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Abstract

We prove that if the set of unordered pairs of real numbers is coloured by finitely many colours, there is a set of reals

homeomorphic to the rationals whose pairs have at most two colours. Our proof uses large cardinals and verifies a

conjecture of Galvin from the 1970s. We extend this result to an essentially optimal class of topological spaces in

place of the reals.
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1. Introduction

In this paper we present a result that sheds light on a general problem about the behavior of an arbitrary

relational structure of the form (R, (1, . . . , (=) on ‘large’ subsets of R. A general result of Ehrenfeucht

and Mostowski [4], anticipated already in the seminal paper of Ramsey [20], shows that such problems

can be reduced to problems about finite colourings of the symmetric cubes [R]: (the set of all :-element

sets of real numbers), where the integer : is closely related to the arity of the (finite list of) given relations

on R. In other words, in our general problem we could restrict ourselves to relational structures of the

form (R, �), where � is a single equivalence relation with finitely many equivalence classes on an

appropriate symmetric cube [R]: . Answering a question of Knaster, Sierpiński [23] showed in 1933

that a well-ordering <wo of R can be used in defining a particular equivalence relation �(
:

on [R]: with

:!(:−1)! classes by comparing the behaviors of the well-ordering <wo and the usual ordering on a given

:-element set B as well as recording the ordering of distances between consecutive elements of B when

enumerated increasingly according to the usual ordering of R.What Sierpiński’s proof shows is that the

number :!(: − 1)! of equivalence classes of �(
:

cannot be reduced by restricting it to any uncountable

or, more generally, nonempty and dense-in-itself subset of R. This feature of Sierpiński’s proof was first
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put forward by Galvin in a letter to Laver [9], and it was reiterated some years later when Baumgartner

proved that in this problem R cannot be replaced by any countable topological space. Baumgartner [1,

page 182] explicitly states the 2-dimensional version of Galvin’s conjecture solved here, along with an

opinion that this is probably the most interesting open problem in this area. We will show using large

cardinals that if - is an arbitrary uncountable set of reals and � is an equivalence relation on [-]2,

then there is . ⊆ - homeomorphic to Q such that �↾[. ]2 is coarser than �(
2
↾[. ]2. In fact, we shall

isolate what appears to be the optimal general topological condition on the space - that guarantees this

conclusion, with �(
2

replaced by an appropriate analogous equivalence relation on [-]2.

We finish this introduction with comments on the methods behind the proofs of these results. Given

a space - satisfying certain conditions and a finite colouring 2 : [-]2 → ;, we use large cardinals to

construct a topological copy. ⊆ - of Q such that [. ]2 uses no more than two colours. In hindsight, the

conditions on - are made in order to allow us a construction using large cardinals of another space /

together with a continuous map 5 : / → - such that / is a Baire space, 5 is not constant on any nonempty

open subset of / and the induced colouring 2 5 : [/]2 → ; + 1 – given by 2 5 (G, H) = 2( 5 (G), 5 (H))

if 5 (G) ≠ 5 (H) and 2 5 (G, H) = ; if 5 (G) = 5 (H) – is in some weak sense Baire measurable. Thus the

problem is transferred to / , where it becomes possible to use Banach–Mazur games to construct a copy

ofQwhich uses only two colours of 2 5 and on which 5 is one-to-one. The conditions on - which allow

us (using large cardinals) such transfer to a Baire space / and a continuous nowhere constant map 5

were already used in [28], which in turn was motivated by a problem of Haydon [11] from the theory

of differentiability in the context of general Banach spaces. It should also be noted that large cardinals

are introduced into the construction of / and 5 : / → - through the ideas behind the stationary tower

forcing of Woodin [32], which in turn was inspired by the groundbreaking work of Foreman, Magidor

and Shelah [8]. The only use of the hypothesis on the existence of large cardinals is Theorem 28,

which is equivalent to the well-known fact that the stationary tower up to a suitably large cardinal is

precipitous. It is also worth noting that Theorem 28 is applied only once in the proof of the main result,

to get Lemma 44.

We believe that applying large cardinals to structural Ramsey theory is a new idea that will give us

more results of this kind. We do not know if large cardinals are necessary for the results in this paper.

However, it would not be surprising if some large cardinal is needed for our main Theorem 17, in

view of the fact that large cardinals are provably required for a result from [28] which establishes the

nonexistence of a certain kind of topological space of size ℵ1 through an application of Theorem 28.

Finally, we mention that the precise forms of our results are explained in Sections 2 and 3, where we

comment on their general interest and how they are related to other areas of mathematics.

2. Ramsey-degree calculus

In this section we state the general form of our result for sets of reals, putting it into the context of other

results in this area. Suppose that C is some class of structures and � is a structure that embeds into

every member of C. One of the goals of Ramsey theory is to find, for each natural number : ≥ 1, the

smallest number C: such that for every natural number ; ≥ 1, every structure � ∈ C and every colouring

that assigns one of ; colours to each :-element subset of �, there exists a substructure - ⊆ � which is

isomorphic to � and has the property that at most C: colours occur among the :-element subsets of - .

This natural number C: , if it exists, is called the :-dimensional Ramsey degree of the structure � within

the class C.

The problem of computing the Ramsey degrees of � in a class of structures C can be formulated as an

expansion problem. Let us say that ' is a finitary relation on � to mean that there is an integer : ≥ 1 so

that ' consists of :-tuples from �. The expansion problem for � within C asks for a list of finitely many

finitary relations '1, . . . , '= on � that are atomic for the structures in C in the following sense: to each

structure � ∈ C and an arbitrary finitary relation ( on �, it is possible to associate a substructure - ⊆ �

and an isomorphism i : �→ - such that the restriction of ( to - is definable without quantifiers from

the images of '1, . . . , '= under i. Determining the Ramsey degrees of � within C solves the expansion
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problem for � within C. Frequently, the atomic finitary relations that solve an expansion problem turn

out to be purely order-theoretic in nature. An example of such a computation of canonical forms for

arbitrary finitary relations on N via Ramsey’s original theorem can be found in [29, Theorem 1.7]. This

computation was originally done by Ramsey in [20]; a closely related result was rediscovered by Erdős

and Rado [5]. It should be clear that the richer the structure of � is, the more informative is a solution

to the expansion problem for � in C.

Expansion problems for various pairs 〈�,C〉 occur frequently in topological dynamics in the

form of questions about representations of the universal minimal flow of the automorphism group

of an ultrahomogeneous structure. See [15] for further details on the connections between Ram-

sey theory and topological dynamics of automorphism groups, where a precise correspondence is

given between Ramsey-degree calculus and representation theory for universal minimal flows of such

groups.

In this paper, it will be proved, assuming large cardinals, that the 2-dimensional Ramsey degree of

the topological space Q of the rationals within the class of all regular, non-left-separated spaces with a

point-countable base is at most 2. Our result is provably optimal for metrisable spaces. The following

terminology will make certain results easier to state:

Definition 1. Let - be any set. For any cardinal number ^, [-]^ is the collection of subsets of - of

cardinality ^, and [-]<^ denotes the collection of subsets of - that have cardinality less than ^.

