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METRICS FOR FORMAL STRUCTURES, WITH AN APPLICATION
TO KRIPKE MODELS AND THEIR DYNAMICS

DOMINIK KLEIN AND RASMUS K. RENDSVIG

Abstract. The paper introduces a broad family of metrics applicable to finite and countably infinite
strings, or, by extension, to formal structures serving as semantics for countable languages. The main focus
is on applications to sets of pointed Kripke models, a semantics for modal logics. For the resulting metric
spaces, the paper classifies topological properties including which metrics are topologically equivalent,
providing sufficient conditions for compactness, characterizing clopen sets and isolated points, and
characterizing the metrical topologies by a concept of logical convergence. We then apply the approach to
maps from dynamic epistemic logic, showing that product updates with action models yield continuous
maps, hence allowing for an interpretation of the iterated updates as discrete time dynamical systems.

§1. Introduction. This paper introduces and investigates a family of metrics
applicable to finite and countably infinite strings and, by extension, formal structures
described by a countable language. The family of metrics is a weighted generalization
of the Hamming distance [29]. On formal structures, each such metric corresponds
to assigning positive weights to a chosen subset of some language describing the
structure. The distance between two structures, then, is the sum of the weights of
formulas on which the two structures differ in valuation.

While the approach is generally applicable, our main target is metrics on sets of
pointed Kripke models, the most widely used semantic structures for modal logic.
Apart from mathematical interest, there are several motivations for having a metric
between pointed Kripke models. Among these are applications in iterated multi-
agent belief revision [2, 14–16, 35], logical meta-theory [24], and the application
of dynamical systems theory to information dynamics modeled using dynamic
epistemic logic [6–9, 32, 33, 38–40]. The latter is our main interest. In a nutshell,
this paper contains a theoretical foundation for considering the logical dynamics of
dynamic epistemic logic as discrete time dynamical systems: Compact metric spaces
(of pointed Kripke models) together with continuous transition functions acting on
them.

We have used this foundation in [33] to study the recurrent behavior of clean
maps defined through action models and product update. Among the recurrence
results, we show clean maps induced by finite action models may have uncountably
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many recurrent points, even when initiated on a finite input model. In [32], we use a
result by Edelstein [20], that every contractive map on a compact metric space has
a unique fixed point, to contribute to the discussion concerning the attainability of
common knowledge under unreliable communication [1, 21, 22, 26, 28, 44]. We show
that the communicating generals may converge to a state of common knowledge iff
their language of communication does not include a common knowledge operator.

The paper proceeds as follows: Section 2 presents the weighted generalization of
the Hamming distance which in Section 3 is shown applicable to arbitrary sets
of structures, given that the structures are abstractly described by a countable
set of formulas within a possibly multi-valued semantics. Pointed Kripke models
are in focus from Section 4 on, where we show these a concrete instantiation
of the metrics defined. Section 5 is on topological properties of the resulting
metric spaces. We show that two metrics are topologically equivalent when they
agree on which formulas to assign strictly positive weight. The resulting topologies
are generalizations of the Stone topology, referred to as Stone-like topologies. We
investigate their properties including a clopen set characterization. Section 6 relates
the metrics to other metrics from the literature, arguing that the present approach
generalize them. Section 7 concerns convergence and limit points. A main result here
is that Stone-like topologies are characterized by a logical convergence criterion,
providing an argument for their naturalness. This results strengthens a result of [31].
Further, standard modal logics are used to exemplify discrete, imperfect, and perfect
spaces, including relations to the Cantor set. Section 8 concerns mappings induced
by product updates with multi-pointed action models—a particular graph product,
widely used and studied in dynamic epistemic logic [3–5, 8, 11, 19]. As a final result,
we show these induced maps continuous with respect to Stone-like topologies, thus
establishing the desired connection between dynamic epistemic logic and discrete
time dynamical systems.

§2. Generalizing the Hamming distance. The method we propose for defining
distances between pointed Kripke models is a special case: The general approach
concerns distances between finite or infinite strings of letters from some given set,
V. In a logical context, the set V may contain truth values for some logic, e.g., with
V = {0, 1} for normal modal logics. Pointed Kripke models are then represented
by countably infinite strings of values from V : Given some enumeration of the
corresponding modal language, a string will have a 1 on place k just in case the
model satisfies the kth formula, 0 else (cf. Section 4).

A distance on sets of finite strings of a fixed length has been known since 1950,
when it was introduce by Hamming [29]. Informally, the Hamming distance between
two such strings is the number of places on which the two strings differ. This distance
is, in general, not well-defined on sets of infinite strings. To accommodate infinite
strings, we generalize the Hamming distance:

Definition. Let S be a set of strings over a set V such that S ⊆ V n for some
n ∈ N ∪ {�}. For each k ≤ n, define a disagreement map dk : S × S −→ {0, 1} by

dk(s, s ′) =

{
0, if sk = s ′k,
1, else.
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Call w : N −→ R>0 a weight function if it assigns a strictly positive weight to each
natural number such that (w(k))k∈N forms a convergent series, i.e.,

∑∞
k=1w(k) <∞.

For weight function w, the distance function dw : S × S −→ R is then defined by,
for each s, s ′ ∈ S

dw(s, s ′) =
∞∑
k=1

w(k)dk(s, s ′).

Proposition 1. Let S and dw be as above. Then dw is a metric on S.

Proof. The proof is straightforward. �
The Hamming distance is indeed a special case of this Definition: For S ⊆ Rn, the

Hamming distance dH is defined (cf. [17]) by dH (s, s ′) = |{i : 1 ≤ i ≤ n, si 	= s ′i }|.
Then dH is the metric dh with weight function h(k) = 1 for 1 ≤ k ≤ n, h(k) = 2–k

for k > n.

§3. Metrics for formal structures. The above metrics may be indirectly applied to
any set of structures that serves as semantics for a countable language. In essence,
what is required is simply an assignment of suitable weights to formulas of the
language. To illustrate the generality of the approach, we initially take the following
inclusive view on semantic valuation:

Definition. Let a valuation be any map � : X ×D −→ V where X and V are
arbitrary sets, and D is countable. Refer to elements of X as structures, to D as the
descriptor, and to elements of V as values.

A valuation � assigns a value from V to every pair (x, ϕ) ∈ X ×D. Jointly, � and
X thus constitute a V -valued semantics for the descriptor D.

Definition. Given a valuation � : X ×D −→ V and a subset D′ of D, denote
by X D′ the quotient of X under D′ equivalence, i.e., X D′ = {xD′ : x ∈ X} with
xD′ = {y ∈ X : �(y, ϕ) = �(x, ϕ) for all ϕ ∈ D′}.

When the descriptor D is clear from context, we write x for elements of X D . We
also write �(x, ϕ) for �(x, ϕ) when ϕ ∈ D. Finally, we obtain a family of metrics on
a quotient X D in the following manner:

Definition. Let � : X ×D −→ V be a valuation and ϕ1, ϕ2, ... an enumeration
of D. For each ϕk ∈ D, define a disagreement map dk : X ×X −→ {0, 1} by

dk(x, y) =

{
0, if �(x, ϕk) = �(y , ϕk),
1, else.

Call w : D −→ R>0 a weight function if it assigns a strictly positive weight to each
ϕ ∈ D such that

∑
ϕ∈D w(ϕ) <∞.

For weight function w, the distance function dw : X D ×X D −→ R is then defined
by, for each x, y ∈ X D

dw(x, y) =
|D|∑
k=1

w(ϕk)dk(x, y).

The set of such maps dw is denoted D(X,�,D).
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Proposition 2. Every dw ∈ D(X,�,D) is a metric on X D .

Proof. Follows from Proposition 1 when identifying each x with (�(x, ϕi))i∈N.
�

§4. The application to pointed Kripke models. We follow the approach just
described to apply the metrics to pointed Kripke model. Let X be a set of pointed
Kripke models and D a set of modal logical formulas. Interpreting the latter over the
former using standard modal logical semantics gives rise to a binary set of values,
V, and a valuation function � : X ×D → V equal to the classic interpretation of
modal formulas on pointed Kripke models. In the following, we consequently omit
references to �, writing D(X,D) for the family of metrics D(X,�,D).

