequality implies that
r+2w+l ^ 2 U + M + 1 = y + l + ( y + M)> v+l+r, i.e. 2M ^ y+1 . This, together with the second
inequality, shows that 2u = v+l is the only possibility. Now if 2M = v+1 and

r + M+1 > 2y = 4 M - 2 ,

then r + 3 > 3M. Also 3M = M + y+1 > r+\ and so we are left with the one case 3M = r + 2 to
consider. But then 3y = 6M —3 = 2r+4—3 = 2 r + l and therefore

3/ = 3w + 3w = (r+2) + (2r+ \)r = 2{r2 + r+1) = 0 (mod q)\

whence (/, q) > 1.

3. Multipliers. We need to introduce the notion of a multiplier of a p.d. set (see [2]).
Let tK denote the set of integers tk0, tku ..., tkr. If (/, q) = 1, it is evident that tK is also a
p.d. set; we say that r i s a multiplier of K if K and tK are equivalent. Clearly, if t{ and t2 are
multipliers, then so is tlt2- Singer himself showed in [1] that if/is congruent mod q to a power
of p, t is a multiplier of any p.d. set of Singer type. (This also follows at once from Lemma 3
in §4.) The object in this section is to prove the converse (see Theorem 1 below).

We observe that / is a multiplier of K if and only if there exists an integer s such that tK
and K+s are identical modulo q, i.e. such that for every element kt of K there exists an element
kj of K such that

tki = A:;+.y(mod<7).

Bearing in mind the construction of Singer p.d. sets described in §1, an equivalent necessary
and sufficient condition for / to be a multiplier of the p.d. set of Singer type generated by ( is:
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CONDITION C. There exists an integer s with the following two properties: for every aeGlf

there exist elements b, c of Gx such that

(a + 0' = Cs(b + c0; (3.1)

also, there exist elements bu ct ofGt such that £~s = bx + c^.

We prove

LEMMA 2. Let t > 1 be an integer of reduced type modq. Then t does not satisfy condition
C unless t is congruent mod q to a power of p. In particular, t does not satisfy Cift = u+vr and
u + v = r.

Proof. We may clearly suppose without loss of generality that

1 < t < q.

Letf

F(x) = F(x, 0 =

Then we have, modulo F{x), that

Further, let

r -C and x'2 = x + C'2 - C (3.2)

11
6, ceGi

so that

H(x') = xr2'-xT(r"1)s-(^r'-x'C(r~1)s)(r(s+1)-r+1)r"1 (3.3)

is the polynomial having as its zeros the /th roots of all the linear forms (sfe + ( s + 1 c Then,
by (3.1), t can satisfy the condition C for some s only if

tf(x') = 0 (mod F(x)).

By (3.2) and (3.3) we have

H(x') = (x + C 2 - 0 ( - ^ ( * + C r - 0 ' + £ * ' (modF(x)), (3.4)
where

A = £r(r-l)S + ^r(S+l)_£rs+ly-l = £,(,- 1),^ + ^ r _ Qr- 1^ (3.5)

so that y4 + 0, and

t In the calculations below we make repeated use of the facts that (x +y)p =xJ) +yv for I J 6 C J , and that
n (y-a)~yr-y.

oeGi
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Since t is of reduced type and t < q, we may substitute u + vr for / in (3.4) and obtain, after
applying (3.2),

0 = tf(x') = H(xu+vr)
2 2 t:r-O" (mod F(x)). (3.7)

The polynomial on the right has degree less than or equal to u + v and so less than or equal to r,
and the degree of F is r. Accordingly, if u+v = r, this polynomial and F are essentially the
same, and, if u + v < r, all the coefficients of the polynomial vanish. This is the situation which
we now proceed to exploit. Since 1 < u + vr and u+v ^ r, we have to consider the following
three cases: (i) u = 0 or v = 0; (ii) u > 0, v > 0, u+v < r; (iii) u > 0, v > 0, u+v = r.

Case (i). The proof of the lemma in this case has been given in [3]. It can also be proved
independently by the methods used below. To be precise, the main result of [3] is that if
t = M, 0 < u < r, then / cannot satisfy C unless it is congruent mod q to a power ofp; and this
result also settles the case t = vr, 0 < v < r.

