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Abstract

We prove estimates on the speed of convergence of the ‘peripheral eigenvalues’ (and principal eigen-
vectors) of a sequence T, of positive operators on a Banach lattice E to the peripheral eigenvalues of its
limit operator T on E which is positive, irreducible and such that the spectral radius r(T') of T is a Riesz
point of the spectrum of T (that is, a pole of the resolvent of T with a residuum of finite rank) under
some conditions on the kind of approximation of 7, to T. These results sharpen results of convergence
obtained by the authors in previous papers.

1991 Mathematics subject classification (Amer. Math. Soc.): 47B55, 47A10, 46B30.

1. Introduction

In our papers [1, 2], we studied the convergence of the peripheral eigenvalues and
eigenvectors of positive approximations of positive operators to the eigenelements of
the (positive) limit problem. Let us recall our main results in [1,2]. Let0 < T,, T be
bounded linear operators on a WSC (weakly sequentially complete) Banach lattice E
such that T, order converges to T (or converges uniformly on the order intervals of E)
and || (T, — T)*|| — 0asn — o0. Let us suppose that T is an irreducible operator
on E such that r(7T') is a Riesz point of o (T'). Suppose that T =T, + T, with T, > 0
being an abstract kernel operator. Then r(7,,) —> r(T), the ‘peripheral spectrum’ of
T, converges to the peripheral spectrum of T and a similar statement is true for the
eigenvectors ([1, 2]). The purpose of this paper is to give estimates on the speed of
convergence of the ‘peripheral eigenelements’ of T, to the peripheral eigenelements
of T in the context of our previous papers. The estimates look like the usual ones in
the approximation theory of linear operators ([7, 3]).
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Let us give some final words on the organisation of the paper. In Section 2 we
recall the main results of [1, 2]. In Sections 3 and 4 we prove estimates on the speed
of convergence of the peripheral eigenvalues and principal eigenvectors respectively.

2. Convergence to the peripheral eigenelements

We follow the same conventions on notation and terminology as in [1, 2]. General
references on Banach lattices and positive operators are in [11, 12]. Let us only recall
some definitions from spectral theory. Let T be a bounded linear operator on the
Banach space E, T € Z(F). The spectrum of T, that is the set of z € C such that
zI — T is not invertible in £ (E), will be denoted by o (T'). The spectral radius of T,
r(T), is the number sup{|z| : z € o (T)} (= lim, || T" 1Y™). If z € p(T) :==C —o(T),
the resolvent of T, R(z, T) := (z — T)™! is an analytic function on p(7). A complex
number A € ¢(T) is called a Riesz point of o (T') if A is a pole of the resolvent R(z, T')
with a residuum P = (1/2mi) f c R(z, T) dz of finite rank (C is a positively oriented
curve on the complex plane around A containing A as the only singularity of R(z, T)).
Finally, let us recall that if E is a Banach lattice and 0 < T € £ (F) is a positive
operator on E, then r(T) € o(T). The peripheral spectrum of T, denoted by mo (T),
istheset{z € o(T) : |z| = r(T)}.

Let us recall our main results in [1, 2].

THEOREM 2.1. ([1, Theorem 3.1]). Let E be a Banach lattice. Let0 < T, T, €
Y (E) be such that T,x — Tx forall x € E and |(T, — T)*|| —> 0. Suppose that
r(T) is a Riesz point of 6 (T'). Then, r(T,) — r(T).

Our next statement is more general than the ones given in [1, 2]. We include a
proof of it at the end of this section.

THEOREM 2.2. Let E be a Banach lattice. Let 0 < T, T, € £ (E) be such that
T,x — Tx forall x € E and ||(T, — T)*|| —> 0. Suppose that r(T) is a Riesz
point of o (T). Then r(T,) is a Riesz point of o (T') for n sufficiently large.

To get convergence to the peripheral eigenvectors we need more assumptions on E
and T. We recall Theorem 3.6 in [1] (see also [2, Theorem 4.8}). To avoid a
cumbersome statement we suppose that E is a reflexive Banach lattice.