4.1. Pointed Kripke models, their language and logics. Let be given a signature
consisting of a countable, non-empty set of propositional atoms Φ and a countable,
non-empty set of operator indices, I. Call the signature finite when both Φ and I are
finite. The modal language L for Φ and I is given by

ϕ := 
 | p | ¬ϕ | ϕ ∧ ϕ | �iϕ
with p ∈ Φ and i ∈ I. The language L is countable.

A Kripke model for Φ and I is a tupleM = (�M � , R, �·�) where:

– �M � is a non-empty set of states;
– R : I → P(�M �2) assigns to each i ∈ I an accessibility relation R(i);
– �·� : Φ → P(�M �) is a valuation, assigning to each atom a set of states.

A pair (M, s) with s ∈ �M � is a pointed Kripke model. For the pointed Kripke model
(M, s), the shorter notationMs is used. For R(i), we write Ri .

The modal language is evaluated over pointed Kripke models with standard
semantics:

Ms � p iff s ∈ �p� , for p ∈ Φ,

Ms � ¬ϕ iff Ms 	� ϕ,
Ms � ϕ ∧ � iff Ms � ϕ andMs � �,
Ms � �iϕ iff for all t, sRi t impliesMt � ϕ.

Throughout, when referring to a modal language L alongside a sets of pointed
Kripke models X, we tacitly assume that all models in X share the signature of L.

Logics may be formulated in L. Here, we take a (modal) logic to be a subset of
formulas Λ ⊆ Lwhich contains all instances of propositional tautologies, include for
each i ∈ I the K-axiom �i(p → q) → �ip → �i q, is closed under Modus ponens
(if ϕ and ϕ → � are in Λ, then so is �), Uniform substitution (if ϕ is in Λ, then so is
ϕ′, where ϕ′ is obtained from ϕ by uniformly replacing proposition letters in ϕ by
arbitrary formulas), and Generalization (if ϕ is in Λ, then so is �iϕ).

Every logic here is thus an extension of the minimal normal modal logic K over the
language L. Normality is a minimal requirement for soundness and completeness
with respect to classes of pointed Kripke models (see, e.g., [12]).

4.2. Descriptors for pointed Kripke models. We use sets of L-formulas as
descriptors for Kripke models. When two models disagree on the truth value of some
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formula ϕ, this contributes w(ϕ) to their distance. The choice of descriptor hence
reflects the aspects of interests. To avoid double counting, one may pick descriptors
that do not contain logically equivalent formulas. Hence, even if interested in all
L-expressible aspects, one may still pick a strict subset of L as descriptor:

Definition. Let L be a language for the set of pointed Kripke models X. A
descriptor is any set D ⊆ L. Say D is L-representative over X if, for every ϕ ∈ L,
there is a set {�i}i∈I ⊆ D such that any valuation of {�i}i∈I semantically entails
either ϕ or ¬ϕ over X. If the set {�i}i∈I can always be chosen finite, call D finitely
L-representative over X. For a logic Λ, say D is Λ-representative if it is
L-representative over some space X of pointed Λ-models in which every Λ-consistent
set is satisfied in some x ∈ X . Let

D := D ∪ {¬ϕ : ϕ ∈ D}.
The main implication of a descriptor beingL-representative is thatX D is identical

to X L (cf. Lemma 3). We do not generally assume descriptors representative.

4.3. Modal spaces. We construct metrics on sets of structures modulo some modal
equivalence. In parlance, we follow [31] in referring to modal spaces:

Definition. With X a set of pointed Kripke models and D a descriptor, the modal
spaceX D is the set {xD : x ∈ X}withxD = {y ∈ X : ∀ϕ ∈ D, y � ϕ iff x � ϕ}. The
truth set of ϕ ∈ L in X D is [ϕ]D = {x ∈ X D : ∀x ∈ x, x � ϕ}.

The subscripts of xD and [ϕ]D are omitted when the descriptor is clear from
context. Write xD � ϕ for xD ∈ [ϕ]D .1

The coarseness of the modal space X D is determined by the descriptor, with two
extremes: At its finest, D = L yields as X D the quotient of X under L-equivalence,
X L; at its coarsest, D = {
} produces as X D simply {{X}}. To obtain the finest
modal space X L, L is not the only admissible descriptor:

Lemma 3. If D ⊆ L is L-representative for X, then X D is identical to X L, i.e., for
all x ∈ X , xD = xL.

Proof. xL ⊆ xD : Trivial. xD ⊆ xL: Let y ∈ xD and let ϕ ∈ L. We show the
left-to-right of x � ϕ ⇔ y � ϕ, the other direction being similar: Assume x � ϕ.
Let S = {� ∈ D : x � �}. By representativity, there is no x′ ∈ X satisfying
S ∪ {¬� : � ∈ D \ S} ∪ {¬ϕ}. Since y ∈ xD it satisfies S ∪ {¬� : � ∈ D \ S} and
hence also ϕ, i.e., y � ϕ. �

4.4. Metrics on modal spaces. With the introduced, we obtain a family D(X,D) of
metrics on the D-modal space of a set of pointed Kripke models X :

Proposition 4. Let D ⊆ L, let X be a set of pointed Kripke models, let � : X D ×
D → {0, 1} be a valuation given by �(x, ϕ) = 1 iff x ∈ [ϕ]D , and let w : D → R>0 be
a weight function. Then dw is a metric on X D .

Proof. Immediate from Proposition 2 as � is well-defined. �

1There are degenerate cases where [ϕ]D ∪ [¬ϕ]D �= XD . This occurs only if ϕ,¬ϕ �∈ D and there are
x, y with xD = yD but x � ϕ, y � ¬ϕ, for x, y ∈ X . If D is L-representative over X, no degenerate cases
occur: Then [ϕ]D ∪ [¬ϕ]D = XD for all ϕ ∈ L.
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§5. Topological properties. In fixing a descriptor D for X, one also fixes the family
of metrics D(X,D). The members of D(X,D) vary in their metrical properties (see
Section 6), but topologically, all members of D(X,D) are equivalent. To show this, we
work with the following generalization of the Stone topology:

Definition. Let X D be a modal space. The Stone-like topology on X D is
the topology TD given by the subbasis SD of all sets {x ∈ X D : x � ϕ} and
{x ∈ X D : x � ¬ϕ} for ϕ ∈ D.

As D need not be closed under conjunction, this subbasis is, in general, not a basis.
When D ⊆ L is L-representative over X, X D is identical to X L, and the Stone-like
topology TD on X D is a coarsening of the Stone topology on X L which is generated
by the basis {{x ∈ X L : x � ϕ} : ϕ ∈ L}. If D is finitely L-representative over X, TD
is identical to the Stone topology on X L.

We can now state the promised topological equivalence:

Proposition 5. The metric topology Tw of any metric dw ∈ D(X,D) on X D is the
Stone-like topology TD .

Proof. Tw ⊇ TD : It suffices to show the claim for all elements of the subbasis SD
of TD . Let x ∈X D∩BD for some BD ∈SD . Then BD is of the form {y ∈X D : y � ϕ}
or {y ∈ X D : y � ¬ϕ} for some ϕ ∈ D. The cases are symmetric, so assume the
former. As x ∈ BD , x � ϕ. As ϕ ∈ D, its weight w(ϕ) in the metric dw is strictly
positive. The open ball B(x, w(ϕ)) of radiusw(ϕ) around x is a basis element of Tw
and contains x. Moreover,B(x, w(ϕ)) ⊆ BD , since y 	� ϕ implies dw(x, y) ≥ w(ϕ).
Hence Tw is finer than TD .