Case (ii). Since both u and v are positive and u + v < r, the constant term in the polynomial
on the right of (3.7) must vanish, that is, ^ (Cr—0"(Cr2 — 0" = 0. Since none of A, £ '-£ and
(r2 —( is 0, this is impossible. Hence t cannot, in this case, satisfy condition C.

Case (iii). Here both u and v are positive and u+v = r. If the coefficient of xu+v ( = xr)
is zero, we refer back to case (ii). If the coefficient of xr is non-zero, the polynomial on the
right of (3.7) must be a constant multiple of F, and the ratios of the pairs of corresponding
coefficients are equal. Since r > 7 (by hypothesis—see §1) at least one of u, v exceeds 2; sup-
pose first that both do. Equating the ratios of the coefficients of x and the constant term, we
obtain

1 v u

where at = £'—f and a2 = C'2 — £• It follows that

a^-a\ and I K # - ° = (« - l ) . (3.8)

Since a2 + 0, u = 1 (mod/)) if and only if v s 0 (mod/?), and u+v = 1 (mod p) contradicts
u + v = r. Hence u =f= 1 (mod p), v ={= 0 (mod />) and /? =f= 2.

We consider the coefficient of x2 in (3.7). The coefficient is zero in F since r > 7; and
since « ^ 3, u 2; 3, ax =# 0, a2# 0, />#= 2, we have

a\u{u — l) + 2ala2uv+a\v(v — l) = 0.

Applying (3.8), we see that this reduces to a\(r~l)v(v—\) = u(u — 1), and a second application
of (3.8) gives (u-l)((u-l)(v-l)-uv) = 0. But u =|= 1 (modp); hence

0 = (tf—1)(«—1) —MD = MU —M —U+ 1—MU = —(M + U—1) ( m o d />).

Since u+v=r = 0(mod/0, we have arrived at a contradiction.
It remains to consider the special possibilities

u = \,v = r—\; u = 2,v = r-2; u = r-l,v= I and u = r-2,v = 2.
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If u + vr is a multiplier, then so is r(u + vr). In the first case

r(u+vr) = r{\ + {r-l)r) = r3-r2 + r = 2 + 2r (mod q),

and in the second

r(u + vr) = r (2+ ( r -2)r ) = r 3 - 2 r 2 + 2r = 3 + 4r (mod 9).

But from case (ii) above, neither 2 + 2r nor 3 + 4r is a multiplier (we recall that r > 7) and so the
same can be said of l + (r— l)r and 2 + (r —2)r. If w + w is a multiplier, then so is/"2(« + w).
In the third case

r2(u + vr) = r2((r-\) + r) = 2r3-r2 = 2-r2 = 3 + r (mod q),

and in the fourth case

r2(u+vr) = r2({r-2) + 2r) = 3r3-2/-2 = 3-2/-2 = 5 + 2r (mod?).

Again, by case (ii), neither 3 + r nor 5 + 2r is a multiplier if r > 7 and so the same can be said of
( r - l ) + rand(r -2) + 2r.

Hence r cannot, in case (iii), satisfy condition C. Thus, to sum up, t can satisfy C only in
case (i), and then only when one of u, v is zero and the other is a power of p. The proof of the
lemma is thus complete.

We are now in a position to prove

THEOREM 1. The only multipliers of perfect difference sets mod q of Singer type are the
powers of p {mod q).

Proof. It suffices to prove that if f is a multiplier of a p.d. set of Singer type, then t
is congruent mod q to a power of p. By Lemma 2 this is certainly true if t is of reduced
type mod q. Moreover, if Ms a multiplier, so is each of tr, tr2; and by Lemma 1, if / is not
of reduced type, then at least one of these two must be. The theorem follows at once on
appealing again to Lemma 2.