THEOREM 2.3. Let E be a reflexive Banach lattice. Let 0 < T € Z(E) be an
irreducible operator such that T = T\ + L with 0 < T}, 0 < T, and T, being
an abstract kernel operator. Suppose that r(T) is a Riesz point of 6(T). Let 0 <
T, € X(E) be such that T, —> T in order and ||(T, — T)*|| —> 0. Let % be
an ultrafilter on N containing the Fréchet filter and let z, € E, ||z,l| = 1, a, € C,

https://doi.org/10.1017/51446788700037733 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700037733

332 F. Arandiga and V. Caselles (3]

o, —> a with |a| = r(T) be such that limy ||T,2, — a,2,|| = 0. Thena € no(T)
and limg, ||z, — z|| = O where z is the unique (up to a sign) normalized solution of
Tz =az.

REMARKS. (a) The above statement holds also if E is a dual Banach lattice with
order continuous norm and 0 < T € Z(E) is a dual operator but we preferred it to
simplify the already cumbersome statement.

(b) We considered here convergence with respect to an ultrafilter % . This obliged
us to suppose that E is reflexive or dual with order continuous norm. Our result
in [2, Theorem 4.8] holds for weakly sequentially complete Banach lattices E but we
consider only convergence with respect to the Fréchet filter. Unfortunately, we need
the above stated version below, but recall that Theorem 2.3 holds for the Fréchet filter
in the place of % .

Before going into the proof of Theorem 2.2, let us recall two of the main results
in [6] which are the key-stones in the proof of it and will also play an important role
in the next section.

Let us fix an ultrafilter % on N containing the Fréchet filter and let E be a Banach
space. The ultrapower of E with respect to %, denoted by Eq, or simply by E,is
defined by I®(E)/Cq (E) where [°(E) = {(x,)% : x, € E, sup, ||x,|| < oo} and
Cou(E) := {(x,) € I*(E) : limy ||x,|| = 0}. The ultrapower E’ of E’ with respect
to % is isometrically isomorphic to a closed subspace of the dual (EY of E. If E is
a Banach lattice, then E is again a Banach lattice. It is easy to construct a projection
mg- from E onto E”. Let % € E, @ € E'. Then (mg-(X), ¢) = limg, (x,, ¢) defines
the desired projection mg.. If E is a dual Banach lattice E = F’, we can define

. E —> E by (mp(%), ¢) = limg (x,,¢), £ € E, ¢ € F. I'E is a dual
Banach lattice, then m E (and mg) are posmve pI‘OjCCthl’lS Operators on E can be
lifted to operators on E by T#% = (Tx)a, X € E T € #(E), in such a way that
O'(T) = o(T) ([11, Theorem V.1.4]). Notice that the approximate spectrum of 7 is
converted into the point spectrum of T. Now, we recall the following result from [6].

THEOREM 2.4. Let E be a Banach space and let T € £ (E). Let 3,,0(T) be the
exterior boundary of o (T) (=the boundary of the unbounded connected component
of p(T)). Then

300 (T) N 0, (T) = 30 (T) N {z € C : dimker(z — f) is infinite}.
If E is a dual Banach space and T is a dual operator, both sets coincide with
3o(T)N{z € C: thereexistsy € E, 5 #£0, mg($) =0and Ty = z5}.

This result means that the eigenspace associated to a Riesz point on the exterior
boundary of o (T') is contained in E and cannot be enlarged by going to E.
The next result will be used in the proof of Theorem 2.2 and also in the next section.
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THEOREM 2.5. Let E be a Banach lattice. Let S, T € £ (E) besuchthat0 < S <T
and r(S) = r(T). If r(T) is a Riesz point of o (T), then r(S) is a Riesz point of o (S).

Theorem 2.2 is a consequence of the following result:

PROPOSITION 2.6. Let E be a Banach lattice. Let 0 < T, T, € £ (E) be such that
T.x — Tx forall x € E and |(T, — T)*|| —> 0. Suppose that r(T) is a Riesz
point of 6(T). Let ), € 0,,0(T,) be such that ., —> ) € wo(T). Then, for n large
enough, A, is a Riesz point of o (T,).