Let - and . be topological spaces. For natural numbers :, ;, C ≥ 1, we will write

- → (. ):;,C

to mean that for every set ! of cardinality ; and every colouring 2 : [-]: → !, there exist a subspace

. ′ ⊆ - homeomorphic to . and a subset ) ⊆ ! of cardinality C such that
{
2(E) : E ∈ [. ′]:

}
⊆ ) . If

C = 1, then it is not recorded in this notation – that is, we write - → (. ):; instead of - → (. ):;,1.

For a natural number : ≥ 1, the :-dimensional Ramsey degree of a space . inside the space - , if it

exists, is the least natural number C ≥ 1 with the property that - → (. ):;,C for all ; < l.

When - is a linearly ordered topological space, this notation is ambiguous, but that will cause no

confusion in what follows.

We introduce the following abbreviations in order to succinctly state the large-cardinal hypothesis in

our main results:

Definition 2. ZFC stands for Zermelo Frankel set theory with the axiom of Choice. For an ordinal U,

let (∗U) denote the following statement:

There is an inner model # of ZFC such that +U ⊆ #, (∗U)

and in # there is a Woodin cardinal greater than U.

Let (∗) be the statement that for every ordinal U, (∗U) holds.

Using the terminology of Definitions 1 and 2, one of the important consequences of the main result

of this paper may be stated as follows:

Theorem 3. Assume (∗). Let - be a non-f-discrete metric space. Then the 2-dimensional Ramsey

degree of Q in - is 2.

Corollary 4. Assume that there is either a proper class of Woodin cardinals or a strongly compact

cardinal. Let - be a non-f-discrete metric space. Then the 2-dimensional Ramsey degree ofQ in - is 2.

That non-f-discreteness is an optimal restriction in this theorem and its corollary follows from the

next result:
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Theorem 5 [30]. If - is a f-discrete metric space, then there is 2 : [-]2 → l such that 2′′[. ]2
= l

for all . ⊆ - homeomorphic to Q.

It follows that the Ramsey degree of Q does not exist (is infinite) in any f-discrete metric space. The

equivalence stated in the following corollary encapsulates Corollary 4 and the fact that it is optimal for

metrisable spaces:

Corollary 6. Assume that there is either a proper class of Woodin cardinals or a strongly compact

cardinal. Then the following are equivalent for every metrisable space -:

(a) - is not f-discrete.

(b) - → (Q)2
;,2 for every natural number ; ≥ 1.

Note that condition (a) is equivalent to - → (l + 1)1
l , so we have here an analogy between

Corollary 6 and a theorem of the second author from [24], stating that for any partial order %, % → (l)1
l

if and only if % → (U)2
: for all U < l1 and : < l.

We will briefly comment on the large-cardinal hypotheses of Theorem 3 and Corollary 4. It is possible

that the universe contains a strongly compact cardinal which also happens to be the only measurable

cardinal (see Magidor [18]). Therefore, the two disjuncts in the hypothesis of Corollary 4 are formally

independent of each other, even though the consistency strength of a strongly compact cardinal is much

greater than that of a proper class of Woodin cardinals. Nevertheless, the hypothesis (∗), though more

technical in nature, is weaker than either of these disjuncts. The hypothesis (∗) is implied by each of the

following: the existence of a proper class of Woodin cardinals, the existence of one strongly compact

cardinal and the Proper Forcing Axiom (PFA). The hypothesis (∗) can be immediately obtained from

the existence of a strongly compact cardinal using the results of Jensen and Steel [13]. In fact, it is a

theorem (see [31, Theorem .04]) that if one assumes that �_+ fails for a proper class of singular strong

limit cardinals _, then for every ordinal U there is an inner model # of ZFC such that +U ⊆ # and

in # there is a proper class of Woodin cardinals. Furthermore, (∗) is an entirely local statement that

does not even imply the existence of an inaccessible cardinal in + . Thus it is much weaker than either

the existence of a strongly compact cardinal or the existence of a proper class of Woodin cardinals,

although not in consistency strength. Interestingly, (∗) turns out to be equivalent to the statement that

�
1
2
-determinacy holds in + and all of its set generic extensions (see [33]).

The special case of Theorem 3 restricted to uncountable sets - ⊆ R is particularly interesting because

in this case it is simple to describe a colouring that uses both colours on every dense-in-itself subset

of - . Recall how Sierpiński’s colouring B : [R]2 → {0, 1} is defined by comparing a well-ordering

of the reals <wo with the usual ordering <: given a pair {G, H} ∈ [R]2, we assign B({G, H}) = 0 if

and only if <wo and < agree on {G, H}. To see that this colouring establishes R 9 (Q)2
2, note that any

monochromatic subset of R must be either well-ordered or reverse well-ordered by <. Hence no subset

of R which contains a Z-chain in the usual ordering can be monochromatic. Let �( be the equivalence

relation on [R]2 that has the two sets B−1(8) (8 < 2) as equivalence classes. The restriction of Corollary 4

to uncountable sets - ⊆ R implies that every equivalence relation on [-]2 with finitely many classes

must be coarser than �( on a copy of Q. A single Woodin cardinal suffices for this restriction.

Corollary 7. Assume that there is either a Woodin cardinal or a strongly compact cardinal. Let - be an

uncountable set of reals. Then for every equivalence relation � on [-]2 with finitely many equivalence

classes, there is . ⊆ - homeomorphic to Q such that �↾[. ]2 is coarser than �(↾[. ]2.

Proof. To see this, let ; ≥ 1 be a natural number and let 2 : [-]2 → ; be a colouring which gives us

an equivalence relation on [-]2 with ; classes. Define a new colouring 3 : [-]2 → ; × 2 by setting

3 ({G, H}) = 〈2({G, H}), B({G, H})〉, for every {G, H} ∈ [-]2. Here B is Sierpiński’s colouring already

defined from an arbitrary well-ordering of R. Applying Corollary 4, there must be a set . ⊆ - as well
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as colours 8, 9 < ; such that . is homeomorphic to Q and
{
2(E) : E ∈ [. ]2

}
⊆ {〈8, 0〉, 〈 9 , 1〉}. If 8 = 9 ,

then 2 is constant on [. ]2. And if 8 ≠ 9 , then 2 is equivalent to B on [. ]2, with the colour 8 playing the

role of the colour 0 of B and 9 playing the role of 1. �

Theorem 3 also implies that any well-ordering <wo solves the 2-dimensional expansion problem for

Q within the class of all uncountable sets of reals.

Corollary 8. Assume that there is either a Woodin cardinal or a strongly compact cardinal. Let <wo be

any well-ordering of R and let < be the usual ordering of R. Then for every uncountable - ⊆ R and

every binary relation " ⊆ -2, there exists a set . ⊆ - , which is homeomorphic to Q, such that " ∩.2

is equal to one of the following relations restricted to . : ⊤, ⊥, =, ≠, <, >, ≤, ≥, <wo, >wo, ≤wo, ≥wo,

< ∩ <wo, < ∩ >wo, > ∩ <wo, > ∩ >wo, ≤ ∩ ≤wo, ≤ ∩ ≥wo, ≥ ∩ ≤wo, ≥ ∩ ≥wo.

Proof. This is similar to the proof of [29, Theorem 1.7], except that in the crucial step we use Corollary 4

in place of Ramsey’s theorem. �

Just as with Corollary 4, Corollaries 7 and 8 follow from the weaker hypothesis that there is an inner

model # of ZFC that contains all sets of reals and has a Woodin cardinal relative to it.

