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Abstract

We prove estimates on the speed of convergence of the 'peripheral eigenvalues' (and principal eigen-
vectors) of a sequence Tn of positive operators on a Banach lattice E to the peripheral eigenvalues of its
limit operator T on E which is positive, irreducible and such that the spectral radius r(T) of T is a Riesz
point of the spectrum of T (that is, a pole of the resolvent of T with a residuum of finite rank) under
some conditions on the kind of approximation of Tn to T. These results sharpen results of convergence
obtained by the authors in previous papers.

1991 Mathematics subject classification (Amer. Math. Soc): 47B55, 47A10,46B30.

1. Introduction

In our papers [1, 2], we studied the convergence of the peripheral eigenvalues and
eigenvectors of positive approximations of positive operators to the eigenelements of
the (positive) limit problem. Let us recall our main results in [1, 2]. Let 0 < Tn, T be
bounded linear operators on a WSC (weakly sequentially complete) Banach lattice E
such that Tn order converges to T (or converges uniformly on the order intervals of E)
and || (Tn — T)+1| —• 0 as n —> oo. Let us suppose that T is an irreducible operator
on E such that r(T) is a Riesz point of a(T). Suppose that T = T, + T2 with T2 > 0
being an abstract kernel operator. Then r(Tn) —• r(T), the 'peripheral spectrum' of
Tn converges to the peripheral spectrum of T and a similar statement is true for the
eigenvectors ([1, 2]). The purpose of this paper is to give estimates on the speed of
convergence of the 'peripheral eigenelements' of Tn to the peripheral eigenelements
of T in the context of our previous papers. The estimates look like the usual ones in
the approximation theory of linear operators ([7, 3]).
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[2] Positive operators and continuity of the spectral radius III 331

Let us give some final words on the organisation of the paper. In Section 2 we
recall the main results of [1, 2]. In Sections 3 and 4 we prove estimates on the speed
of convergence of the peripheral eigenvalues and principal eigenvectors respectively.

2. Convergence to the peripheral eigenelements

We follow the same conventions on notation and terminology as in [1, 2]. General
references on Banach lattices and positive operators are in [11, 12]. Let us only recall
some definitions from spectral theory. Let T be a bounded linear operator on the
Banach space E,T e .S? (£). The spectrum of T, that is the set o f z e C such that
zl - T is not invertible in S£(E), will be denoted by a(T). The spectral radius of T,
r(T), is the number sup{|z| :z ea{T)}{=\\mn \\Tn\\i/n). Ifz e p(T) :=C-a(T),
the resolvent of T, R(z, T) := (z — T)~l is an analytic function on p(T). A complex
number A. € a(T) is called a Riesz point of o(T) if X is a pole of the resolvent R(z, T)
with a residuum P = (\/2ni) fc R(z, T) dz of finite rank (C is a positively oriented
curve on the complex plane around X containing X as the only singularity of R(z, T)).
Finally, let us recall that if £ is a Banach lattice and 0 < T e J£?(£) is a positive
operator on E, then r(T) e <r(T). The peripheral spectrum of T, denoted by na(T),
is the set {z e o{T) : \z\ = r(J)}.

Let us recall our main results in [1,2].

THEOREM 2.1. ([1, Theorem 3.1]). Let E be a Banach lattice. Let 0 < T, Tn e
S£{E) be such that Tnx —• Txforallx e E and \\(Tn - T)+\\ —• 0. Suppose that
r(T) is a Riesz point ofa (T). Then,r(Tn) —> r(T).

Our next statement is more general than the ones given in [1, 2]. We include a
proof of it at the end of this section.

THEOREM 2.2. Let E be a Banach lattice. Let 0 < T, Tn e &{E) be such that
Tnx —• Tx for allx e E and \\(Tn - T)+\\ —> 0. Suppose that r(T) is a Riesz
point ofa(T). Then r(Tn) is a Riesz point ofa(T)for n sufficiently large.

To get convergence to the peripheral eigenvectors we need more assumptions on E
and T. We recall Theorem 3.6 in [1] (see also [2, Theorem 4.8]). To avoid a
cumbersome statement we suppose that £ is a reflexive Banach lattice.