PROOF. Let % be a free ultrafilter on N containing the Fréchet filter. If our
assertion is not true, there exists a subsequence of T, call it again (7,), such that A,
is not a Riesz point of o (7,). Let T, be the canonical extension of 7, to E and let

F, = ker(A, — f“,,). By Theorem 2.4, dim F = oco. Let E be the ultrapower of E
with respect to the ultrafilter 7. The space H = I*°(F,)/Cq(F,) witlAl Cqy(F,) =
{(x,) € I®(F,) : limg | X,|| = 0} can be identified with a subspace of E. We notice
that dim H = o0 ([4, Theorem 3.1]). Let §' : l% — E:? be given by 5‘)% =A(f‘,,)2,,)q,,
i = (%)% € E. From |(T, — T)*|| —> 0, it follows that 0 < § < 7. Hence
rA(S‘) < r(T). Let i= (x,)2 with x, € ker(r(T,) — f"); X, = 1. Hence
8% = (T,2,) = (r(T,)%,) = r(I)3 (by Theorem 2.1). Thus r($) = r(T). Since r(T)
is a Riesz point of o (T), r(T) is a Riesz point of T (Theorem 2.4). By Theorem 2.5,
r(S’) is a Riesz poiAnt of 0(§). Now, we observe that A € a(§), |A] =Ar(§) = r(T)
and H C ker(A — 3‘). By [11, 'IA'heorem V.5.5], A is a Riesz point of 0(3') (see also [6,
Lemma 4.4]). Hence ker(A — 3’) < o0 (Theorem 2.4) a contradiction to the fact that
H C ker(A — §).

3. Estimates on the speed of convergence to the peripheral eigenvalues

First we give some estimates on the speed of convergence of the peripheral eigenval-
ues. We first review the standard approach—with the standard set of assumptions-to
this question taken from [7, Theorem 6.7] or [3, Theorem 5.2].

Let X be a complex Banach space withnorm | - ||; F : X —> X a bounded linear
operator and {F,,}° | a family of bounded linear operators on X such that for g € X,

3.1 |Fg — F,gll — 0 asn —> oo.

We assume that A is an isolated eigenvalue of F with index v and finite algebraic
multiplicity m > v. Then there exist a circle I' in the complex plane centered
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at A which separates A from o(F) ~ {A}. We denote by P(A, F) the projection
(1/2mi) fr (z — F)~! dz associated with the eigenspace

X, F) = ker(r — F)",

and let E(A, F) = Range (P (A, F)) be the corresponding generalized eigenspace. It
is easy to verify that

E=EMLF)=X(,F), dimE(A, F) =m,
A—F)YPX F)=0 and A—F)Y'PO,F)#£0

([7, Chapters 5 and 8, page 573]). Now, let us assume that there is a constant C and
an integer n, such that for n > ng

(3.2) lz-F)')<C forallz eI'.

Considering (3.2) we may define the projection operator

1
POF) =5 [ =R as
2ni Jr
associated with the eigenspace
En = E(O’n, Fn) = ker(A'l - Fn)"l D--- @ker()"r - Fn)v’,

where 0, = ¢,(F,) N B(A, "), B(A, F) is the disc centered at A with 9B(A, F) =T
and A; € o, are the eigenvalues of F, with algebraic multiplicities m; and indices v;.
Finally, we assume that for » large enough:

(3.3) m=dmE(Q, F) =dimE(o,, F,) = m;.

j=1

Now, the following general result holds ([7, Theorem 6.7] and {3, Theorem 5.2])

THEOREM 3.1. Let A be a Riesz point of F : X —> X with finite algebraic
multiplicity m and assume that (3.1), (3.2), (3.3) hold. Then, there exist exactly m

eigenvalues, counted with multiplicity in 6, = {Ay, ..., A,} and a constant C such
that
1
3.4 jfllaxm |A — Al Y < C|F - F, e m
where || - || g ) denotes the operator norm restricted to E (., F).