A weak form of the conclusion of Theorem 3, when we restrict the class of all non-f-discrete metric

spaces to the singleton {R}, was first conjectured by Galvin in the 1970s [9], and Galvin’s conjecture,

even in this weak form, remained unproved until our work. In an earlier unpublished note, Galvin had

proved that for every colouring of [Q]2 into finitely many colours, there exists a . ⊆ Q which is order-

isomorphic to Q such that at most 2 colours occur in [. ]2. This was generalised by Laver [3], who

showed that for each natural number : ≥ 1, there exists a number C: with the property that for every

colouring of [Q]: into finitely many colours, there exists a . ⊆ Q which is order-isomorphic to Q such

that at most C: colours occur in [. ]: . The optimal value of C: was computed by D. C. Devlin [3]. A

recent exposition of Devlin’s work can be found in [29, Chapter 6].

Baumgartner [1] was the first to prove that a significant difference emerges when the topological

structure of Q is considered instead of its order structure. Note that if a set of reals is homeomorphic to

Q, then it contains a subset which is order-isomorphic to Q, but the reverse is false. In [1], Baumgartner

established the special case of Theorem 5 saying that Q fails to have finite Ramsey degree in dimension

2 within any countable metrisable space.

Results of Shelah [21, 22] hinted at the truth of Theorem 4 for the space R. Assuming suitable

large cardinals, Shelah constructed a model of set theory where for any natural number ; ≥ 1 and

any colouring 2 : [R]2 → ;, there is an uncountable set - ⊆ R such that 2 uses at most two colours

on [-]2. His result is a consistency result instead of a direct implication from large cardinals. In his

model, the cardinality of R is quite large – for example, it is a fixed point of the ℵ-operation – and the

colourings of the pairs for sets of reals of size ℵ1 are not controlled. Indeed, by a well-known theorem

of Todorcevic [25], if - is any set of size ℵ1, then there is a colouring of [-]2 into ℵ1 many colours so

that every uncountable subset of - contains a pair of every colour. The Ramsey degrees of Q in more

general topological spaces have not been determined in Shelah’s model.

3. Ramsey degrees within a wider class of spaces

We begin by observing that there is a natural generalisation of Sierpiński’s colouring to any Tychonoff

space.

Definition 9. A topological space 〈-, T〉 is called a Tychonoff space if it is a )1-space and for every

G ∈ - and every closed set � ⊆ - such that G ∉ �, there exists a continuous function 5 : - → [0, 1]

such that 5 (G) = 0 and 5 (H) = 1 for H ∈ �.

It is a well-known fact that every Tychonoff space of weight ^ ≥ ℵ0 is embeddable into [0, 1]^ .
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Definition 10. Let ^ ≥ ℵ0 be a cardinal. Define an ordering <lex on [0, 1]^ by stipulating that for any

5 , 6 ∈ [0, 1]^ ,

5 <lex 6 ↔ [ 5 ≠ 6 and 5 (Δ ( 5 , 6)) < 6(Δ ( 5 , 6))],

where < denotes the usual order on [0, 1] and Δ ( 5 , 6) = min{U < ^ : 5 (U) ≠ 6(U)}.

It is easy to see that <lex is a linear order on [0, 1]^ . Now fix any well-ordering <wo of [0, 1]^

and define Sierpiński’s colouring B : [[0, 1]^ ]
2
→ 2 with respect to <wo by stipulating that for any

{ 5 , 6} ∈ [[0, 1]^ ]
2
, B({ 5 , 6}) = 0 if and only if <wo and <lex agree on { 5 , 6}.

Lemma 11. Suppose . ⊆ [0, 1]^ is nonempty and dense in itself. Then there exist .0, .1 ⊆ . such that

.0 and .1 are both nonempty and dense in themselves, and ∀H0 ∈ .0∀H1 ∈ .1 [H0 <lex H1].

Proof. . , being nonempty and dense in itself, contains at least two distinct elements. Thus Δ (. ) =

{Δ ( 5 , 6) : 5 , 6 ∈ . and 5 ≠ 6} is a nonempty subset of ^. Define U = min(Δ (. )). Fix 5 , 6 ∈ .

with 5 ≠ 6 and U = Δ ( 5 , 6). Without loss of generality, 5 (U) < 6(U). Find a rational number @ with

5 (U) < @ < 6(U), and define * = {ℎ ∈ [0, 1]^ : ℎ(U) < @} and + = {ℎ ∈ [0, 1]^ : ℎ(U) > @}. Both*

and+ are open subsets of [0, 1]^ . Furthermore, 5 ∈ .∩* = .0 and 6 ∈ .∩+ = .1. Therefore,.0, .1 ⊆ .

are both nonempty and dense in themselves. Now consider any ℎ ∈ .0 and ℎ′ ∈ .1. Then ℎ, ℎ′ ∈ .

and ℎ(U) < @ < ℎ′(U). In particular, ℎ ≠ ℎ′ and Δ (ℎ, ℎ′) ≤ U. On the other hand, since ℎ, ℎ′ ∈ . ,

U ≤ Δ (ℎ, ℎ′). So U = Δ (ℎ, ℎ′), and ℎ(Δ (ℎ, ℎ′)) = ℎ(U) < ℎ′(U) = ℎ′(Δ (ℎ, ℎ′)), whence ℎ <lex ℎ
′. �

Theorem 12. Suppose 〈-, T〉 is a Tychonoff space. The 2-dimensional Ramsey degree of Q in - is at

least 2.

Proof. We may assume that 〈-, T〉 is a subspace of [0, 1]^ , for some ^ ≥ ℵ0. Let B : [[0, 1]^ ]
2
→ 2 be

Sierpiński’s colouring defined with respect to an arbitrary well-ordering <wo of [0, 1]^ . Note that any

subset of - that is monochromatic with respect to B must be either well-ordered or reverse well-ordered

by <lex . However, if . ⊆ - is nonempty and dense in itself, then by repeated application of Lemma 11

it is possible to construct a set / ⊆ . which is a Z-chain with respect to <lex. �

Baumgartner [1] showed that - 9 (l + 1)2
2 for every countable topological space - , and that on

the other hand, Q→ (l + 1)2
;,2 for all ; < l. Here l + 1 denotes the ordinal l ∪ {l} with its topology

induced by the ∈-ordering on ordinals, and it naturally represents the converging sequence. In other

words, Baumgartner’s result says that the converging sequence has 2-dimensional Ramsey degree 2 in

the class of all countable dense-in-themselves metrisable spaces. It is not difficult to show that if - is

any uncountable set of reals, then - → (l + 1)2
; for all ; < l. This was generalised in an unpublished

note of the second author from 1996 (extending a previous result from [30]) as follows:

Definition 13. Let 〈-, T〉 be a topological space. A base B ⊆ T is said to be point-countable if for each

G ∈ - , {* ∈ B : G ∈ *} is countable.

Theorem 14 [26]. The following are equivalent for an arbitrary regular space - with a point-countable

base:

1. There is no well-ordering of - with all initial segments closed in - .

2. - → (l + 1)2
2.

3. - → (l + 1):; for all natural numbers :, ; ≥ 1.

It turns out that the negation of Theorem 14(1) is one of the standard smallness requirements on

a space, which in the class of metrisable spaces is equivalent to f-discreteness. Thus we have the

following definition:

https://doi.org/10.1017/fmp.2020.12 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.12


Forum of Mathematics, Pi 7

Definition 15 [6]. A topological space 〈-, T〉 is said to be left-separated if there exists a well-ordering

<wo of - so that for each G ∈ - , {H ∈ - : H <wo G} is a closed set.