Tw ⊆ TD : Let x ∈ X D ∩ B for B an element of Tw ’s metrical basis. That is, B
is of the form B(y , �) for some � > 0. Let � = � – dw(x, y). Note that � > 0. Let
ϕ1, ϕ2, ... be an enumeration of D. Since

∑|D|
i=1w(ϕi) <∞, there is some n such

that
∑|D|
i=n w(ϕi) < �. For j < n, let �j := ϕi if x � ϕj and �j := ¬ϕi otherwise. Let

� =
∧
j<n �j . By construction, all z with z � � agree with x on the truth values

of ϕ1, ... , ϕn–1 and thus dw(x, z) < �. By the triangular inequality, this implies
dw(y, z) < � and hence {z ∈ X D : z � �} ⊆ B . Furthermore, since TD is generated
by a subbasis containing {x ∈ X D : x � ϕ} and {x ∈ X D : x � ¬ϕ} for ϕ ∈ D, we
have {z ∈ X D : z � �} ∈ TD as desired. �

As for any set of models X and any descriptor D the set D(X,D) is non-empty,
we get:

Corollary 6. Any Stone-like topology TD on a space X D is metrizable.

5.1. Stone spaces. The Stone topology is well-known, but typically defined on the
set of ultrafilters of a Boolean algebra, which it turns into a Stone space: A totally
disconnected, compact, Hausdorff topological space. When equipping modal spaces
with Stone-like topologies, Stone spaces often result.

Proposition 7. For any descriptor D, the space (X D, TD) is totally disconnected
and Hausdorff.

Proof. As x 	= y , there is a ϕ ∈ D such that x � ϕ while y 	� ϕ (or vice versa).
The sets A = {z ∈ X D : z � ϕ} and A = {z ′ ∈ X D : z � ¬ϕ} are both open in
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the Stone-like topology, A ∩ A = ∅, and A ∪ A = X D . As x ∈ A and y ∈ A (or
vice versa), the space (X D, TD) is totally disconnected. It is Hausdorff as it is
metrizable. �

The space (X D, TD), D ⊆ L, is moreover compact when two requirements are
satisfied: First, there exists a logic Λ sound with respect to X which is (logically)
compact: An arbitrary set A ⊆ L of formulas is Λ-consistent iff every finite subset
of A is.2 As second requirement, we must assume the set X sufficiently rich in model
diversity. In short, we require that every Λ-consistent subset of D has a model in X :

Definition. Let D ⊆ L and let Λ be sound with respect to X. Then X is
Λ-saturated with respect to D if for all subsets A,A′ ⊆ D such that B = A ∪
{¬ϕ : ϕ ∈ A′} is Λ-consistent, there exists x in X such that x � � for all � ∈ B .
If D is also L-representative over X, then X is Λ-complete.

For logical compactness, Λ-saturation is a sufficient richness conditions (cf. the
proposition below). Remark 5.1 discusses Λ-saturation and Λ-completeness.

Proposition 8. If Λ is compact and X is Λ-saturated with respect to D ⊆ L, then
the space (X D, TD) is compact.

Proof. A basis of TD is given by the family of all sets {x ∈ X D : x � �}
with � of the form � = �1 ∧ ··· ∧ �n where �i ∈ D for all i ≤ n. Show (X D, TD)
compact by showing that every open, basic cover has a finite subcover. Suppose
{{x ∈ X D : x � �i} : i ∈ I } covers X D , but contains no finite subcover. Then every
finite subset of {¬�i : i ∈ I } is satisfied in some x ∈ X D and is hence Λ-consistent.
By compactness of Λ, the set {¬�i : i ∈ I } is thus also Λ-consistent. Hence, by
saturation, there is an x ∈ X D such that x � ¬�i for all i ∈ I . But then x cannot be
in {x ∈ X D : x � �i} for any i ∈ I , contradicting that {{x ∈ X D : x � �i} : i ∈ I }
covers X . �

Propositions 7 and 8 jointly yield the following:

Corollary 9. Let Λ ⊆ L be a compact modal logic sound and complete with
respect to the class of pointed Kripke models C. Then (CL, TL) is a Stone space.

Proof. The statement follows immediately from the propositions of this section
when CL is ensured to be a set using Scott’s trick [41]. �

Remark. When D isL-representative for X andX D is Λ-saturated, one obtains a
very natural space, containing a unique point satisfying each maximal Λ-consistent
set of formulas. It is thus homeomorphic to the space of all complete Λ-theories
under the Stone topology of L. Such spaces have been widely studied (see, e.g., [24,
30, 43]). Calling such spaces Λ-complete reflects that the joint requirement ensures
that the logic Λ is complete with respect to the set X, but that the obligation of
sufficiency lies on the set X to be inclusive enough for Λ, not on Λ to be restrictive
enough for X.

2Many modal logics are compact, including every basic modal logic (cf., e.g., [10]), but not all are:
Examples of non-compact modal logics include logics with a common knowledge operator [19, 7.3] or
with Kleene star as a PDL constructor [12, 4.8].

https://doi.org/10.1017/jsl.2022.74 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.74


476 DOMINIK KLEIN AND RASMUS K. RENDSVIG

5.2. Clopen sets in Stone-like topologies. With the Stone-like topology TD
generated by the subbasis SD = {[ϕ]D, [¬ϕ]D : ϕ ∈ D}, all subbasis elements are
clearly clopen: If U is of the form [ϕ]D for some ϕ ∈ D, then the complement of U
is the set [¬ϕ]D , which again is a subbasis element. Hence both [ϕ]D and [¬ϕ]D are
clopen. More generally, we obtain the following:

Proposition 10. Let Λ be a logic sound with respect to the set of pointed Kripke
models X. If Λ is compact and D is Λ-representative, then [ϕ]D is clopen in TD for
every ϕ ∈ L. If (X D, TD) is also topologically compact, then every TD clopen set is of
the form [ϕ]D for some ϕ ∈ L.

Proof. To show that under the assumptions, [ϕ]D is clopen in TD , for every
ϕ ∈ L, we first show the claim for the special case where X is such that every
Λ-consistent set Σ is satisfied in somex ∈ X . By Proposition 5, it suffices to show that
{x ∈ X D : x � ϕ} is open for ϕ ∈ L\D. Fix such ϕ. As D is Λ-representative,X D is
identical to X L (cf. Lemma 3). Hence [ϕ] := {x ∈ XD : x � ϕ} is well-defined. To
see that [ϕ] is open, pickx ∈ [ϕ] arbitrarily. We find an open set U withx ∈ U ⊆ [ϕ]:
LetDx = {� ∈ D : x � �}. As witnessed by x, the setDx ∪ {ϕ} is Λ-consistent. As
D is Λ-representative, Dx thus semantically entails ϕ over X. Hence, no model
y ∈ X satisfies Dx ∪ {¬ϕ}. By the choice of X, X D is Λ-saturated with respect to
D. This implies that the set Dx ∪ {¬ϕ} is Λ-inconsistent. By the compactness of Λ,
a finite subset F of Dx ∪ {¬ϕ} is inconsistent. Without loss of generality, we can
assume that ¬ϕ ∈ F . Inconsistency of F implies that�1 ∧ ··· ∧ �n → ϕ is a theorem
of Λ. On the semantic level, this translates to

⋂
i≤n[�i ] ⊆ [ϕ]. As each [�i ] is open,⋂

i≤n[�i ] is an open neighborhood of x contained in [ϕ].
Next, we prove the general case. Let X be any set of Λ-models and let Y be

such that every Λ-consistent set Σ is satisfied in some y ∈ Y . Then the function
f : X D → Y D that sends x ∈ X D to the unique y ∈ Y D with x � ϕ ⇔ y � ϕ
for all ϕ ∈ L is a continuous map from (X D, TD) to (Y D, TD) with
f–1 ({y ∈ Y D : y � ϕ}) = {x ∈ X D : x � ϕ}. By the first part, {y ∈ Y D : y � ϕ}
is clopen in Y D . As the continuous pre-image of clopen sets is clopen, this shows
that {x ∈ X D : x � ϕ} is clopen.