We want to prove a similar result in the context of our Theorem 2.3 above. The
proof is slightly more delicate here because we are not assuming (3.2) and (3.3). Some
version of them will be proved. In fact we prove that (3.3) holds and we are able to
get around the difficulty of not supposing (3.2). We follow as closely as possible the
proof of this result as it is given in [3, Theorem 5.2].

In our case, we shall prove the following:
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THEOREM 3.2. Let E be a reflexive Banach lattice. Let 0 < T € £(E) be an
irreducible operator such that T = Ty + T, with 0 < T}, 0 < T, and T, being an
abstract kernel operator. Suppose that r(T) is a Riesz point of 6(T). Let0 < T, €
YZ(E) be such that T, —> T in order and ||(T, — T)*|| —> O as n —> oc. Then,
forany A € wo (T), there exist a constant k > 0 and a sequence A, € o(T,) such that

(3.5 |An — Al <kl Thp — Toll

where ¢ € E is the unique (up to a sign) normalized solution of T = Ap. Moreover
any sequence A, € o (T,) converging to A satisfies an estimate like (3.5).

In what follows, let % be a fixed ultrafilter on N containing the Fréchet filter.

Let us identify £, T and T, in Theorem 3.2 with X, F and F, in Theorem 3.1.
It is clear that (3.1) holds since E is a reflexive Banach lattice. (Hence, it has order
continuous norm) and 7, — T in order. We have to deal with the fact that we are
not assuming (3.2) and (3.3) in the present situation. For that purpose we prove the
following lemmas:

LEMMA 3.3. Let E, T and T, be as in Theorem 3.2. Let S:E —> F be given by
S =Tx), x = (x,)9 € E. Then
@ r@ =rm,
(i) mo(S) = ma(T) consists of Riesz points whose algebraic and geometric
mudtiplicity is one.

Moreover, ker(A — S ) =ker(A — T) for every A € 710(3’ ).

PROOF. Let T be the extension of T to £. From (I(T, — T)*|| —> 0Ot follows that
0< S < T. Then r(S’) < r(T). By Theorem 2.2, for n large enough there exists
Uy € E,, |u,|| = 1 suchthat T,u, = r(T)u,. Leti = (u,) € E. By Theorem 2.1,
Si = r(T)u Hence r(S) = r(T). Sincer(T)is aRiesz pomt ofor(T) r(T) isaRiesz
point of or(T) (for instance, using Theorem 2.4). From 0 < Ry < T and Theorem 2.5,
it follows that r(.§') is a Riesz point of 0(3' ). Using [11, Theorem V.5.5] (see also [6,
Lemma 4.4]) 7o () consist of Riesz points. Again, using 0 < § < 7, it follows that
0 < R(z,8) < R(z, T) forall z > r(T). Since T is irreducible, r(T') is a simple pole
of the resolvent and {(z —r(T))R(z, f) :z > r(T)}is bounded ([11, Theorem V.5.2]).
It follows that {(z — r(S‘))R(z, S') 1Z > r(S’)} is also bounded. Hence, r(§) is a simple
pole of R(z, $), thus it has index one and its algebraic and geometric multiciplities
coincide. By [11, Corollary of Theorem V.5.1], the same is true for all points in
7o (8). Now, let A € o (8) and let & € ker(A — §), £ = (x,)a, |IX] = 1. Then
limg, )| T, x, — Ax,|| = 0. By Theorem 2.3, A € no(T) and limy ||x, — x|| = O
where x is the unique (up to a sign) normalized solution of 7z = Az. It follows that
na(ﬁ) C no(T) and ker(A — S’) C ker(A — T). On the other hand, it is easy to
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check that mo (T) C Jra(ﬁ). Moreover, since for all A € 7o (T), ker(A — T) is one
dimensional, it follows that ker(A — §) = ker(A — T') for any A € o (S). Our lemma
is proved.

LEMMA 3.4. Let E, T and T, be as in Theorem 3.2. Then for every A € wo(T),
there exists a p > 0 such that for n large enough

(3.6) o(T,) N B, p) = (A}, Ap —> A
and if C = 3B(), p), then

3.7 dist(z, o(T,)) > p/2, dist (z, 0(T)) > p/2
forallz € C.