THEOREM 2.3. Let E be a reflexive Banach lattice. Let 0 < T e JSf (E) be an
irreducible operator such that T = 7\ + T2 with 0 < Tlt 0 < T2 and T2 being
an abstract kernel operator. Suppose that r(T) is a Riesz point of a{T). Let 0 <
Tn 6 %(E) be such that Tn —> T in order and \\(Tn - T)+\\ —• 0. Let <% be
an ultrafilter on N containing the Frdchetfilter and let zn e E, \\zn\\ = 1, an e C,
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an —> a with \a\ = r(T) be such that lim^- \\Tnzn — anzn\\ = 0. Then a G na(T)
and lim^. \\zn — z\\ = 0 where z is the unique {up to a sign) normalized solution of
Tz = az.

REMARKS, (a) The above statement holds also if £ is a dual Banach lattice with
order continuous norm and 0 < T e &(E) is a dual operator but we preferred it to
simplify the already cumbersome statement.

(b) We considered here convergence with respect to an ultrafilter %. This obliged
us to suppose that £ is reflexive or dual with order continuous norm. Our result
in [2, Theorem 4.8] holds for weakly sequentially complete Banach lattices E but we
consider only convergence with respect to the Fr6chet filter. Unfortunately, we need
the above stated version below, but recall that Theorem 2.3 holds for the Fr6chet filter
in the place of %.

Before going into the proof of Theorem 2.2, let us recall two of the main results
in [6] which are the key-stones in the proof of it and will also play an important role
in the next section.

Let us fix an ultrafilter ^ on N containing the Fr6chet filter and let £ be a Banach
space. The ultrapower of E with respect to %', denoted by E<&, or simply by £, is
defined by l°°(E)/C^(E) where /°°(£) := {(xn)w : xn e E, supn \\xj < oo} and
Cw(E) := {(xn) G /°°(£) : lim^ \\xn\\ = 0}. The ultrapower £' of £' with respect
to <2? is isometrically isomorphic to a closed subspace of the dual (£)' of £. If £ is
a Banach lattice, then £ is again a Banach lattice. It is easy to construct a projection
mE" from £ onto £". Let x e E,<p e £'. Then (mE»(x), (p) = lim^-(xn, <p) defines
the desired projection mE«. If £ is a dual Banach lattice £ = F', we can define
mE : E —> E by (mE(x),<p) := lim^(xn,(p), x G £, <p G £. If'£ is a dual
Banach lattice, then mE» (and mE) are positive projections. Operators on £ can be
lifted to operators on £ by f x = (Txn)w, x e £, T e &{E), in such a way that
a(f) = a(T) ([11, Theorem V.I.4]). Notice that the approximate spectrum of T is
converted into the point spectrum of f. Now, we recall the following result from [6].

THEOREM 2.4. Let E be a Banach space and let T e 3?(E). Let d^o-iT) be the
exterior boundary ofa(T) {=the boundary of the unbounded connected component
ofp(T)). Then

aooa(7) n aess{T) = d^a^T) n {z G C : dimker(z - f) is infinite}.

If E is a dual Banach space and T is a dual operator, both sets coincide with

doo(T) n {z G € : there exists y e £ j / 0 , mE{y) = 0andfy = zy).

This result means that the eigenspace associated to a Riesz point on the exterior
boundary of a(T) is contained in £ and cannot be enlarged by going to £.

The next result will be used in the proof of Theorem 2.2 and also in the next section.
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THEOREM 2.5. Let E be a Banach lattice. LetS, T e -£?(£) be such that0 <S<T
andr(S) = r(T). Ifr(T) isaRieszpointofa(T), thenr(S) is a Rieszpoint of a(S).

Theorem 2.2 is a consequence of the following result:

PROPOSITION 2.6. Let Ebea Banach lattice. Let 0 <T,Tn e -S?(£) be such that
Tnx —> Txfor all x e E and \\(Tn - T)+\\ —• 0. Suppose that r(T) is a Riesz
point of a(T). Let kn & d^alT,,) be such that kn —> k € 7ta(T). Then, for n large
enough, kn is a Riesz point ofa{Tn).