4. Proof of conjecture II. It remains to prove our main result and, incidentally, to
establish another conjecture given in [1], namely, that any two Singer p.d. sets (mod q) are
connected, i.e. that if Ku K2 are two such sets, there exists an integer t such that Kt and tK2

are equivalent. We require

LEMMA 3. Given a generator ( ofG*, then, for any integer t coprime with q, there exists an
integer s such that, for every pair a, beGu there exists a pair c,deG{ such that

a+bC = t;s(c + dQ. (4.1)

Proof. Let

Cm = amC2 + / U + ym, «„, P«, ?• e Gi (m = l ,2 , ...),

and write a, j5, y for a3, j83, y3 respectively, so that (3 - a ( 2 - / JC-y = 0 is the irreducible cubic
satisfied by ( (see introduction). The a's, jS's and y's satisfy the following recurrence relations
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We write (4.1) in the form

183

and note that this relation is equivalent to the three simultaneous equations

ba, = c

Y, = cys+dys+i-

For given a, b, these equations are soluble if and only if

as a s + 1 ben, = 0 ,
Ps ps+i bp,
ys ys+i byti

and if a, b now vary over Gu this is true only if

= 0 and

Ps Ps+l P,
Vs y s + i yt

and it is easy to check that these two relations determine £.s uniquely to within a factor from

LEMMA 4 . | If K is a Singer p.d. set mod q, and (t, q) = 1, then tK is also a Singer p.d. set
mod q.

Proof. Suppose that K is generated by £, a generator of G*, so that

= e (keK), (4.2)

for any pair a,beG^ ((a, b) 4= (0, 0)). Now solve £'=<!; for £, giving another generator of
C*. (There is no loss in generality in assuming that (t, r 3 - l ) = 1, for (t, q) = 1 and so
(t+mq, r— 1) = 1 for some positive integer m (by Dirichlet's theorem on primes in an arith-
metic progression), so that we use t+mq in place of t if (t, r-1) > 1.) Then (4.2) now reads

and by Lemma 3 it follows that there exists s such that, for given a,beGu there exist c,deG{

such that a+bt,' = C.s(c+dQ, i.e. we have

But, on varying c, d over Gu this means that tK-s is the p.d. set generated by (, i.e. tK is a
p.d. set of Singer type.

We mention in passing that Lemma 3 also implies the result to which we referred earlier,
namely that every number congruent mod q to a power of p is a multiplier of Singer p.d. sets
mod q. To see this we have only to note that if / = pm (mod q), (3.1) of condition C reads

t This result is proved in [4] using the theory of projective planes.
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the relation discussed in Lemma 3.
Let K denote a fixed Singer p.d. set mod q, and let t run through a reduced set of residues

mod q, thereby giving rise to (j)(q) p.d. sets tK, each of Singer type by Lemma 4. By Theorem
1, these 4>(q) sets fall into <j)(q)l3n non-overlapping classes, with t^K, t2K belonging to the same
class if and only if tx = pmt2 (mod q) for some m; two of these sets are equivalent or not
according as they belong to the same or to different classes. Hence it follows that there exist
at least cj>{q)j3n non-equivalent p.d. sets mod q of Singer type.

In the opposite direction, any Singer p.d. set mod q is generated by some generator £ of
G*, and there exist in all (j)(p3" — 1) distinct generators of G* which can be written as (' with
/ running through a reduced set of residues mod (p3"— 1). However, if C" and £'2 are generators
of G* with /, = t2 (mod q), Cl and £'2 evidently give rise to the same p.d. set; hence we need
concern ourselves only with <t>(q) generators (', any two having exponents non-equivalent
mod q. However, i f f and £'2 are two of these generators and tl = t2 p

m (mod q), then £'• and
C'2 generate equivalent p.d. sets; for if a+bCl = C ' \

C'k = a + b'C2pm = (a" + b"C2)pm = (C'2')"™,

where / runs through the p.d. set generated by £'2, and so £''* = £'l/+<f«—in other words, {k} and
{/} are equivalent sets. Hence there exist at most <f>(q)l3n non-equivalent Singer p.d. sets
mod q. It follows from the previous paragraph that there exist precisely (j)(q)l3n non-equiva-
lent Singer p.d. sets mod q and that any two of these are connected. We have proved

THEOREM 2. There exist precisely <f>(q)j3n reduced Singer p.d. sets modq, any two of which
are connected. Two generators ( and C of GF*(p3") give rise to equivalent p.d. sets if and only
if t is congruent mod q to a power of p.

We remark in conclusion that the reduction lemma (Lemma 1) is relevant to the study of
multipliers of p.d. sets mod r2 + r+1 even when r is not a prime power; in testing whether or
not a given / is a multiplier, we know that tr or tr2 possesses the same multiplier properties as t
and one of/, tr, tr2 is of reduced type mod r2 + r+l.
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