The proof of the implication from Theorem 14(2) to (1) has some information of interest to us here.

To see this assume, that (1) fails and fix a well-ordering <wo on - with all initial segments closed. So

for every H ∈ - , we can fix a closed neighbourhood *H of H which is disjoint from {G ∈ - : G <wo H}.

Define 2 : [-]2 → 2 by letting 2(G, H) = 0 if and only if H ∈ *G for all pairs G, H ∈ - satisfying G <wo H.

It is easily checked that subsets. of - for which 2 is constant on [. ]2 must be discrete. So in particular,

- 9 (l + 1)2
2, and therefore - 9 (Q)2

2. In [10], Gerlits and Szentmiklóssy have given an interesting

variation of left-separation which is equivalent to it in the class of spaces with a point-countable base.

It is condition (1) of the following corollary:

Corollary 16. The following are equivalent for every regular space - with a point-countable base:

1. There is a neighbourhood assignment*G (G ∈ -) such that for all infinite . ⊆ - there is H ∈ . such

that {G ∈ . : H ∉ *G} is infinite.

2. There is a well-ordering of - with all initial segments closed.

3. - 9 (l + 1)2
3.

Proof. The equivalence of (2) and (3) is by Theorem 14. It is clear that (2) implies (1) using a

neighbourhood assignment such that *H ∩ {G ∈ - : G <wo H} = ∅ for all H ∈ -, where <wo is a well-

ordering on - with all initial segments closed. To show that (1) implies (3), consider the colouring

2 : [-]2 → 3 defined as follows, where <wo is a fixed well-ordering of - and we assume that the

neighbourhood assignment *G (G ∈ -) witnessing (1) consists of closed neighbourhoods. For G <wo H,

set 2(G, H) = 0 if G ∉ *H and H ∉ *G ; set 2(G, H) = 1 if G ∈ *H ; finally, set 2(G, H) = 2 if G ∉ *H

but H ∈ *G . Note that if . ⊆ - is such that 2′′[. ]2
= {1}, then . must be finite or else we would

contradict (1). Note also that any . ⊆ - such that 2′′[. ]2
= {0} or 2′′[. ]2

= {2} must be discrete. So

the colouring 2 witnesses (3). �

The second author showed in [28] that the existence of a strongly compact cardinal implies that if

- is any regular space with a point-countable base, then - is universally meager if and only if it is

left-separated. A space - is called universally meager if every continuous function from a Baire space

into - must be constant on some nonmeager subset of its domain. This result answered a question of

Haydon [11], and shows that in the class of regular spaces with a point-countable base, left-separation

coincides with the dual of the well-studied notion of a universally null set. We recall that E. Borel [2]

conjectured that the notion of a strong measure-zero set, which is a strengthening of the notion of a

universally null set, coincides with the countability requirement on sets of reals – a conjecture which

was proved to be consistent by Laver [17] much later.

These surveyed results lead to the following project:

General Problem. Discover the optimal class of regular topological spaces in which the 2-dimensional

Ramsey degree of Q is at most 2 and, more generally, the :-dimensional Ramsey degree of Q is at most

:!(: − 1)!.

In this paper, we will address the general problem in dimension 2 for all regular spaces with point-

countable bases. Our main theorem is the following:

Theorem 17. Assume (∗). If - is any regular space that is not left-separated and has a point-countable

base, then the 2-dimensional Ramsey degree of Q within - is at most 2.

Corollary 18. Assume that there is either a proper class of Woodin cardinals or one strongly compact

cardinal. Then the conclusion of Theorem 17 holds.
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Note that Theorem 3 immediately follows from Theorem 17, because metrisable spaces have point-

countable bases, and they are left-separated if and only if they are f-discrete. Furthermore, if - is also

a Tychonoff space, then by Theorem 12 the conclusion of Theorem 17 can be improved to say that the

2-dimensional Ramsey degree ofQ in - is exactly equal to 2. Note that metrisable spaces are Tychonoff.

Our forthcoming paper [19] will treat the General Problem in higher dimensions.

4. Notation

Our set-theoretic notation is standard. If _ is an infinite cardinal, then � (_) denotes the set of all sets that

are hereditarily of cardinality< _. The notation" ≺ � (_) means that 〈", ∈〉 is an elementary submodel

of the structure 〈� (_), ∈〉. For any �,P(�) denotes the powerset of � – that is,P(�) = {0 : 0 ⊆ �}. For

any � and �, �� is the collection of all functions from � to �. If X is an ordinal, then �<X =
⋃
W<X�

W .

If 5 is a function, then dom( 5 ) denotes the domain of 5 , and if - ⊆ dom( 5 ), then 5 ′′- is the image of

- under 5 – that is, 5 ′′- = { 5 (G) : G ∈ -}.

5. Some preliminaries

Properties of stationary sets will be used extensively in the proof of the main result. In this section,

we will collect together important facts needed in Section 6. Most of this material is standard. We will

need to deal only with stationary subsets of [�]<ℵ1 , for various sets �. Other more general notions of

stationarity have been considered in the literature. For example, one could talk about stationary subsets

of P(�), for any nonempty set �. The interested reader may consult [12] or [16].

Definition 19. Let � be a nonempty set. Then � ⊆ [�]<ℵ1 is called a club in [�]<ℵ1 if the following

two things hold:

1. For any # ∈ [�]<ℵ1 , there exists " ∈ � with # ⊆ " .

2. For any 0 < b < ℵ1 and any sequence 〈"Z : Z < b〉 of elements of �, if ∀Z ′ ≤ Z < b ["Z ′ ⊆ "Z ],

then
⋃
Z <b"Z ∈ �.

We say that ( ⊆ [�]<ℵ1 is stationary in [�]<ℵ1 if ( ∩ � ≠ 0 for every � ⊆ [�]<ℵ1 which is a club in

[�]<ℵ1 . And ( ⊆ [�]<ℵ1 is said to be nonstationary in [�]<ℵ1 if it is not stationary in [�]<ℵ1 .

One of the salient facts about the nonstationary subsets of [�]<ℵ1 is that they form a normal f-ideal.

Theorem 20 (Jech [12]). Let � be a nonempty set. If F is any countable family of nonstationary subsets

of [�]<ℵ1 , then
⋃

F is also a nonstationary subset of [�]<ℵ1 . If ( is a stationary subset of [�]<ℵ1 ,

and � is a function such that dom(�) = ( and ∀" ∈ ([� (") ∈ "], then there exists an < so that

{" ∈ ( : � (") = <} is a stationary subset of [�]<ℵ1 .

The last statement of Theorem 20 is usually called the pressing down lemma. The following theorem

is a well-known fact about clubs and stationary sets. It governs the behavior of clubs and stationary sets

under projections and pullbacks. The reader may refer to [12] or [14] for a proof. This theorem is true

even when ℵ1 is replaced with an arbitrary regular uncountable cardinal. It is also true for the more

general notion of club and stationary set in P(-). The proof of a version that is applicable to the more

general notion of club and stationary set may be found in [16].