PROOF. Let ^ be a free ultrafilter on N containing the Frechet filter. If our
assertion is not true, there exists a subsequence of Tn, call it again (Tn), such that kn

is not a Riesz point of a(Tn). Let fn be the canonical extension of Tn to E and let

Fn = ker(kn — Tn). By Theorem 2.4, dim F = oo. Let E be the ultrapower of E
with respect to the ultrafilter W. The space H = l°°(Fn)/C^(Fn) with C^(Fn) =

{(*„) € l°°(Fn) : lim<a- \\xn\\ — 0} can be identified with a subspace of E. We notice

that dim// = oo ([4, Theorem 3.1]). Let S : E —> E be given by Sx — (fnxn)w,

x = (xn)^ e E. From ||(Tn - 7)+ | | —> 0, it follows that 0 < S < f. Hence

r(S) < r(T). Let x = (£„)* with xn e ker(r(Tn) - fB), ||jcj| = 1. Hence

Sx = (fnxn) = (r(Tn)xn) = r(T)x (by Theorem 2.1). Thusr(S) = r(T). Since r(T)

is a Riesz point of o(T), r(T) is a Riesz point of T (Theorem 2.4). By Theorem 2.5,

r(S) is a Riesz point of CT(S). NOW, we observe that A e a(S), \k\ = r(S) = r{T)
A. /V

and H c ker(A - 5). By [11, Theorem V.5.5], A. is a Riesz point of a (S) (see also [6,

Lemma 4.4]). Hence ker(A — S) < oo (Theorem 2.4) a contradiction to the fact that

H c ker(A - S).

3. Estimates on the speed of convergence to the peripheral eigenvalues

First we give some estimates on the speed of convergence of the peripheral eigenval-
ues. We first review the standard approach—-with the standard set of assumptions-to
this question taken from [7, Theorem 6.7] or [3, Theorem 5.2].

Let X be a complex Banach space with norm || • ||; F : X —> X a bounded linear
operator and [Fn}™=1 a family of bounded linear operators on X such that for g e X,

(3.1) \\Fg-Fng\\^0 as«^oo.

We assume that A. is an isolated eigenvalue of F with index v and finite algebraic
multiplicity m > v. Then there exist a circle T in the complex plane centered
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at X which separates X from <r(F) ~ [X]. We denote by P(X, F) the projection
(l/2ni) fr(z — F)~l dz associated with the eigenspace

X(X, F) = ker(X - F)v,

and let E(X, F) — Range (P(X, F)) be the corresponding generalized eigenspace. It
is easy to verify that

E = E{X,F) = X(X,F), dim£(A,F) = m,

(X-FYP(X, F) = 0 and (X - F)y-'/>(A., F) ^ 0

([7, Chapters 5 and 8, page 573]). Now, let us assume that there is a constant C and
an integer n0 such that for n > n0

(3.2) || (z-FJ-11 | <C forallzer.

Considering (3.2) we may define the projection operator

Fn) T

2ni
associated with the eigenspace

En = E(an, Fn) = k e r ^ - FJ1" © • • • © ker(Ar - F n ) \

where on = an(Fn) n B(X, T), B(X, F) is the disc centered at X with dB(X, F) = V
and Xj e an are the eigenvalues of Fn with algebraic multiplicities m, and indices Vj.
Finally, we assume that for n large enough:

(3.3) m = dimE(X, F) = dimE{an, Fn) =

Now, the following general result holds ([7, Theorem 6.7] and [3, Theorem 5.2])

THEOREM 3.1. Let X be a Riesz point of F : X —> X with finite algebraic
multiplicity m and assume that (3.1), (3.2), (3.3) hold. Then, there exist exactly m
eigenvalues, counted with multiplicity in on = {Xi,... ,Xm] and a constant C such
that
(3.4) m a x \X - Xj\1/v <C\\F- Fn\\E^F)

j = l,...,m

where || • ||£(X,F) denotes the operator norm restricted to E(X, F).

We want to prove a similar result in the context of our Theorem 2.3 above. The
proof is slightly more delicate here because we are not assuming (3.2) and (3.3). Some
version of them will be proved. In fact we prove that (3.3) holds and we are able to
get around the difficulty of not supposing (3.2). We follow as closely as possible the
proof of this result as it is given in [3, Theorem 5.2].