PROOF. Recall that, under the assumptions of Theorem 3.2, r(T) > 0 (5, The-
orem V.5.5]). LetA € mo(T). Then A isaRiesz pointof o (T ) andker(A—-T) = 1 ({11,
Theorem V.5.5]). Let us prove that there exist some A, € o(T,) such that A, — A
as n — oo. If A is not an accumulation point of a sequence A, € o(T,), then there
exists an open disc D around A in C such that z — T, is invertible for all z € D and all
n > ng (for some ny € N). Since ||(T, — T)*|]| — 0 and the invertible operators are
an open subset of £ (F),z — T, AT is invertible forall z € D and all n > n, for some
n; € N sufficiently large. But 0 < T, AT < T. Using Moustaka’ result [1, The-
orem 3.5] and [10, Satz 3.2], we know that r (T, AT) (wo (T)/r(T)) C wo (T, — T).
Therefore, (A /r(TNr(T, AT) e ;o (T, AT). But u, := (r(T, AT)/r(T)) — 1
(Theorem 2.1). Hence An, € o (T, A T) N D for n sufficiently large. For such n,
A, — T, AT is not invertible, contradicting our assertion above. It follows that there
exists a sequence A, € o(T,) such that A\, — A as n —> oo. It is easy to observe
that we can take A, € 9,0 (T). Now, we claim that

liminf dist (A, o (T,,) ~ {A,}) > 0.

Otherwise, lim inf, dist(A, o (T,) ~ {A,}) = 0. Hence, there exists a sequence a,; €
o (T,;) ~ {An;} such that o,; —> A as j —> oo. No confusion arises if we write
again a, instead of «,,;. Observe that for n large enough, 2, is a Riesz point of o (T,)
(Proposition 2.6). Hence we may take a, € 3,,0 (T,). Let us consider the sequence 7,
andlet § : £ —> E be givenby 8% = (T, xn)a, & = (x,)%. Let F, := ker(A, — T,),
G, .= ker(a, — T,) and let H, = F, + G,. Let H := [*(H,)/C4(H,). Since
dim H, > 2 (for n large enough), then dim H > 2 ([4, Proposition 3.1]). Let us prove
that H C ker(A — §). Let X = (x,)o € H. Lety, € F,, z, € G, be such that
X» = Y + z,. Difficulties arise from the fact that we cannot guarantee that y,, z, are
bounded. Compute:

8% = Tx)a = (Toya + Tuzadar = Qadn + @Zndar = AnX + (@ — A)zn)a-
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Since A,x, is bounded, (o, — A,)z, is also a bounded sequence. Let w = ((a, —
An)Zn)a . Thus SX = A% + . Then

S —1)2% =S =N = (@ — )Ty — M)z = (@ — Ay — An)Za)er =0

since a, —> A and (o, — A,)z, is bounded. Hence x € ker(A — S)z = ker(A — S‘) =
ker(A — T) by Lemma 3.3. Hence H C ker(A — §) and 1 = dimker(A — §) >
dim H > 2. This contradiction proves our claim above. The last assertion of the
lemma follows easily for any p > 0 such that p < liminf, dist(A, o (T} ~ {X,}),

LEMMA 3.5, In the context of Lemma 3.4, there exists ny € N such that for all
n > ny
(3.8) ker(A, — T,)*> = 1.

Hence, for all n > ny, A, has algebraic and geometric multiplicities one.

PROOE. If (3.8) were not true, we could find a sequence n; —> 0O such that
dimker(A, — T,)* > 2. Let S:E — E be given by §% = (T, X)), £ =
(x)e € E. By Lemma 3.3, ker(h — S) = 1. Let F, = = ker(A,, — T,)%. Let
F:= l°°(F)/Cq,(F) Let £ € F. Then - S)2 = (A — T,,‘.)zx,-)q, = (. Hence,
F C ker(A — S)2 = ker(A — S) by Lemma 3.3. It follows that 1 = dimker(A — 3') >
dim F > 2, a contradiction. Thus, (3.8) follows.