To establish that every TD clopen set is of the form [ϕ]D for some ϕ ∈ L if
(X D, TD) is also topologically compact, it suffices to show that ifO ⊆ X D is clopen,
then O is of the form [ϕ]D for some ϕ ∈ L. So assume O is clopen. As O and
its complement O are open, there are formulas �i , �i ∈ D for i ∈ N such that
O =

⋃
i∈N

[�i ]D and O =
⋃
i∈N

[�i ]D . Hence {[ϕi ]D : i ∈ N} ∪ {[�i ]D : i ∈ N} is
an open cover ofX D . By topological compactness, it contains a finite subcover. That
is, there are I1, I2 ⊂ N finite such thatX D =

⋃
i∈I1 [�i ]D ∪

⋃
i∈I2 [�i ]D . In particular,

O =
⋃
i∈I1 [�i ]D = [

∨
i∈I1 �i ]D which is what we had to show. �

By Proposition 8, two immediate consequences are:

Corollary 11. Let Λ be sound with respect to the set of pointed Kripke models X.
If Λ is compact, D is Λ-representative, and X is Λ-saturated with respect to D, then
the TD clopen sets are exactly the sets of the form [ϕ]D , ϕ ∈ L.

Corollary 12. Let Λ ⊆ L be a compact modal logic sound and complete with
respect to some class of pointed Kripke models C. Then the TD clopen sets are exactly
the sets of the form [ϕ]D , ϕ ∈ L.
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Compactness is essential to Proposition 10’s characterization of clopen sets:

Proposition 13. Let X D be Λ-saturated with respect to D and D be
Λ-representative, but Λ not compact. Then there exists a set U clopen in TD that
is not of the form [ϕ]D for any ϕ ∈ L.

Proof. As Λ is not compact, there exists a Λ-inconsistent set of formulas
S = {�i : i ∈ N} for which every finite subset is Λ-consistent. For simplicity of
notation, define ϕi := ¬�i . As X D is Λ-saturated with respect to D, {[ϕi ]}i∈N is
an open cover of X D that does not contain a finite subcover. For i ∈ N let 	i
be the formula ϕi ∧

∧
k<i ¬ϕk . In particular, we have that (i) [	i ] ∩ [	j ] = ∅ for

all i 	= j and (ii)
⋃
i∈N

[	i ] =
⋃
i∈N

[ϕi ] = X D , i.e., {[	i ]}i∈N is a disjoint cover
of X D . We further have that [	i ] ⊆ [ϕi ]; hence {[	i ]}i∈N cannot contain a finite
subcover {[	i ]}i∈I of X D , as the corresponding {[ϕi ]}i∈I would form a finite cover.
In particular, infinitely many [	i ] are non-empty. Without loss of generality, assume
that all [	i ] are non-empty. For all S ⊆ N, the setUS =

⋃
i∈S [	i ] is open. As all [	i ]

are mutually disjoint, the complement of US is
⋃
i �∈S [	i ] which is also open; hence

US is clopen. Using again that all [	i ] are mutually disjoint and non-empty, we have
that US 	= US′ whenever S 	= S ′. Hence, {US : S ⊆ N} is an uncountable family of
clopen sets. As L is countable, there must be some element of {US : S ⊆ N} which
is not of the form [ϕ] for any ϕ ∈ L. �

§6. A comparison to alternative metrics. Metrics for Kripke models have been
considered elsewhere. For the purpose of belief revision, Caridroit et al. [14] present
six metrics on finite sets of pointed KD45 Kripke models. These may be shown
special cases of the present syntactic approach. A modal space X L may be finite
when X is finite—as is explicitly assumed by Caridroit et al. in [14]—or in special
cases, e.g., single-operator S5 models for finite atoms. In these settings, for any
metric d on X L there is a metric dw ∈ D(X,D) equivalent with d up to translation:

Proposition 14. Let (X L, d ) be a finite metric modal space. Then there exist a
descriptor D ⊆ L finitely L-representative over X, a metric dw ∈ D(X,D), and some
c ∈ R such that dw(xD, yD) = d (xL, yL) + c for all x 	= y ∈ X L.

Proof. SinceX L is finite, there is some ϕx ∈ L for each x ∈ X L such that for all
y ∈ X , if y � ϕx , then y ∈ x. Moreover, letϕ{x,y} denote the formulaϕx ∨ ϕy which
holds true in z ∈ X L iff z = x or z = y . LetD = {ϕx : x ∈ X L} ∪ {ϕ{x,y} : x 	= y ∈
X L}. It follows that X D = X L; hence D is finitely representative over X.

Next, partition the finite set X L ×X L according to the metric d: Let S1, ... , Sk
be the unique partition of X L ×X L that satisfies, for all i, j ≤ k:

1. If (x,x′) ∈ Si and (y , y ′) ∈ Si , then d (x,x′) = d (y , y ′).
2. If (x,x′) ∈ Si and (y , y ′) ∈ Sj for i < j, then d (x,x′) < d (y , y ′).

For i ≤ k, let bi denote d (x, y) for any (x, y) ∈ Si . Define a weight function w :
D → R>0 by

w(ϕx) =
∑k
i=1

∑
(y ,z)∈Si
x ��=y ,z

1+bk–bi
4 ,

w(ϕ{x,y}) = 2 · 1+bk–bi
4 for the i with (x, y) ∈ Si .
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By symmetry, (x, y) ∈ Si implies (y ,x) ∈ Si ; thus w(ϕ{x,y}) is well-defined. We get
for each x that

w(ϕx) +
∑
y �=x w(ϕ{x,y}) =

∑k
i=1

∑
(y ,z)∈Si
x �∈{y ,z}

1+bk–bi
4 +

∑k
i=1

∑
(y ,z)∈Si
x∈{y ,z}

1+bk–bi
4

=
∑k
i=1

∑
(y ,z)∈Si

1+bk–bi
4 .

For simplicity, let a denote
∑k
i=1

∑
(y ,z)∈Si

1+bk–bi
4 , the rightmost term of the previous

equation. Next, note that two models x and y differ on exactly the formulas ϕx , ϕy
and all ϕ{x,z} and ϕ{y ,z} for z 	= x, y . In particular,

dw(x, y) = w(ϕx) + w(ϕy) +
∑
z �=x,y w(ϕ{x,z}) +

∑
z �=x,y w(ϕ{y ,z})

= w(ϕx) + w(ϕy) +
∑
z �=x w(ϕ{x,z}) +

∑
z �=y w(ϕ{y ,z}) – 2w(ϕ{x,y})

= 2a – 4 · 1+bk–bi
4 = 2a + bi – 1 – bk,

where i is such that {x, y} ∈ Si . Denoting 2a – 1 – bk by c, we get that dw(x, y) =
d (x, y) + c whenever x 	= y . �

Caridroit et al. also consider a semantic similarity measure of Aucher [2] from
which they define a distance between finite pointed Kripke models. The construction
of the distance is somewhat involved and we do not attempt a quantitative
comparison. As to a qualitative analysis, then neither Caridroit et al. nor Aucher
offers any form of topological analysis, making comparison non-straightforward.
As the fundamental measuring component in Aucher’s distance is based on degree
of n-bisimilarity, we conjecture that the topology on the spaces of Kripke models
generated by this distance is the n-bisimulation topology, the metric topology of the
n-bisimulation metric (defined below), inspired by Goranko’s quantifier depth based
distance for first-order logical theories [24]. Finally, Sokolsky et al. [42] introduce a
quantitative bisimulation distance for finite, labeled transition systems and consider
its computation. Again, we conjecture the induced topology is the n-bisimulation
topology.

6.1. Degrees of bisimilarity. Contrary to our syntactic approach to metric
construction, a natural semantic approach rests on bisimulations. The notion of
n-bisimilarity may be used to define a semantically based metric on quotient spaces
of pointed Kripke models where degrees of bisimilarity translate to closeness in
space—the more bisimilar, the closer:

Let X be a set of pointed Kripke models for which modal equivalence and
bisimilarity coincide3 and let �n relate x, y ∈ X iff x and y are n-bisimilar. Then

dB(x, y) =

{
0, if x �n y for all n,

1
n+1 , if n is the least integer such that x 	�n y

(1)

is a metric on X L. Refer to dB as the n-bisimulation metric.