In our case, we shall prove the following:
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THEOREM 3.2. Let E be a reflexive Banach lattice. Let 0 < T e -£?(£) be an
irreducible operator such that T = T\ + T2 with 0 < T\, 0 < T2 and T2 being an
abstract kernel operator. Suppose that r(T) is a Riesz point of cr(T). Let 0 < Tn e
-S?(£) be such that Tn —> T in order and \\{Tn - T)+\\ —> 0 as n —> oo. Then,
foranyk € na(T), there exist a constant k > 0 and a sequence kn e a (Tn) such that

(3.5) \kn - k\ < k\\Tn<p - T<p\\

where cp € E is the unique (up to a sign) normalized solution ofT<p = k<p. Moreover
any sequence kn e a(Tn) converging to k satisfies an estimate like (3.5).

In what follows, let ^ be a fixed ultrafilter on N containing the Fre"chet filter.
Let us identify E, T and Tn in Theorem 3.2 with X, F and Fn in Theorem 3.1.

It is clear that (3.1) holds since £ is a reflexive Banach lattice. (Hence, it has order
continuous norm) and Tn —> T in order. We have to deal with the fact that we are
not assuming (3.2) and (3.3) in the present situation. For that purpose we prove the
following lemmas:

LEMMA 3.3. Let E, T and Tn be as in Theorem 3.2. Let S : E —> E be given by
Sx = (Tnxn)<u, x = (xn)<v e E. Then

(i) r{S) = r{T),
(ii) 7TCT(5) = na(T) consists of Riesz points whose algebraic and geometric

multiplicity is one.

Moreover, ker(A. — S) = ker(A — T)for every k e na(S).

PROOF. Let f be the extension of T to E. From || (Tn -T)+\\ —> 0 it follows that
0 < 5 < f. Then r(S) < r(T). By Theorem 2.2, for n large enough, there exists
un e E+, \\un\\ = 1 such that Tnun = r(Tn)un. Letu = (un)w e E. By Theorem 2.1,
5M = r(T)u. Hencer(5) = r(T). Since r(T) is a Riesz point of a(T),r(f) is a Riesz
point of a(T) (for instance, using Theorem 2.4). From 0 < S < T and Theorem 2.5,
it follows that r(S) is a Riesz point of a(S). Using [11, Theorem V.5.5] (see also [6,
Lemma 4.4]) izo(S) consist of Riesz points. Again, using 0 < 5 < T, it follows that
0 < R(z, S) < R(z, f) for all z > r(T). Since T is irreducible, r (T) is a simple pole
of the resolvent and {(z-r(T))R(z,f) : z > r(T)} is bounded ([11, Theorem V.5.2]).

A. A A A

It follows that {(z — r(S))R(z, S) : z > r (5)} is also bounded. Hence, r (S) is a simple
pole of R(z, 5), thus it has index one and its algebraic and geometric multiciplities
coincide. By [11, Corollary of Theorem V.5.1], the same is true for all points in
ncr(S). Now, let k e na(S) and let x e ker(k - S), x = (xn)&, \\x\\ = 1. Then
lim^ \\Tnxn - kxn\\ = 0. By Theorem 2.3, k e na(T) and lim^ \\xn - x\\ = 0
where x is the unique (up to a sign) normalized solution of Tz = kz. It follows that

c na(T) and ker(A. — S) c ker(A. — T). On the other hand, it is easy to
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check that na(T) c 7Ta(S). Moreover, since for all A. e no(J), ker(A. — T) is one
dimensional, it follows that ker(A. — 5) = ker(A. — T) for any A. e na(S). Our lemma
is proved.

LEMMA 3.4. Let E, T and Tn be as in Theorem 3.2. Then for every X e na{T),
there exists a p > 0 such that for n large enough

(3.6) a(Tn) n B(X, p) = {Xn}, Xn-^X

and if C = dB(X, p), then

(3.7) dist(z, o{Tn)) > p/2, dist(z, a(T)) > p/2

for all z e C.