Theorem 21. Let - and . be nonempty sets with - ⊆ . . Then the following hold:

1. If � ⊆ [-]<ℵ1 is a club in [-]<ℵ1 , then

�↑.
=

{
" ∈ [. ]<ℵ1 : " ∩ - ∈ �

}
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is a club in [. ]<ℵ1 .

2. If ( ⊆ [. ]<ℵ1 is stationary in [. ]<ℵ1 , then

(↓- = {" ∩ - : " ∈ (}

is stationary in [-]<ℵ1 .

3. If � ⊆ [. ]<ℵ1 is a club in [. ]<ℵ1 , then

�↓- = {" ∩ - : " ∈ �} ⊆ [-]<ℵ1

and �↓- contains a club in [-]<ℵ1 .

4. If ( ⊆ [-]<ℵ1 is stationary in [-]<ℵ1 , then

(↑. = {" ∈ [. ]<ℵ1 : " ∩ - ∈ (}

is stationary in [. ]<ℵ1 .

Note the asymmetry between (1) and (3) and the symmetry between (2) and (4). We will really only

make use of (2) and (4). The relevance of stationary sets to left-separation of topological spaces is taken

up next.

Definition 22. Let 〈-, T〉 be a topological space. For any � ⊆ - , � will denote the closure of �. Given

a base B ⊆ T and a . ⊆ - , B. will denote {* ∈ B : * ∩ . ≠ 0}.

Theorem 23 is a deep characterisation of regular left-separated spaces having a point-countable base

in terms of nonstationarity of the collection of all countable closed subsets of the space. It first appeared

in [6]. Indeed the theorem is also valid for )1-spaces. However, all of our spaces are assumed to be

regular because we would like to be able to find subspaces homeomorphic to Q within them.

Theorem 23 (see [6]). If 〈-, T〉 is a regular space which has a point-countable base, then 〈-, T〉 is not

left-separated if and only if {# ∈ [-]<ℵ1 : # \ # ≠ 0} is stationary in [-]<ℵ1 .

Metrisable spaces that are not f-discrete and special stationary Aronszajn lines are both examples of

regular non-left-separated spaces with point-countable bases. One of the benefits of a point-countable

base is that any countable set which is sufficiently closed under definable operations must contain all

the members of the base around any point in its closure. This fact is proved in the next lemma, which

will enable us to apply the pressing down lemma:

Lemma 24. Let 〈-, T〉 be a topological space with a point-countable base B ⊆ T. Let j be any

uncountable regular cardinal and suppose that " ≺ � (j), with |" | = ℵ0 and 〈-, T〉,B ∈ " . If

G ∈ - ∩ " \ " , then B{G } ⊆ " .

Proof. Consider any* ∈ B{G }. It is an open set with G ∈ *, and so* ∩ - ∩" ≠ 0. Choose H ∈ * ∩" .

Thus {H} ∈ " andB{H } ∈ " . SinceB is point-countable,B{H } is a countable set. Therefore,B{H } ⊆ " .

As* ∈ B{H },* ∈ " . This shows B{G } ⊆ " , as needed. �

The countable stationary tower will be our main tool for proving Theorem 17. Building on the

groundbreaking work of Foreman, Magidor and Shelah [8], Woodin introduced the stationary tower in

[32] and established a wide variety of results in set theory with it. Larson [16] provides an excellent

and accessible introduction to the stationary tower and its applications. A more advanced reference is

[33]. Towers of ideals, including several variants of the stationary tower, and their associated generic

elementary embeddings are studied in [7]. Kanamori [14] provides an introduction to large cardinals.
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Definition 25. Let X be a strongly inaccessible cardinal. As usual, +X denotes {0 : rank(0) < X}. The

countable stationary tower up to X, denoted Q<X , is defined to be the collection of all 〈�, (〉 ∈ +X such

that � is a nonempty set and ( ⊆ [�]<ℵ1 is stationary in [�]<ℵ1 . Elements of Q<X will sometimes be

called conditions in Q<X , or simply conditions.

An ordering on Q<X is defined as follows. For 〈�, (〉, 〈�,)〉 ∈ Q<X , define 〈�,)〉 ≤ 〈�, (〉 to mean

that � ⊇ � and ) ⊆ (↑�. It is easily checked that ≤ is a partial order on Q<X . Observe also that for any

〈�,)〉, 〈�, (〉 ∈ Q<X , 〈�,)〉 ≤ 〈�, (〉 if and only if � ⊇ � and )↓� ⊆ (.

If ? ∈ Q<X and � ⊆ Q<X , then � is said to be dense below ? if for each 〈�, (〉 ≤ ?, there exists

〈�,)〉 ∈ � with 〈�,)〉 ≤ 〈�, (〉.

Fix a strongly inaccessible cardinal X > l for the remainder of this section. The following lemma

will be useful in conjunction with Lemma 24 and the pressing down lemma:

Lemma 26. Let 〈-, T,B〉 ∈ +X be a regular topological space, where B ⊆ T is a point-countable base.

If 〈-, T〉 is not left-separated, then

? = 〈-, {# ∈ [-]<ℵ1 : # \ # ≠ 0}〉 ∈ Q<X .

Moreover, the collection of all 〈�,)〉 ≤ ? with the property that there exists an uncountable regular

cardinal j such that � = � (j) and

∀" ∈ ) [|" | = ℵ0 and " ≺ � (j) and 〈-, T〉,B ∈ " and - ∩ " \ " ≠ 0]

is dense below ?.

Proof. The hypotheses together with Theorem 23 imply that - is a nonempty set, ? ∈ +X and ? is

a condition in Q<X . For the second part, let 〈�, (〉 ≤ ?. Fix an uncountable regular cardinal j with

{�, 〈-, T〉,B} ⊆ � (j) and � (j) ∈ +X . Let � = � (j). Since � ⊆ �, 〈�, (↑�〉 ≤ 〈�, (〉. Now it is

well known that � = {" ∈ [�]<ℵ1 : " ≺ � (j) and {�, 〈-, T〉,B} ⊆ "} is a club in [�]<ℵ1 . Let

) = � ∩ (↑�. Then 〈�,)〉 ≤ 〈�, (↑�〉 ≤ 〈�, (〉 ≤ ?, as required. �

Todorcevic [28] defines an ideal Il1
(X) as follows. Let us say that a set ) ⊆ [X]<ℵ1 depends on a

bounded set of coordinates in X if there exists a bounded subset � ⊆ X with the property that for all

", " ′ ∈ [X]<ℵ1 , if " ∩ � = " ′ ∩ �, then " ∈ ) if and only if " ′ ∈ ) . By Fl1
(X) we denote the

collection of all ) ⊆ [X]<ℵ1 that depend on a bounded set of coordinates in X. For a bounded subset

� ⊆ X and a function 5 : �<l → �, � 5 denotes {" ∈ [X]<ℵ1 : 5 ′′((" ∩ �)<l) ⊆ "}. In addition,

Il1
(X) is the collection of all ) ⊆ [X]<ℵ1 for which there exist a bounded � ⊆ X and a function

5 : �<l → � such that ) ∩� 5 = ∅. Finally, Bl1
(X) = Fl1

(X) \ Il1
(X). While we will not be working

with any of these collections directly, it is worth noting that there is a natural one-to-one correspondence

between the members of Q<X and Bl1
(X).

We now consider a version of the Banach–Mazur game played with conditions in Q<X . It is also

similar to the precipitous game (see [12]).

