Free generators in free inverse semigroups: Corrigenda

N.R. Reilly

In [1], Theorem 2.2, a necessary and sufficient condition is given for a subset of an inverse semigroup to generate a free inverse subsemigroup. However one very obvious further condition is omitted. The result should read as follows.

THEOREM 2.2. Let K be a subset of an inverse semigroup S. Then K is a set of free generators for $\langle K \rangle$ if and only if the following conditions are satisfied:

(K1) $K \cap K^{-1} = \emptyset$; (K2) if $Y \in K \cup K^{-1}$ and $YY^{-1} \ge F_1 \dots F_n$ where $F_j = Y_{j1} \dots Y_{jn(j)}Y_{jn(j)}^{-1} \dots Y_{j1}^{-1}$ for some $Y_{jk} \in K \cup K^{-1}$ such that $Y_{jk} \ne Y_{jk+1}^{-1}$ for $k = 1, \dots, n(j) - 1$, $j = 1, \dots, n$, then $Y = Y_{j1}$ for some j.

The condition (K1) was omitted from the result stated in [1]. It is clearly necessary, from the first part of the proof in [1], since θ is an isomorphism. The condition is tacitly assumed in the converse part of the theorem on page 415 when it is assumed that the mapping θ is one-to-one on $Xf \cup (Xf)^{-1}$.

In all subsequent results of the paper that appeal to this theorem, (K1) is trivially satisfied.

Received 3 October 1973. The author would like to thank Professor W.D. Munn for pointing out to him the omission here corrected.

Reference

 [1] N.R. Reilly, "Free generators in free inverse semigroups", Bull. Austral. Math. Soc. 7 (1972), 407-424.

Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, Canada.