PROOF. Recall that, under the assumptions of Theorem 3.2, r{T) > 0 ([5, The-
orem V.5.5]). LetA. e 7rcr(:T). ThenXisaRieszpointofor(T)andker(X-r) = 1 ([11,
Theorem V.5.5]). Let us prove that there exist some Xn e o(Tn) such that Xn —> X
as n —> oo. If A. is not an accumulation point of a sequence A.n e o{Tn), then there
exists an open disc D around A. in C such that z — Tn is invertible for all z e £> and all
n > n0 (for some «0 € N). Since \\(Tn — T)+\\ —> 0 and the invertible operators are
an open subset of -S?(£), z — Tn A T is invertible for all z € D and all n > «i for some
«i e N sufficiently large. But 0 < Tn A T < T. Using Moustaka' result [1, The-
orem 3.5] and [10, Satz 3.2], we know that r(Tn A T) (no(T)/r(T)) c na(Jn - T).
Therefore, (X/r(T))r(Tn A T) € na{Tn A T). But //« := (r(Tn A T)/r(T)) —-• 1
(Theorem 2.1). Hence A./xn 6 Jta(Tn A T) D D for n sufficiently large. For such n,
X/xn — Tn A T is not invertible, contradicting our assertion above. It follows that there
exists a sequence A.n e c(Tn) such that Xn —> X as n —> oo. It is easy to observe
that we can take Xn e daoC^T). Now, we claim that

liminfdist(A., o(Tn) ~ {A.n}) > 0.
n

Otherwise, liminfn dist(A, a(Tn) ~ {A.n}) = 0. Hence, there exists a sequence anj €
<?(Tnj) ~ {A.n;} such that anj —> X as j —> oo. No confusion arises if we write
again an instead of anj. Observe that for n large enough, Xn is a Riesz point of o(Tn)
(Proposition 2.6). Hence we may take an e d^a (Tn). Let us consider the sequence Tn

and let S : E —> E be given by 5Jc = (Tnxn)^, x = (xn)^. Let Fn := ker(Xn - Tn),
Gn := ker(an - Tn) and let Hn = Fn + Gn. Let H := l°°(Hn)/C^(Hn). Since
dim Hn > 2 (for n large enough), then dim H > 2 ([4, Proposition 3.1]). Let us prove
that / / c ker(A. - S). Let x = (xn)<ar e / / . Let yn e Fn, zn e Gn be such that
*« = Jn + zn- Difficulties arise from the fact that we cannot guarantee that yn, zn are
bounded. Compute:

Si = (TnXn)<2, = (Tnyn + Tnzn)w = (Xnyn + anzn)^ = (Xnxn + (an - Xn)zn)^.
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Since knxn is bounded, (an — kn)zn is also a bounded sequence. Let w = ((an —
K)zn)<u- Thus Sx = kx + w. Then

(S - k)2x = (S - k)w = ((«„ - kn){Tn - k)zn)v = (an - k)(an - kn)zn)v = 0

since an —> k and (an — kn)zn is bounded. Hence Jc € ker(A. — S)2 = ker(A. — 5) =
ker(A. - T) by Lemma 3.3. Hence H c ker(X - S) and 1 = dimker(A. - S) >
dim H > 2. This contradiction proves our claim above. The last assertion of the
lemma follows easily for any p > 0 such that p < liminfn dist(X, a(Tn) ~ {kn}),

LEMMA 3.5. In the context of Lemma 3.4, there exists n0 € N such that for all
n>n0

(3.8) ker(ln - Tnf = 1.

Hence, for all n > «0» ̂ « fow algebraic and geometric multiplicities one.

PROOF. If (3.8) were not true, we could find a sequence «, —> oo such that
dimker(A.n. - Tn.)

2 > 2. Let S : E —> E be given by Sx = {Tnj,Xi)^, x =
(Xj)w 6 E. By Lemma 3.3, ker(X - S) = 1. Let F, = ker(Xn. - Tn,)

2. Let
F := r(Fi)/Cv{Fi). hetx € F. Then (X - 5)2Jc = ((A. - rHi)

2jc,-)* = 0. Hence,
F c ker(A. - S)2 = ker(^ - S) by Lemma 3.3. It follows that 1 = dimker(l - 5) >
dim F > 2, a contradiction. Thus, (3.8) follows.

LEMMA 3.6. Under the assumptions of Theorem 3.2, for any k e TZG(T) there
exists some p > 0 and some n0 € N SMC/I

(3.9) B(k,p)n<j(Tn) = {kn], Vn>n0, kn-^ k as n-+oo,

(3.11) lim« H P , - F | | = 0 ,

Pn = (l/2ni)fcR(z,Tn)dz, P = {\/2ni) JcR(z,T)dz are the spectral
projections ofTn and T associated to the corresponding spectral sets {kn} and {k}.