3That all models in X are image-finite is a sufficient condition (cf. the Hennessy–Milner Theorem).
See, e.g., [12] or [25]. In this case, the n-bisimulation metric is equivalent with the direct adoption of
Goranko’s first-order theory metric to modal spaces, with the second case of Equation (1) set to “if n
is the least integer such that n(x) �= n(y),” where n(x) is the set of formulas of modal depth n satisfied
by x.
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For X and L based on a finite signature, the n-bisimulation metric is a special case
of the presented approach:

Proposition 15. Let L have finite signature and let (X L, dB) be a metric
modal space under the n-bisimulation metric. Then there exists a D ⊆ L such that
dB ∈ D(X,D).

Proof. With L of finite signature, every model in X has a characteristic formula
up to n-bisimulation: For each x ∈ X , there exists aϕx,n ∈ L such that for all y ∈ X ,
y � ϕx,n iff x �n y (cf. [25, 37]). Given that both Φ and I are finite, so is, for each n,
the set Dn = {ϕx,n : x ∈ X} ⊆ L. Pick the descriptor to be D =

⋃
n∈N
Dn. Then D

is L-representative for X, so X D is identical to X L (cf. Lemma 3).
Let a weight function b be given by

b(ϕ) = 1
2

(
1
n+1 – 1

n+2

)
for ϕ ∈ Dn.

Then db , defined by db(x, y) =
∑∞
k=1 b(ϕk)dk(x, y), is a metric on X L

(cf. Proposition 4).
As models x and y will, for all n, either agree on all members of Dn or disagree

on exactly 2 (namely ϕn,x and ϕn,y) and as, for all k ≤ n, y � ϕn,x implies y � ϕk,x ,
and for all k ≥ n, y 	� ϕn,x implies y 	� ϕk,x , we obtain that

db(x, y) =

{
0, if x �n y for all n,∑∞
k=n0

2 · 1
2

(
1
k+1 – 1

k+2

)
= 1
n0+1 , n0 = minn∈N{x 	�n y},

which is exactly dB . �

Remark 16. The construction can be made independent of the set X to the effect
that the constructed metric db is exactly dB on any L-modal space X L.

The n-bisimulation metric only is a special case when the set of atoms and number
of modalities are both finite: If either is infinite, there is no metric in D(X,D) for a
descriptor D ⊆ L that is equivalent to the n-bisimulation metric. This follows from
an analysis of its metric topology, the n-bisimulation topology, TB . A basis for this
topology is given by all subsets of X L of the form

Bxn = {y ∈ X L : y �n x}

for x ∈ X L and n ∈ N.
By Propositions 5 and 15—and the fact that the set D constructed in the proof of

the latter is finitely L-representative over X—we obtain the following:

Corollary 17. If L has finite signature, then the n-bisimulation topology TB is the
Stone(-like) topology TL.

This is not the general case:

Proposition 18. IfL is based on an infinite set of either atoms or operators, then the
n-bisimulation topology TB is strictly finer than the Stone(-like) topology TL on X L.

Proof. TB 	⊆ TL: In the infinite atoms case, TB has as basis element Bx0,
consisting exactly of those y such that y and x share the same atomic valuation,
i.e., are 0-bisimilar. Clearly, x ∈ Bx0. There is no formula ϕ for which the TL basis
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elementB = {z ∈ X : z � ϕ} contains x and is contained inBx0: This would require
that ϕ implied every atom or its negation, requiring the strength of an infinitary
conjunction. For the infinite operators case, the same argument applies, but using
Bx1, containing exactly those y for which x and y are 1-bisimilar.

TL ⊆ TB : Consider any ϕ ∈ L and the corresponding TL basis element
B = {y ∈ X : y � ϕ}. Assume x ∈ B . Let the modal depth of ϕ be n. Then
for every z ∈ Bxn, z � ϕ. Hence x ∈ Bxn ⊆ B . �

The discrepancy in induced topologies results as the n-bisimulation metric, in the
infinite case, introduces distinctions not finitely expressible in the language: If there
are infinitely many atoms or operators, there does not exist a characteristic formula
ϕx,n satisfied only by models n-bisimilar to x.

The additional open sets are not without consequence—a modal space compact in
the Stone(-like) topology need not be so in the n-bisimulation topology: Let X L be
an infinite modal space with L based on an infinite atom set and assume it compact
in the Stone(-like) topology. It will not be compact in the n-bisimulation topology:
{Bx0 : x ∈ X} is an open cover of X L which contains no finite subcover.

§7. Convergence and limit points. We next turn to dynamic aspects of Stone-like
topologies. In particular, we focus on the nature of convergent sequences in Stone-like
topologies and such topologies’ isolated points.

7.1. Convergence. Being Hausdorff, topological convergence in Stone-like
topologies captures the geometrical intuition of a sequence (xn) converging to
at most one point, its limit. We write (xn) → x when x is the limit of (xn). In general
Stone-like topologies, such a limit need not exist.

Convergence in Stone-like topologies also satisfies a natural logical intuition,
namely that a sequence and its limit should eventually agree on every formula of the
language used to describe them. This intuition is captured by the notion of logical
convergence, introduced in [31]:

Definition. Let X D be a modal space. A sequence of points (xn) logically
converges to x in X D iff for every � ∈ {ϕ,¬ϕ : ϕ ∈ D} for which x � �, there
exists some N ∈ N such that xn � �, for all n ≥ N .

The following proposition identifies a tight relationship between Stone-like
topologies, topological and logical convergence, strengthening a result in [31]:

Proposition 19. Let X D be a modal space and T a topology on X D . Then the
following are equivalent:

1. A sequence x1,x2, ... of points from X D converges to x in (X D, T ) if, and only
if, x1,x2, ... logically converges to x in X D .

2. T is the Stone-like topology TD on X D .

Proof. 2 ⇒ 1 : This is shown, mutatis mutandis, in [31, Proposition 2].
1 ⇒ 2 : TD ⊆ T : We show that T contains a subbasis of TD : for all ϕ ∈ D,

[ϕ], [¬ϕ] ∈ T . We show that [ϕ] is open in T by proving that [¬ϕ] is closed in T ,
qua containing all its limit points: Assume the sequence (xi) ⊆ [¬ϕ] converges to x
in (X D, T ). For each i ∈ N, we have xi � ¬ϕ. As convergence is assumed to imply
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logical convergence, then also x � ¬ϕ. Hence x ∈ [¬ϕ], so [¬ϕ] is closed in T . That
[¬ϕ] is open in T follows by a symmetric argument. Hence TD ⊆ T .

T ⊆ TD : The reverse inclusion follows as for every element x of any open set
U of T , there is a basis element B of TD such that x ∈ B ⊆ U . Let U ∈ T and let
x ∈ U . Enumerate the set {� ∈ D : x � �} as �1, �2, ... , and consider all con-
junctions of finite prefixes �1, �1 ∧ �2, �1 ∧ �2 ∧ �3, ... of this enumeration. If for
some k, [�1 ∧ ··· ∧ �k] ⊆ U , thenB = [�1 ∧ ··· ∧ �k] is the desired TD basis element
as x ∈ [�1 ∧ ··· ∧ �k] ⊆ U . If there exists no k ∈ N such that [�1 ∧ ··· ∧ �k] ⊆ U ,
then for each m ∈ N, we can pick an xm such that xm ∈ [�1 ∧ ··· ∧ �m] \U . The
sequence (xm)m∈N then logically converges to x. Hence, by assumption, it also
converges topologically to x in T . Now, for eachm ∈ N, xm is inUc , the compliment
of U. However, x /∈ Uc . Hence, Uc is not closed in T , so U is not open in T .
This is a contradiction, rendering impossible that there is no k ∈ N such that
[�1 ∧ ··· ∧ �k] ⊆ U . Hence TD ⊆ T . �

In [31], the satisfaction of point 1 was used as motivation for working with Stone-
like topologies. Proposition 19 shows that this choice of topology was necessary,
if one wants the logical intuition satisfied. Moreover, it provides a third way of
inducing Stone-like topologies, different from inducing them from a metric or a
basis, namely through sequential convergence.4

7.2. Isolated points. The existence of isolated points may be of interest, e.g., in
information dynamics. A sequence (xn) in A ⊆ X D converges to an isolated point
x in A ⊆ X D iff for some N, for all k > N , xk = x. Hence, if the goal of a given
protocol is satisfied only at isolated points, the protocol will either be successful in
finite time or not at all.