LEMMA 3.6. Under the assumptions of Theorem 3.2, for any . € no(T) there
exists some p > 0 and some ny € N such that

3.9 B\, p) No(T,) = {A,}, Yn>nyg, A, —> Aasn— 00,
(3.10) C=0B(, p) C p(T,), Yn >ng, CCp(T),
(3.11) limg || P, — P|| =0,

where P, = (1/2mi) [ R(z,T,)dz, P = (1/2ni) [. R(z, T)dz are the spectral
projections of T, and T associated to the corresponding spectral sets {\,} and {1}.

PROOF. Let § : E —> E be given by §% = (T,x,)o € E. By Lemma 3.3,
A is a Riesz point of o (8) of algebraic and geometric multiplicity one. Moreover,
dimker(A — §) = 1. This implies that dimker(x — (§)’) = 1 where () : (E) —
(ﬁ Y is the adjoint of S. If we combine these remarks with Lemma 3.4 we know
that there exists some p > 0 such that (3.9), (3.10) hold for all » sufficiently large
and such that C C p(§). Let P,, P be given by the above formulas. Let P =
(1/2mi) fc R(z, §)dz be the spectral projection onto ker(A — S). By Lemma 3.3,
P=r. Letp € E, ¢ € E', gl = ||¥]l = 1 besuch that T = Ae, T’y = Ay,
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Then P = P = (y ®¢)/ (¥, ¢). Nowletg, € E, ¥, € E', |lg.ll = ¥l = 1 besuch
that T,0n = An@n, Ty’ W = AoV Let § = (¢n)e € E,and ¥ = (¥)a € E' C (E)'.
Obviously, ¢ € ker(A — S), ¥ € ker(A — (8)), 4]l = I¥]l = 1. Hence ¢ = ¢
and Qf = . This implies that limy, ||¢, — ¢|| = 0 and lim4 ||y, — ¢ || = 0. Hence
limg, (Y, @a) = (¥, ¢) # 0. Using Lemma 3.5 we have that P, = (¥,,®¢,)/ (¥, @a)-
Now, it is easy to check that lim4, || P, — P|| = 0.

Now, it is easy to give the proof of Theorem 3.2.

PROOF OF THEOREM 3.2. Let ¢, ¥, ¢, and ¥, be the normalized vectors defined
during the proof of Lemma 3.6. Using (3.11) it follows that there exist subsequences
P, ¢n, and i, with P,, = (Y., ® @5,)/{¥,, @s,) converging to P, ¢ and y respect-
ively. Hence given any subsequence (n;) of N, there exists a further subsequence
(njw) of (n;) such that P, ,, ¢, ¥n,, converge to P, ¢ and ¥ respectively. It
follows that P, — P, ¢, —> ¢ and ¥, —> ¥ as n —> 00, respectively. Now,
use (v) to denote the one dimensional vector space generated by any vector v. Define
B, : {¢) —> (¢n) by B,¢ = Pup = (Y, ©)/(¥n, ¥a)@n. Then for some constant
C > 0 and n large enough (say n > ny)

(Yns @n)
(¥n» @)

Let A : () —> (@), An : {p) —> (p) be given by Ap = Ty = Ap, A,p =
B 'T,B,¢ (n > n,) Check that A,¢ = A,¢. Then:

1B = < C.

A — A = I(A — Aol = |B,'B,To — B;'P,T,0| = |B,'P,Tg — B;' P,T, ¢l
<|IB' 1Pl ITe — Topll < kT — Tholl

holds for some constant k and all n > n,. The last assertion of the theorem is obvious
from the above lemmas.

REMARKS. Once the effort was made in the previous lemmas, the proof of The-
orem 3.2 is standard ([3, 8]).

Let us finish this section with the following corollary.

COROLLARY 3.7. Let E be a reflexive Banach lattice and let t, > 0 be a sequence
of operators on E converging strongly to the identity. Suppose that T, T, = n,Tm,
satisfy the assumptions of Theorem 3.2. Then, for any A € no(T), there exists a
constant k > 0 and a sequence A, € o(1,) such that

(3.12) A — Al < ke — @l

Moreover, any sequence X, € o(T,) converging to ) satisfies an estimates like (3.12).
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4. Estimates on the speed of convergence of the principal eigenvectors

Our main result, Theorem 4.2 will be a consequence of the following result of
Ivo Marek [9, Theorem 3].