PROOF. Let S : E —> E be given by Sx = (Tnxn)<& e E. By Lemma 3.3,
A. is a Riesz point of a (S) of algebraic and geometric multiplicity one. Moreover,
dimker(A. - S) = 1. This implies that dimker(A - (S)') = 1 where (S)' : (£)' —>
(£)' is the adjoint of S. If we combine these remarks with Lemma 3.4 we know
that there exists some p > 0 such that (3.9), (3.10) hold for all n sufficiently large
and such that C c p(S). Let Pn, P be given by the above formulas. Let P =
{\/2ni) Jc R{z, S)dz be the spectral projection onto ker(A. — S). By Lemma 3.3,
P = P. Let ff> G E, f € £', ||<p|| = ||Vi = 1 be such that T<p = k<p, T'ljr = kf.
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Then P = P = (ylr®<p)/W, cp). Now let <pn eE,fne £", \\fn\\ = \\ifrj = 1 be such

that Tn<pn = kn<pn, Tn'\jsn = knr]fn. heicp = (<pn)<& € E, and \jr = (irn)<& e E' c. ( £ ) ' .

Obviously, <p e ker(A. — S), \jr e ker(A. — (S)'), | | $ | | = | | i^| | = 1. Hence <p = <p

and \jr = x/r. This implies that l i m ^ ||^n — <p\\ = 0 and l i m ^ \\\jrn — xfr \\ = 0. Hence

lim<v{ij/n, <pn) = (\ff, <p) ^ 0. Using Lemma 3.5 we have that Pn = (isn<8>(pn)/{irn, <pn).

Now, it is easy to check that lim-a- \\Pn — P\\ = 0.

Now, it is easy to give the proof of Theorem 3.2.

PROOF OF THEOREM 3.2. Let <p, \js, <pn and \frn be the normalized vectors defined
during the proof of Lemma 3.6. Using (3.11) it follows that there exist subsequences
Pn., <pni and \ffni with Pni = {\jrni ® <pn:)/{\(rn., <pn.) converging to P, <p and \jr respect-

ively. Hence given any subsequence (jij) of N, there exists a further subsequence
(nJ(k)) of (jij) such that Pnjm, <pnm, \jrnm converge to P, <p and f respectively. It
follows that Pn —> P, (pn —> <p and \frn —> ifr as n —> oo, respectively. Now,
use (v) to denote the one dimensional vector space generated by any vector v. Define
Bn : (<p) — • (<pn) by Bn<p = Pn<p = {\lrn,<p)/{\/rn,<pn)<pn. Then for some constant

C > 0 and n large enough (say n > n0)

hi, m \

< c.
(tn,<P)

Let A : (q>) —> (<p), An : (<p) —> (<p) be given by Acp = Tcp = k<p, An(p =

B~xTnBn(p (n > «0) Check that An<p = kn<p. Then:

|A. - kn\ = \\(A - An)<p\\ = \\B;lBnT<p - B~xPnTn<p\\ = l\B;lPnT(p - B;lPnTn<p\\

< WB^W \\Pn\\ \\T<p - 7 > | | <k\\T<p- Tn<p\\

holds for some constant k and all n > n0. The last assertion of the theorem is obvious
from the above lemmas.

REMARKS. Once the effort was made in the previous lemmas, the proof of The-
orem 3.2 is standard ([3, 8]).

Let us finish this section with the following corollary.

COROLLARY 3.7. Let E be a reflexive Banach lattice and let nn > 0 be a sequence
of operators on E converging strongly to the identity. Suppose that T, Tn — nnTnn

satisfy the assumptions of Theorem 3.2. Then, for any k € na(T), there exists a
constant k > 0 and a sequence kn e cr(Tn) such that

(3.12) \k - kn\ < k \\nn<p - <p\\.

Moreover, any sequence kn e o{Tn) converging to k satisfies an estimates like (3.12).

https://doi.org/10.1017/S1446788700037733 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700037733


[10] Positive operators and continuity of the spectral radius III 339

4. Estimates on the speed of convergence of the principal eigenvectors

Our main result, Theorem 4.2 will be a consequence of the following result of
Ivo Marek [9, Theorem 3].