The existence of isolated points in Stone-like topologies is tightly connected
with the expressive power of the underlying descriptor. Say that a point x ∈ X D
is characterizable by D in X D if there exists a finite set of formulas A ⊆ D such that
for all y ∈ X D , if y � ϕ for all ϕ ∈ A, then y = x. We obtain the following:

Proposition 20. Let (X D, TD) be a modal space with its Stone-like topology. Then
x ∈ X D is an isolated point of X D iff x is characterizable by D in X D .

Proof. Left-to-right: If {x} is open in TD , it must be in the basis of TD and
thus a finite intersection of subbasis elements, i.e., {x} =

⋂
ϕ∈A[ϕ] for some finite

A ⊆ D. Then A characterizes x. Right-to-left: Let A characterize x in X D . Each
[ϕ], ϕ ∈ A, is open in TD by definition. With A finite, also

⋂
ϕ∈A[ϕ] is open. Hence

{x} ∈ TD . �
Applying Proposition 20 shows that convergence is of little interest when L is

the mono-modal language over a finite atom set Φ and X is S5-complete: Then
(X L, TL) is a discrete space, i.e., contains only isolated points.

7.2.1. Perfect spaces. A topological space (X, T ) with no isolated points is
perfect. In perfect spaces, every point is the limit of some sequence, and may hence be
approximated arbitrarily well. The property is enjoyed by several natural classes of

4For more on this approach to topologies, see the historical overview in [23].
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modal spaces under their Stone-like topologies (cf. Corollary 22). Each such space
that is additionally compact is homeomorphic to the Cantor set, as every totally
disconnected compact metric space is (see, e.g., [36, Chapter 12]). Proposition 20
implies that a modal space under its Stone-like topology is perfect iff it contains no
points characterizable by its descriptor.

Proposition 21. Let D ⊆ L, let Λ be a logic, and let X be a set of Λ-models Λ-
saturated with respect to D. Then (X D, TD) is perfect iff for every finite Λ-consistent
set A ⊆ D there is some � ∈ D such that both � ∧

∧
�∈A � and ¬� ∧

∧
�∈A � are

Λ-consistent.

Proof. ⇒: Assume (X D, TD) perfect. Let A ⊆ {ϕ,¬ϕ : ϕ ∈ D} be finite and
Λ-consistent. We must find � ∈ D for which both � ∧

∧
�∈A � and ¬� ∧

∧
�∈A �

are Λ-consistent. As X D is Λ-saturated with respect to D, there is some x ∈ X D
with x �

∧
�∈A �. With (X D, TD) perfect,

⋂
ϕ∈A[ϕ]D � {x}—i.e., there is some

y 	= x ∈
⋂
ϕ∈A[ϕ]D . This implies that there is some � ∈ D such that x � � and

y 	� � or vice versa. Either way, x and y witness that � ∧
∧
�∈A � and ¬� ∧

∧
�∈A �

are both Λ-consistent.
⇐: No x ∈ X D is isolated: By Proposition 20, it suffices to show that x is

not characterizable by D in X D . For a contradiction, assume some finite A ⊆ D
characterizes x. By assumption, there is some � ∈ D such that both � ∧

∧
�∈A �

and ¬� ∧
∧
�∈A � are Λ-consistent. As X D is Λ-saturated, there are y, z ∈ X with

y � � ∧
∧
�∈A � and z � ¬� ∧

∧
�∈A �. As � ∈ D, y 	= z . In particular x 	= y or

x 	= z , contradicting the assumption that A characterizes x. �
If D is closed under negations and disjunctions, the assumption of Proposition 21

may be relaxed to stating that for any Λ-consistent ϕ ∈ D there is some � ∈ D such
that ϕ ∧ � and ϕ ∧ ¬� are both Λ-consistent. This property is enjoyed by many
classic modal logics:

Corollary 22. For the following modal logics, (X L, TL) is perfect if X is saturated
with respect to L: (i) the normal modal logic K with an infinite set of atoms, as well as
(ii) KD, (iii) KD45n for n ≥ 2, and (iv) S5n for n ≥ 2.

7.2.2. Imperfect spaces. It is not difficult to find Λ-complete spaces (X L, TL)
that contain isolated points. We provide two examples. The first shows that, when
working in a language with finite signature, then, e.g., for the minimal normal modal
logic K, the K-complete space will have an abundance of isolated points.

Proposition 23. LetL have finite signature (Φ, I) and let Λ be such that
∨
i∈I ♦i


is not a theorem. If (X L, TL) is Λ-complete, then it contains an isolated point. If Λ is
exactly K, then it contains infinitely many isolated points.

Proof. With
∨
i∈I ♦i
 not a theorem, there is an atom valuation encodable

as a conjunction ϕ such that ϕ ∧
∧
i∈I �i⊥ is consistent. The latter characterizes

the point x in X L uniquely, as it has no outgoing relations. The point x is clearly
isolated. If Λ is exactly K, there are for each n ∈ N only finitely many modally
different models satisfying �n =

∧
i∈I

(∧
m<n ♦mi 
 ∧ ¬♦ni 


)
; hence [�n] is finite

in X L. This, together with the fact that (X L, TL) is Hausdorff, implies that any
x ∈ [�n] is characterizable by L making x isolated (cf. Proposition 20). �
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For the second example, we turn to epistemic logic with common knowledge [27, 34].
Let (Φ, I) be a finite signature with I = {1, ... , n, G}. LetEQ be the class of pointed
Kripke models for (Φ, I) where for each i ∈ I\{G}, R(i) is an equivalence relation
and R(G) the transitive closure of

⋃
i≤n R(i). Let L be the language based on

(Φ, I) and S5C the appropriate multi-agent epistemic logic with common knowledge
axioms. Then:

Proposition 24. The set of isolated points in (EQL, TL) is infinite.

Proof. This follows from Proposition 20 as every finite model of EQ is
characterizable by a single formula (cf. [7, Lemma 3.4] or [3, Proposition 2.4]). �

Proposition 24 is relevant to discussions concerning the attainability of common
knowledge under unreliable communication [1, 21, 22, 26, 28, 44]. Agents seeking
to attain common knowledge of ϕ have as target point x that is characterized by
�Gϕ, isolated by Proposition 20. Hence common knowledge must be attained in
finite time if it is to be attained in the limit. By Corollary 22, common knowledge
can be attained in the limit if the underlying language does not include a common
knowledge operator. See also [32], which elaborates on this discussion.

§8. Maps and model transformations. In dynamic epistemic logic, dynamics are
introduced by transitioning between pointed Kripke models from some set X
using a possibly partial map f : X → X often referred to as a model transformer.
A particularly rich class of such maps may be defined using multi-pointed action
models with postconditions [3, 11, 13, 18, 33, 38]. The class is Turing complete [13]
(also without postconditions [33]).

8.1. Action models and product update. A multi-pointed action model is a tuple
ΣΓ = (�Σ�,R, pre, post,Γ) where �Σ� is a non-empty set of actions. The map R : I →
P(�Σ�

2) assigns an accessibility relation Ri on �Σ� to each agent i ∈ I. The map
pre : �Σ� → L assigns to each action a precondition, and the map post : �Σ� → L
assigns to each action a postcondition,5 which must be 
 or a conjunctive clause6

over Φ. Finally, Γ ⊆ �Σ� is a non-empty set of designated actions.7

To obtain well-behaved total maps on modal spaces, we must invoke a set of
mild, but non-standard, requirements: Let X be a set of pointed Kripke models.
Call ΣΓ precondition finite if the set {pre(
) ∈ L : 
 ∈ �Σ�} is finite (up to logical
equivalence). This is needed for our proof of continuity. Call ΣΓ exhaustive over X
if for all x ∈ X , there is a 
 ∈ Γ such that x � pre(
). This condition ensures that
the action model ΣΓ is universally applicable on X. Finally, call ΣΓ deterministic
over X ifX � pre(
) ∧ pre(
′) → ⊥ for any two actions 
, 
′ ∈ Γ, 
 	= 
′. Together
with exhaustivity, this condition ensures that the product of ΣΓ and any Ms ∈ X

5The precondition of 
 specifies the conditions under which 
 is executable, while its postcondition
dictates the posterior values of a finite, possibly empty, set of atoms.