Definition 27. Define a two-player game a(X) as follows. Two players, Empty and Nonempty, take

turns playing conditions in Q<X , with Empty making the first move. When one of the players has played

〈�=, (=〉 ∈ Q<X , their opponent is required to play 〈�=+1, (=+1〉 ≤ 〈�=, (=〉. Thus each run of the game

produces a sequence

Empty 〈�0, (0〉 〈�2, (2〉 · · ·

Nonempty 〈�1, (1〉 · · ·

such that for each = ∈ l, 〈�2=, (2=〉 has been played by Empty, 〈�2=+1, (2=+1〉 has been played by
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Nonempty and 〈�=+1, (=+1〉 ≤ 〈�=, (=〉. Nonempty wins this particular run of a(X) if and only if there

exists a sequence 〈#; : ; ∈ l〉 such that ∀; ∈ l[#; ∈ (;] and ∀: ≤ ; [#: = #; ∩ �: ].

The following important theorem tells us that if X is a suitable large cardinal, then the Empty player

does not have a winning strategy in a(X). It is equivalent to the well-known theorem of Woodin stating

that the generic ultrapower of the universe induced by Q<X is well-founded. A version of this theorem

for the collection Bl1
(X) was proved by the second author (see Todorcevic [28, Lemma 2.3]). More

directly, the proof of [16, Lemma 2.5.6] can be easily adapted to prove Theorem 28.

Theorem 28. If X is a Woodin cardinal or a strongly compact cardinal, then Empty does not have a

winning strategy in a(X).

6. Main theorem

Fix, once and for all, an uncountable cardinal X, which is either Woodin or strongly compact. Fix in

addition a regular topological space 〈-, T,B〉 ∈ +X , where B ⊆ T is a point-countable base and 〈-, T〉

is not left-separated. Put �0 = - and (0 = {# ∈ [-]<ℵ1 : # \ # ≠ 0}. Note that 〈�0, (0〉 ∈ Q<X .

Definition 29. Fix a function � : (0 → - such that � (#) ∈ #\# , for each # ∈ (0. If 〈�, (〉 ≤ 〈�0, (0〉,

then for any " ∈ (, " ∩ �0 ∈ (0, and we will abuse notation and write � (") to mean � (" ∩ �0).

We will first prove a sequence of simple lemmas establishing some useful properties of � and the

neighbourhoods in B. The first property is that � is ‘nowhere constant’, meaning that the preimage of

every point in �0 is nonstationary.

Lemma 30. For any 〈�, (〉 ≤ 〈�0, (0〉 and any G ∈ �0, {" ∈ ( : � (") = G} is nonstationary in

[�]<ℵ1 .

Proof. Suppose for a contradiction that (′ = {" ∈ ( : � (") = G} is stationary in [�]<ℵ1 . Note that

� = {" ∈ [�]<ℵ1 : {G} ⊆ "} is a club in [�]<ℵ1 . Choose " ∈ ( with G ∈ " and � (") = G. Put

# = " ∩ �0. Then G ∈ # . However, G = � (") = � (#) ∈ # \ # . This is a contradiction, completing

the proof. �

The next property concerns the ‘largeness’ of neighbourhoods of points in - . For any condition in

Q<X below 〈�0, (0〉, every neighbourhood of almost every point in the image of that condition has large

intersection with the same image. This is proved by a simple application of the pressing down lemma.

Definition 31. For each G ∈ - , fix an enumeration
〈
*G,= : = ∈ l

〉
of the set {* ∈ B : G ∈ *}.

For any 〈�, (〉 ≤ 〈�0, (0〉, we will say that " ∈ ( is bad if there exists = ∈ l such that{
" ′ ∈ ( : � (" ′) ∈ *� (" ) ,=

}
is nonstationary in [�]<ℵ1 .

Lemma 32. Suppose 〈�, (〉 ≤ 〈�0, (0〉. Then {" ∈ ( : " is bad} is nonstationary.

Proof. Write (1 = {" ∈ ( : " is bad}. Assume for a contradiction that (1 is stationary in [�]<ℵ1 .

Then 〈�, (1〉 ≤ 〈�, (〉 ≤ 〈�0, (0〉. Applying Lemma 26, there exists 〈�,)〉 ≤ 〈�, (1〉 with the property

that � = � (j), where j is an uncountable regular cardinal, and for all  ∈ ) ,  ≺ � (j), | | = ℵ0 and

〈-, T〉,B ∈  . For any  ∈ ) , " =  ∩ � ∈ (1, and so " is bad, which means that there exists = ∈ l

so that
{
" ′ ∈ ( : � (" ′) ∈ *� (" ) ,=

}
is nonstationary in [�]<ℵ1 . Note that � ( ) = � (") and that

*� ( ) ,= ∈  , because of Lemma 24. Thus for each  ∈ ) , we have* ∈  such that � ( ) ∈ * and

{" ′ ∈ ( : � (" ′) ∈ * } is nonstationary in [�]<ℵ1 . By the pressing down lemma, there exists* so that

) ′
= { ∈ ) : * = *}
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is stationary in [�]<ℵ1 . Since ) ′ ≠ ∅, {" ′ ∈ ( : � (" ′) ∈ *} is nonstationary in [�]<ℵ1 . On the other

hand, ) ′
↓�

is stationary in [�]<ℵ1 and

) ′
↓� ⊆ {" ′ ∈ ( : � (" ′) ∈ *} .

This is a contradiction, which concludes the proof. �

Lemma 32 says that for any 〈�, (〉 ≤ 〈�0, (0〉, the set {" ∈ ( : " is not bad} is almost equal to (.

Therefore, once all the bad points in ( have been thrown away, none of the remaining points can be bad

in what is left. So there is no need to repeat the operation of throwing away bad points. This is what

Lemma 34 says.

Definition 33. For any 〈�, (〉 ≤ 〈�0, (0〉, define (̃ = {" ∈ ( : " is not bad}. By Lemma 32,

〈�, (̃〉 ∈ Q<X and 〈�, (̃〉 ≤ 〈�, (〉.

Lemma 34. Let 〈�, (〉 ≤ 〈�0, (0〉. For any " ∈ (̃ and any = ∈ l,

{" ′ ∈ (̃ : � (" ′) ∈ *� (" ) ,=}

is stationary in [�]<ℵ1 .

Proof. Take any " ∈ (̃ and any = ∈ l. Then " is not bad in (, which means that {" ′ ∈ ( :

� (" ′) ∈ *� (" ) ,=} is stationary in [�]<ℵ1 . Since ( \ (̃ is nonstationary in [�]<ℵ1 , it follows that

(̃ ∩ {" ′ ∈ ( : � (" ′) ∈ *� (" ) ,=} = {" ′ ∈ (̃ : � (" ′) ∈ *� (" ) ,=} is stationary in [�]<ℵ1 . �

Definition 35. Fix ; ∈ l with ; > 0 and fix 2 : [-]2 → ;. Suppose 〈�, (〉 ≤ 〈�0, (0〉

and 〈�,)〉 ≤ 〈�0, (0〉. For any 8 ∈ ; and any " ∈ (, define K(2, 8, ", �, )) to be

{" ′ ∈ ) : � (") ≠ � (" ′) and 2(� ("), � (" ′)) = 8}. We will say that " is 8-large in 〈�,)〉 with

respect to 2 if K(2, 8, ", �, )) is stationary in [�]<ℵ1 .