THEOREM 4.1. Let E be a complex Banach lattice. Let 0 < T < S£{E) be an
irreducible operator such that r(T) is a Riesz point of o(T). Let 0 < nn e S£(E)
be a sequence of operators such that nn —> I strongly. Let Tn = nnTnn. Suppose
that

(i) r (Tn) is also a Riesz point of algebraic and geometric multiplicity one. Let xn

be the unique normalized positive solution ofTnxn = r(Tn)xn.
(ii) \r(Tn) — r(T)\ < k en with k a constant independent ofn.

(iii) There is a constant 0 < p < r(T) and n0 e N such that

(a) r(Tn) > p,Vn > n0

(b) a(T) = tfi U a2 with ax c B(0, p), a2 = na{T) = {ku ..., kk]
(c) a(Tn) = an(1) U an ( 2 ) with anW c B(0, p), an ( 2 ) = {kn(X),..., kn(k)] and

K(n —*• kt as n —>• oo, / = 1, 2 , . . . , k, Vn > n0.

Let x0 be the unique normalized positive solution of Tx0 = r(T)x0. Then \\xn— xo\\ <
k max{en, \\nnxn — xn ||} where k is some constant independent ofn.

THEOREM 4.2. Let E be a reflexive Banach lattice. Let 0 < T e S£(E) be an
irreducible operator such that T = T\ + T2 with 0 < T\, T2 and T2 > 0 being
an abstract kernel operator. Suppose that r(T) > 0 is a Riesz point of a{T). Let
x0 6 E+, \\xo\\ — I, be such that Tx0 = r(T)x0. Let 0 < 7tn e S£(E) such that
nn —> I strongly. Let Tn = nnTnn. Suppose that Tn is irreducible, Tn —> T in
order and \\(Tn -T)+\\ —> 0 as n — • oo. Let xn e E+, \\xn\\ = 1, be such that
Txn =r(T)xn. Then
(4.1) \\xn - XQ\\ < k\\nnxo - xo\\

for some constant k independent ofn.

PROOF. By Theorem 2.2, for some n0 e N and n > n0, r(Tn) is a Riesz point of
a(Tn). Since the Tn are irreducible, r(Tn) has algebraic and geometric multiplicity one
([11, Theorem V.5.2]): the xn 's are the corresponding eigenvectors. By Corollary 3.7,
(i), (ii) in Theorem 4.1 hold with €„ = \\nnxo — JC0||. Let us prove (iii). Since r(T)
is a Riesz point of a{T), a(T) = ax U a2 with ax c B(0, A ) , 0 < px < r(T),
a2 = na{J) = [ku . . . , kp}. By Lemma 3.4, there exist 8 > 0, nx e N such that
a{Tn) n B(kt, 8) = [kn{n] with kn(i) — • k as n —> oo, / = 1, 2 , . . . , p, Vn > n0.
Let an(2) - [K(\),..., A.n(p)}, onm = o{Tn) ~ an(2). We claim that there exists some
p > 0 and n0 € N such that anm c B(0, p%), V« > «0. Otherwise, there exists
pk > 0, pk — • r(J), (nk) c N, nk < nk+u ak e 3 o o a( r n J , pk < \ak\, ak e ant(2).
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Since ak is in the approximate point spectrum of Tn, there exists a sequence zk € E+,
\\zk\\ = 1 such that \\Tntzk — akzk\\ —>• 0. Without loss of generality we may suppose
that ak —> a. Hence \a\ = r(T). By Theorem 2.3 and the remarks following it,
a e 7ta(T) and zk converges to the unique normalized solution of Tz = az. Thus
a — kj for some j e { 1 , . . . , p). Since ak —> kj as k —> oo, ak e B(kj, S)
for k large enough, say k > k0. Thus ak = kntU) e o-nt(2), a contradiction. Our
claim is proved. Now taking p > max(/0i, p2)» P < '"(?'). (iii) (b), (c) hold with
this f>. (iii) (a) follows easily since r(Tn) —> r(T) (Theorem 2.1). Thus, (4.1) is an
immediate translation of the conclusion of Theorem 4.1.
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