6That is, a conjunction of literals, where a literal is an atom or a negated atom.
7The designated actions are the potential actual actions, i.e., actions that may in fact occur. They

are similar in interpretation to the point s of a pointed Kripke model Ms , that serves as the “actual”
state. In any situation exactly one designated action (say 
) doesin fact occur, cf. the exhaustivity and
determinism assumptions below, with the pair (s, 
) then being the actual state in the updated model.
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is a (single-)pointed Kripke model, i.e., that the actual state after the updates is
well-defined and unique.

Let ΣΓ be exhaustive and deterministic over X and let Ms ∈ X . Then the
product update of Ms with ΣΓ, denoted Ms ⊗ ΣΓ, is the pointed Kripke model
(�MΣ� , R′, �·�′, s ′) with

�MΣ� = {(s, 
) ∈ �M � × �Σ� :Ms � pre(
)} ,
R′
i = {((s, 
), (t, �)) : (s, t) ∈ Ri and (
, �) ∈ Ri} , for all i ∈ I,

�p�
′ = {(s, 
) :s ∈ �p�, post(
) � ¬p} ∪ {(s, 
) :post(
) � p} , for all p ∈ Φ,

s ′ = (s, 
) : 
 ∈ Γ andMs � pre(
).

Call ΣΓ closing over X if for all x ∈ X , x ⊗ ΣΓ ∈ X . With exhaustivity and
deterministicality, this ensures that · ⊗ ΣΓ induces a well-defined total map on X.

8.2. Clean maps on modal spaces. If two pointed Kripke models x and y are
L-modally equivalent, then so are x ⊗ ΣΓ and y ⊗ ΣΓ for any product model ΣΓ

(cf. [3]). Hence, action models applied using product update yield natural maps
· ⊗ ΣΓ on modal spaces X L. The class of maps of interest in the present is the
following:

Definition. Let X L be a modal space. A map f : X L → X L is called clean
if there exists a precondition finite, multi-pointed action model ΣΓ closing,
deterministic and exhaustive over X such that f(x) = y iff x ⊗ ΣΓ = y for all
x ∈ X L.

The same clean map may be induced by several different action models:

Lemma 25. Let f : X L → X L be a clean map based on ΣΓ. Then there exists
a precondition finite, multi-pointed action model Σ′Γ′ deterministic over X that also
induces f such that for all 
, 
′ ∈ �Σ′�, either � pre(
) ∧ pre(
′) → ⊥ or pre(
) =
pre(
′).

Proof. Let ΣΓ be a precondition finite, multi-pointed action model ΣΓ deter-
ministic over X generating f. We construct an equivalent action model, Σ′Γ′,
with the desired property. First note that for every finite set of formulas S =
{ϕ1, ... , ϕn} there is some finite S ′ = {�1, ... , �m} such that any �i 	= �j ∈ S ′ are
mutually inconsistent and that for each ϕ ∈ S there is some (unique) J (ϕ) ⊆ S ′

with �
∨
�∈J (ϕ)� ↔ ϕ. One such set S ′ can be obtained from {

∧
k≤n �k : �k ∈

{ϕk,¬ϕk}} by removing logical equivalents: The disjunction of all conjunctions
with �k = ϕk is equivalent with ϕk . By assumption, S = {pre(
) : 
 ∈ �Σ�} is finite.
Let S ′ and J (ϕ) be as stated. Construct Σ′Γ′ as follows: For every 
 ∈ �Σ� and
every � ∈ J (pre(
)), the set �Σ′� contains a state e
,� with pre(e{
,�}) = � and
post(e{
,�}) = post(
). Let R′ be given by (e
,�, e


′,�′
) ∈ R′(i) iff (
, 
′) ∈ R(i).

Finally, let Γ′ = {e{
,�} : 
 ∈ Γ}. The resulting multi-pointed action model Σ′Γ′

is again precondition finite and deterministic over X while satisfying that for all

, 
′ ∈ �Σ′�, either� pre(
) ∧ pre(
′) → ⊥ orpre(
) = pre(
′). Moreover, for any
x ∈ X , the models x ⊗ ΣΓ and x ⊗ Σ′Γ′ are bisimilar witnessed by the relation
connecting (s, 
) ∈ �x ⊗ ΣΓ� and (s ′, e


′,�) ∈ �x ⊗ Σ′Γ′� iff s = s ′ and 
 = 
′.
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Hence, the maps f, f′ : X L → X L defined by x �→ x ⊗ ΣΓ and x �→ x ⊗ Σ′Γ′

are identical. �

8.3. Continuity of clean maps. We show that the metrics introduced earlier square
well with respect to the analysis of dynamics induced by clean maps by showing the
latter continuous in the induced topology. The proof is direct. An indirect proof may
also constructed, as reduction axioms exist for clean maps [3]. This, as shown in [39,
Paper VI], is sufficient for continuity.

Proposition 26. Any clean map f : X L → X L is uniformly continuous with
respect to the metric topology generated by any dw ∈ D(X,D) where D is finitely
L-representative with respect to X.

In the proof, we make use of the following lemma:

Lemma 27. Let (X L, dw) be a metric space, dw ∈ D(X,D) for D finitely
L-representative with respect to X. Then:

1. For every � > 0, there are formulas�1, ... , �l ∈ L such that everyx ∈ X L satisfies
some �i , and whenever x � �i and z � �i for some i ≤ l , then dw(y , z) < �.

2. For everyϕ ∈ L, there is a � such that for all x ∈ X L, if x � ϕ and dw(x, y) < �,
then y � ϕ.

Proof of Lemma 27. For 1., note that there is some n > 0 for which∑∞
k=n w(ϕk) < �. Enumerate the subsets of {1, ... , n – 1} by J1, ... , J2n–1 . For

each i ∈ {1, ... , 2n–1} let the formula �i be
∧
j∈Ji ϕj ∧

∧
j �∈Ji ¬ϕj . Then each

x ∈ X L must satisfy some �i with i ≤ 2n–1. Moreover, whenever y � �i and z � �i ,
dw(y , z) =

∑∞
k=1w(ϕk)dk(y , z) =

∑∞
k=n w(ϕk)dk(y , z) < �.

For 2., let ϕ ∈ L be given. Since D is finitely L-representative w.r.t. X, there is
{�i}i∈I ⊆ D finite such that for all setsS = {�i}i∈J ∪ {¬�i}i∈I\J with J ⊆ I either
ϕ or ¬ϕ is entailed by S in X. Then � := mini∈I w(�i) yields the desired. �

Proof of Proposition 26. We show that f is uniformly continuous, using the
ε–� formulation of continuity. Assume that � > 0 is given. We find a � > 0 such that
for all x, y ∈ X L dw(x, y) < � implies dw(f(x),f(y)) < �. By Lemma 27.1, there
exist �1, ... , �l such that f(x) � �i and f(y) � �i implies dw(f(x),f(y)) < � and
for every x ∈ X L there is some i ≤ l with f(x) � �i . We use �1, ... , �l to find a
suitable �:

Claim. There is a function � : L → (0,∞) such that for any ϕ ∈ L, if f(x) � ϕ
and dw(x, y) < �(ϕ), then f(y) � ϕ.

Clearly, setting � = min{�(�i) : i ≤ l} yields a � with the desired property. Hence
the proof is completed by a proof of the claim. The claim is shown by constructing
the function � : L → (0,∞). This construction will proceed by induction over the
complexity of ϕ. To begin with, fix a precondition finite, multi-pointed action
model ΣΓ closing, deterministic, and exhaustive over X such that f(x) = y iff
x ⊗ ΣΓ = y . To be explicit, the function � : L → (0,∞) we construct depends on this
action model. More precisely, � depends on the set {pre(
) : 
 ∈ �Σ�}. The below
construction of � is a simultaneous induction over all multi-pointed action models
that are closing, deterministic, and exhaustive over X with set of preconditions
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exactly {pre(
) : 
 ∈ �Σ�}. By Lemma 25, we can assume that for all 
, 
′ ∈ �Σ�
it holds that pre(
) = pre(
′) or � pre(
) ∧ pre(
′) → ⊥. By working with an
extended language that contains ¬,∧,∨,�i , and ♦i as primitives, we can assume,
without loss of generality, that all negations in ϕ immediately precede atoms.