For any 8, 9 ∈ ;, the pair 〈〈�, (〉, 〈�,)〉〉 is said to be 〈8, 9〉-saturated with respect to 2 if for any

〈�′, (′〉 ≤ 〈�, (〉 and any 〈�′, ) ′〉 ≤ 〈�,)〉, both of the following hold:

1. {" ∈ (′ : " is 8-large in 〈�′, ) ′〉 with respect to 2} is stationary in [�′]<ℵ1 .

2. { ∈ ) ′ :  is 9-large in 〈�′, (′〉 with respect to 2} is stationary in [�′]<ℵ1 .

As the colouring 2 will remain fixed until the end of the proof of Theorem 47, we will generally omit

the phrase ‘with respect to 2’ everywhere in what follows.

Intuitively, if a pair 〈〈�, (〉, 〈�,)〉〉 is 〈8, 9〉-saturated, then the colours 8 and 9 occur in every

rectangle whose sides are conditions below 〈�, (〉 and 〈�,)〉 in Q<X . More precisely, any rectangle

whose base is a condition below 〈�, (〉 and whose height is a condition below 〈�,)〉 must contain many

vertical columns with a large collection of 8-coloured points, and also many horizontal rows with a large

collection of 9-coloured points.

Lemma 36. Suppose 〈�′, (′〉 ≤ 〈�, (〉 ≤ 〈�0, (0〉 and 〈�′, ) ′〉 ≤ 〈�,)〉 ≤ 〈�0, (0〉. For any 8 ∈ ; and

any " ∈ (′, K(2, 8, ", �, )) = K(2, 8, " ∩ �, �, )). Also, if " is 8-large in 〈�′, ) ′〉, then " is 8-large

in 〈�,)〉. Further, if " is 8-large in 〈�′, ) ′〉, then " ∩ � is 8-large in 〈�,)〉.

Proof. Indeed, " ∩ � ∈ ( and � (") = � (" ∩ �), and so

K(2, 8, ", �, )) = {" ′ ∈ ) : � (" ∩ �) ≠ � (" ′) and 2(� (" ∩ �), � (" ′)) = 8}

= K(2, 8, " ∩ �, �, )).
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Moreover, if " is 8-large in 〈�′, ) ′〉, then K(2, 8, ", �′, ) ′) is stationary in [�′]<ℵ1 . Since

(K(2, 8, ", �′, ) ′))↓� is stationary in [�]<ℵ1 and we have that (K(2, 8, ", �′, ) ′))↓� ⊆

K(2, 8, ", �, )) ⊆ ) ⊆ [�]<ℵ1 , it follows that K(2, 8, ", �, )) is stationary in [�]<ℵ1 . Hence "

is 8-large in 〈�,)〉. Finally, if " is 8-large in 〈�′, ) ′〉, then by what we have remarked up to now,

K(2, 8, ", �, )) = K(2, 8, " ∩ �, �, )) is stationary in [�]<ℵ1 , and so " ∩ � is 8-large in 〈�,)〉. �

The next lemma expresses the simple fact that for a fixed row or column in any rectangle, there must

be a colour that occurs frequently along that row or column:

Lemma 37. Suppose 〈�, (〉 ≤ 〈�0, (0〉 and 〈�,)〉 ≤ 〈�0, (0〉. For each " ∈ ( and each  ∈ ) , there

exists 〈8, 9〉 ∈ ; × ; such that " is 8-large in 〈�,)〉 and  is 9-large in 〈�, (〉.

Proof. Put G = � (") and H = � ( ). By Lemma 30, ) ′ = { ′ ∈ ) : � ( ′) ≠ G} is stationary in

[�]<ℵ1 and (′ = {" ′ ∈ ( : � (" ′) ≠ H} is stationary in [�]<ℵ1 . For each 8 < ;, let ) ′
8 = { ′ ∈

) ′ : 2(� ("), � ( ′)) = 8} and let (′8 = {" ′ ∈ (′ : 2(� ( ), � (" ′)) = 8}. There must be a pair

〈8, 9〉 ∈ ; × ; such that ) ′
8 ⊆ [�]<ℵ1 is stationary and (′9 ⊆ [�]<ℵ1 is stationary, because

⋃
8<;)

′
8 = ) ′

and
⋃
8<;(

′
8 = (′. Since ) ′

8 ⊆ K(2, 8, ", �, )) ⊆ [�]<ℵ1 and (′9 ⊆ K(2, 9 ,  , �, () ⊆ [�]<ℵ1 , " is

8-large in 〈�,)〉 and  is 9-large in 〈�, (〉. �

It is obvious from the definition that the property of being 〈8, 9〉-saturated is hereditary. We state this

as a separate fact because it will be useful, but we will omit the trivial proof.

Lemma 38. Suppose 〈�′, (′〉 ≤ 〈�, (〉 ≤ 〈�0, (0〉 and 〈�′, ) ′〉 ≤ 〈�,)〉 ≤ 〈�0, (0〉. For any 〈8, 9〉 ∈

; × ;, if 〈〈�, (〉, 〈�,)〉〉 is 〈8, 9〉-saturated, then so is 〈〈�′, (′〉, 〈�′, ) ′〉〉.

The next lemma will play an important role in the rest of the proof. It asserts the existence of a single

pair of colours 〈8, 9〉 and a condition in Q<X with the property that every condition below it in Q<X can

be split into an 〈8, 9〉-saturated pair. The proof is an exhaustion argument.

Lemma 39. There exist 〈8, 9〉 ∈ ; × ; and 〈�1, (1〉 ≤ 〈�0, (0〉 such that for any 〈�2, (2〉 ≤ 〈�1, (1〉,

there exist 〈�, (〉 ≤ 〈�2, (2〉 and 〈�,)〉 ≤ 〈�2, (2〉 such that 〈〈�, (〉, 〈�,)〉〉 is 〈8, 9〉-saturated.

Proof. Since ; > 0, we can enumerate the members of ; × ; as {〈81, 91〉, . . . , 〈8;2 , 9;2〉}. Suppose that

the statement of the lemma fails. Then there exists a sequence 〈�0, (0〉 ≥ 〈�1, (1〉 ≥ · · · ≥ 〈�;2 , (;2〉

such that for each 1 ≤ : ≤ ;2, 〈�: , (:〉 has the property that for any 〈�, (〉 ≤ 〈�: , (:〉 and any

〈�,)〉 ≤ 〈�: , (:〉, 〈〈�, (〉, 〈�,)〉〉 is not 〈8: , 9:〉-saturated. Next build three sequences

〈�;2 , (;2〉 = 〈�′
0, (

′
0〉 ≥ 〈�′

1, (
′
1〉 ≥ · · · ≥ 〈�′

;2
, (′
;2
〉,

〈�;2 , (;2〉 = 〈�′
0, )

′
0〉 ≥ 〈�′

1, )
′
1〉 ≥ · · · ≥ 〈�′

;2
, ) ′
;2
〉 and

〈(∗1, )
∗
1 〉, . . . , 〈(

∗
;2
, )∗
;2
〉

such that

1. for each 1 ≤ : ≤ ;2, (∗
:
⊆ (′

:
is nonstationary in [�′

:
]<ℵ1 and )∗

:
⊆ ) ′

:
is nonstationary in [�′

:
]<ℵ1 ;

2. for each 1 ≤ : ≤ ;2,

either (∗: =
{
" ∈ (′: : " is 8: -large in 〈�′

: , )
′
:〉
}

or )∗
: =

{
 ∈ ) ′

: :  is 9: -large in 〈�′
: , (

′
:〉
}
.