THEOREM 4.1. Let E be a complex Banach lattice. Let 0 < T < ¥¢(E) be an
irreducible operator such that r(T) is a Riesz point of 6 (T). Let 0 < m, € Z(E)
be a sequence of operators such that n, — I strongly. Let T, = n,Tn,. Suppose
that

(i) r(T,) is also a Riesz point of algebraic and geometric multiplicity one. Let x,
be the unique normalized positive solution of T,x, = r(T,)x,.
(i) |r(T,) — r(T)| < k €, with k a constant independent of n.
(iii) There is a constant 0 < p < r(T) and ny € N such that
(@ r(T,) > p,Vn=ng
b)) o(T) =0 Uoywithoy, C B(0,p),00 =m0 (T)={A1,..., A}
(©) o(T,) = oxay U Ouy with 0,0y € B(0, p), 0n2y = {Anctys -« - Aay} and
Angy —> Ajasn — 00,i =1,2,...,k,¥Yn > n,.
Let xq be the unique normalized positive solution of Txq = r (T )xy. Then ||x, — xo|| <
k max{e,, |7w.x, — x,||} where k is some constant independent of n.

THEOREM 4.2. Let E be a reflexive Banach lattice. Let 0 < T € £ (E) be an
irreducible operator such that T = T\ + T, with O < T|, T, and T, > 0 being
an abstract kernel operator. Suppose that r(T) > 0 is a Riesz point of o(T). Let
xo € E, ||xoll = 1, be such that Txg = r(T)xy. Let 0 < m, € Z(E) such that
w, —> I strongly. Let T, = m,Tn,. Suppose that T, is irreducible, T, — T in

order and (T, — T)*|| — Oasn —> . Let x, € E, |x,|| = 1, be such that
Tx, =r(T)x,. Then
4.1) llxn — xoll < kll7ax0 — Xol|

for some constant k independent of n.

PROOE. By Theorem 2.2, for some ny € N and n > ng, r(T},) is a Riesz point of
o (T,). Since the T, are irreducible, r(T,) has algebraic and geometric multiplicity one
({11, Theorem V.5.2]): the x,,’s are the corresponding eigenvectors. By Corollary 3.7,
(1), (ii) in Theorem 4.1 hold with €, = ||m,xo — Xp||. Let us prove (iii). Since r(T)
is a Riesz point of o(T), 0(T) = 0, U o, with oy € B(0,0)), 0 < p; < r(T),

oy = no(T) = {Ay,...,A,}. By Lemma 3.4, there exist § > 0, n; € N such that
o(T,) N B(A;,8) = {Ayp} with Ay — Aasn —> o0,i = 1,2,..., p,Vn = ny.
Let 0.y = {Ancys -+ s A} Onay = 0 (T,) ~ 0,2). We claim that there exists some

p > 0 and no € N such that 0,4y, € B(0, p), Vn > ny. Otherwise, there exists
o >0, 00 — r(T), (n) S N, ng < 1, o € 050(T5,), o < o], & € 0y,
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Since o is in the approximate point spectrum of T,, there exists a sequence z, € E.,
(lze|l = 1 suchthat || T,z — oz || —> 0. Without loss of generality we may suppose
that ¢y —> «. Hence |a¢| = r(T). By Theorem 2.3 and the remarks following it,
« € no(T) and z, converges to the unique normalized solution of 7z = az. Thus
o = A; for some j € {1,...,p}. Since ay —> A; as k — 00, oy € B(A;,8)
for k large enough, say £k > k,. Thus oy = A,,(;, € 0., a contradiction. Our
claim is proved. Now taking p > max(py, p;), p < r(T), (iii) (b), (c) hold with
this p. (iii) (a) follows easily since r(7,) —> r(T) (Theorem 2.1). Thus, (4.1) is an
immediate translation of the conclusion of Theorem 4.1.
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