If ϕ is an atom or negated atom: By Lemma 27.2, there exists for any 
 ∈ �Σ�
some �
 such that whenever x � pre(
) and dw(x, y) < �
 we also have that y �
pre(
). Likewise, there is some �0 such that whenever x � ϕ and dw(x, y) < �0
we also have that y � ϕ. By assumption, the set {pre(
) : 
 ∈ �Σ�} is finite. Let
S = {�0} ∪ {�
 : 
 ∈ �Σ�}. We can thus set �(ϕ) = min(S). To see that this � is
as desired, assume f(x) � ϕ. Let x =Ms ∈ x. There is a unique 
 ∈ Γ in the
deterministic, multi-pointed action model (Σ,Γ) such that (s, 
) is the designated
state of x ⊗ ΣΓ. In particular, we have that x � pre(
). By our choice of �(ϕ), we get
that dw(x, y) < �(ϕ) implies y � pre(
). For y = Nt ∈ y , we thus have that (t, 
) is
the designated state ofNt ⊗ ΣΓ. Moreover, we have x � ϕ ⇔ y � ϕ. Together, these
imply that f(Nt) � ϕ, i.e., f(y) � ϕ.

If ϕ is ϕ1 ∧ ϕ2, set �(ϕ) = min(�(ϕ1), �(ϕ2) ). To show that this is as desired,
assume f(x) � ϕ1 ∧ ϕ2. We thus have f(x) � ϕ1 and f(x) � ϕ2. By induction, this
implies that whenever dw(x, y) < �(ϕ), we havef(y) � ϕ1 andf(y) � ϕ2 and hence
f(y) � ϕ1 ∧ ϕ2.

If ϕ is ϕ1 ∨ ϕ2, set �(ϕ) = min(�(ϕ1), �(ϕ2) ). To show that this is as desired,
assume f(x) � ϕ1 ∨ ϕ2. We thus have f(x) � ϕ1 or f(x) � ϕ2. By induction, this
implies that whenever dw(x, y) < �(ϕ) we have f(y) � ϕ1 or f(y) � ϕ2 and hence
f(y) � ϕ1 ∨ ϕ2.

If ϕ is ♦rϕ1: By Lemma 27.1, there are �1, ... , �l such that every x ∈ X L satisfies
some �i and whenever z � �i and z′ � �i for some i ≤ l we have dw(z, z′) < �(ϕ1).

Now, let F = {♦r(pre(
) ∧ �i) : 
 ∈ �Σ� , i ≤ l} ∪ {pre(
) : 
 ∈ �Σ�}. By
assumption, F is finite. By Lemma 27.2, for each � ∈ F there is some �� such
that x � � and dw(x, y) < �� implies y � �. Set �(ϕ) = min{�� : � ∈ F }.

To show that this is as desired, assume f(x) � ♦rϕ1 and let y be such that
dw(x, y) < �(ϕ). We have to show that f(y) � ♦rϕ1. Let x =Ms ∈ x and let the
designated state of x ⊗ ΣΓ be (s, 
). Since x ⊗ ΣΓ � ♦rϕ1, there is some (s ′, 
′)
in �x ⊗ ΣΓ� with (s, 
)Rr(s ′, 
′). In particular x � ♦r(pre(
′) ∧ �i) for 
′ ∈ �Σ�
and some i ≤ l . Thus also y � ♦r(pre(
′) ∧ �i). Hence, for y = Nt ∈ y , there is
some t′∈ �y� accessible from y’s designated state t that satisfies pre(
′) ∧ �i . By
determinacy and the fact that � pre(
) ∧ pre(
′) → ⊥ whenever pre(
) 	= pre(
′),
there is a unique 
̃ ∈ Γ with pre(
̃) = pre(
′). Let Γ′ = Γ\{
̃} ∪ {
}. Then,
ΣΓ′ is a precondition finite, multi-pointed action model deterministic over X.
Let f′ be the model transformer induced by ΣΓ′. As f′ has the same set
{pre(
) : 
 ∈ �Σ�} asf, our induction hypothesis applies tof′. Consider the models
Ms ′ and Nt′. We have that Ms ′ � �i and Nt′ � �i jointly imply dw(Ms ′,Nt ′) <
�(ϕ1) which, in turn, implies that f′(Ms ′) � ϕ1 iff f′(Nt ′) � ϕ1. In particular,
we obtain that �y ⊗ ΣΓ� , (t′, 
′) � ϕ1. Since (t, 
)Rr(t′, 
′) this implies that
f(y) � ♦rϕ1.

If ϕ is �rϕ1: The construction is similar to the previous case. We only elaborate
on the relevant differences. Again, there are some �1, ... , �l such that every x ∈ X L
satisfies some �i and whenever z � �i and z ′ � �i for some i ≤ l we have dw(z , z ′) <
�(ϕ1).
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Now, let R= {pre(
) ∧ �i : 
 ∈ �Σ� , i ≤ l} and let F = {�r(
∨
�∈J �) : J ⊆ R} ∪

{pre(
) : 
 ∈ �Σ�}. Again, F is finite and for each � ∈ F there is some �� such that
x � � and dw(x, y) < �� implies y � �. Set �(ϕ) = min{�� : � ∈ F }.

To show that this is as desired, assume f(x) � �rϕ1 and let y be such that
dw(x, y) < �(ϕ). We have to show that f(y) � �rϕ1. Let Ms ∈ x and Nt ∈ y ,
let (t, 
) be the designated state of Nt ⊗ ΣΓ and assume there is some (t′, 
′) in
�Nt ⊗ ΣΓ� with (t, 
)R′

r(t
′, 
′). We have to show that ϕ1 holds at �Nt ⊗ ΣΓ� , (t′, 
′).

To this end, note that by construction, t′ satisfies pre(
′) ∧ �i , for some i ≤ l .
By the choice of �(ϕ), there is some s ′ ∈ �M � with sRrs ′ that also satisfies
pre(
′) ∧ �i . Hence (s ′, 
′) is in �Ms ⊗ ΣΓ� and (s, 
)Rr(s ′, 
′). By assumption
we have �Ms ⊗ ΣΓ� , (s ′, 
′) � ϕ1 and by an argument similar to the last case we get
�Nt ⊗ ΣΓ� , (t′, 
′) � ϕ1, which is what we had to show. Hence f(y) � �rϕ1. �

Corollary 28. Any clean map f : X L → X L is continuous with respect to the
Stone(-like) topology TL.

Corollary 28 only provides sufficient conditions for continuity, not necessary ones.
Not every continuous mapf : X L → X L is also clean. In general, there need not be
any multi-pointed action model ΣΓ withf(x) = x ⊗ ΣΓ for allx ∈ X L. For example,
let L be build from infinitely many atoms Φ and let g : X L → X L be the map that
flips the truth value of every atom at every state, so x = (�M � , R, �·�)s is mapped to
g(x) = (�M � , R, �·�′)s with �p�

′ : =M \ �p� for every atom p ∈ Φ. Then g is not
representable by a multi-pointed action model. To see this, consider any single-state
model y . The unique worlds of g(y) and y differ on the truth values of infinitely
many atoms, but any multi-pointed action model can only change finitely many
atoms’ truth values, as postconditions are assumed finite.

Moreover, we conjecture that there exist continuous maps f : X L → X L that
are representable by multi-pointed action models without being clean maps. In
particular, the assumption of precondition finiteness in the proof of Proposition 26
may be replaceable by a weaker condition. Defining continuity locally in a point
x ∈ X L may also permit relaxing the condition of exhaustivity.
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