Suppose for a moment that this has been accomplished. Then for each 1 ≤ : ≤ ;2, ((∗
:
)
↑�′

;2 is nonstation-

ary in [�′
;2
]<ℵ1 and ()∗

:
)
↑�′

;2 is nonstationary in [�′
;2
]<ℵ1 . Therefore, if (∗ = (′

;2
\ (

⋃
1≤:≤;2

(
(∗
:

)↑�′
;2 ),
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then 〈�′
;2
, (∗〉 ≤ 〈�′

;2
, (′
;2
〉 ≤ 〈�0, (0〉, and if)∗ = ) ′

;2
\(
⋃

1≤:≤;2
(
)∗
:

)↑�′

;2 ), then 〈�′
;2
, )∗〉 ≤ 〈�′

;2
, ) ′
;2
〉 ≤

〈�0, (0〉. Choose "∗ ∈ (∗ and  ∗ ∈ )∗. Apply Lemma 37 to find 1 ≤ : ≤ ;2 such that "∗ is 8: -large

in 〈�′
;2
, )∗〉 and  ∗ is 9: -large in 〈�′

;2
, (∗〉. Note that "∗ ∩ �′

:
∈ (′

:
\ (∗

:
and  ∗ ∩ �′

:
∈ ) ′

:
\ )∗

:
.

By Lemma 36, "∗ ∩ �′
:

is 8: -large in 〈�′
:
, ) ′
:
〉 and  ∗ ∩ �′

:
is 9: -large in 〈�′

:
, (′
:
〉. However,

these facts contradict (2), because they imply that (∗
:
≠ {" ∈ (′

:
: " is 8: -large in 〈�′

:
, ) ′
:
〉} and

)∗
:
≠
{
 ∈ ) ′

:
:  is 9: -large in 〈�′

:
, (′
:
〉
}
.

To construct such sequences, proceed by induction. To start, let 〈�′
0
, (′

0
〉 = 〈�;2 , (;2〉 = 〈�′

0
, ) ′

0
〉.

Now suppose that 0 ≤ : < : + 1 ≤ ;2 and that 〈�′
:
, (′
:
〉 ≤ 〈�;2 , (;2〉 and 〈�′

:
, ) ′
:
〉 ≤ 〈�;2 , (;2〉 are

given. Then 〈�′
:
, (′
:
〉 ≤ 〈�:+1, (:+1〉 and 〈�′

:
, ) ′
:
〉 ≤ 〈�:+1, (:+1〉. By the choice of 〈�:+1, (:+1〉,

〈〈�′
:
, (′
:
〉, 〈�′

:
, ) ′
:
〉〉 is not 〈8:+1, 9:+1〉-saturated. Therefore we can find 〈�′

:+1
, (′
:+1

〉 ≤ 〈�′
:
, (′
:
〉 and

〈�′
:+1
, ) ′
:+1

〉 ≤ 〈�′
:
, ) ′
:
〉 such that either

{
" ∈ (′:+1 : " is 8:+1-large in 〈�′

:+1, )
′
:+1〉

}

is nonstationary in [�′
:+1

]<ℵ1 or

{
 ∈ ) ′

:+1 :  is 9:+1-large in 〈�′
:+1, (

′
:+1〉

}

is nonstationary in [�′
:+1

]<ℵ1 . If the first alternative happens, then define

(∗:+1 =
{
" ∈ (′:+1 : " is 8:+1-large in 〈�′

:+1, )
′
:+1〉

}
⊆ (′:+1

and )∗
:+1

= ∅; if the second alternative occurs, then define (∗
:+1

= ∅ and

)∗
:+1 =

{
 ∈ ) ′

:+1 :  is 9:+1-large in 〈�′
:+1, (

′
:+1〉

}
⊆ ) ′

:+1.

It is clear that 〈�′
:+1
, (′
:+1

〉, 〈�′
:+1
, ) ′
:+1

〉, (∗
:+1

and )∗
:+1

are as required. This completes the construction

and the proof. �

We should point out that in certain special circumstances, it is possible to ensure that 8 = 9 in

Lemma 39. Suppose for a moment that -2 is a Baire space, that 2 is Baire measurable and that the

Kuratowski–Ulam theorem is applicable in every open subset of -2. Under these circumstances, Q<X
may be replaced everywhere by the coideal of nonmeager subsets of - . By Baire measurability, there

must be a colour 8 and open sets *0,*1 ⊆ - such that the 8-coloured points are comeager relative to

*0 × *1. By Kuratowski–Ulam, almost all the points in almost all vertical sections of *0 × *1 must

have colour 8. In fact, under these assumptions, the rest of our proof can be completed using the coideal

of nonmeager sets to produce a homeomorphic copy of Q that is monochromatic in the colour 8. This

should be compared to a theorem of Todorcevic [29] saying that if 2 : [Q]2 → N is any continuous

colouring, where N is given the discrete topology, then there exists a monochromatic . ⊆ Q which is

homeomorphic to Q.

The next lemma will only be used in the final construction. It is a simple consequence of the fact that

the nonstationary sets form a f-ideal.

Lemma 40. Suppose F ⊆ Q<X is a countable family so that

∀〈�,)〉 ∈ F [〈�,)〉 ≤ 〈�0, (0〉] .

Suppose : ∈ ;. Let 〈�, (〉 ≤ 〈�0, (0〉 have the property that for any 〈�′, (′〉 ≤ 〈�, (〉 and any 〈�,)〉 ∈ F,

{" ′ ∈ (′ : " ′ is :-large in 〈�,)〉} is stationary in [�′]<ℵ1 . Then for any 〈�′, (′〉 ≤ 〈�, (〉,

{" ′ ∈ (′ : ∃〈�,)〉 ∈ F [" ′ is not :-large in 〈�,)〉]}

is nonstationary in [�′]<ℵ1 .
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Proof. We argue by contradiction. If there exists an 〈�′, (′〉 ≤ 〈�, (〉 for which the statement of the

lemma fails, then there exists a set (′′ ⊆ (′ which is stationary in [�′]<ℵ1 and has the property that for any

" ′ ∈ (′′, there exists 〈�" ′ , )" ′〉 ∈ F such that " ′ is not :-large in 〈�" ′ , )" ′〉. Since F is a countable

set, it follows that there exists 〈�,)〉 ∈ F so that (∗ = {" ′ ∈ (′′ : 〈�,)〉 = 〈�" ′ , )" ′〉} is stationary in

[�′]<ℵ1 . Thus 〈�′, (∗〉 ≤ 〈�, (〉, and so by the hypothesis on 〈�, (〉, {" ′ ∈ (∗ : " ′ is :-large in 〈�,)〉}

is stationary in [�′]<ℵ1 . In particular, this set is nonempty, which contradicts the choice of (′′, concluding

the proof. �

In view of Lemma 39, we fix for the remainder of this section pairs 〈8, 9〉 ∈ ;×; and 〈�1, (1〉 ≤ 〈�0, (0〉

such that for any 〈�2, (2〉 ≤ 〈�1, (1〉, there exist 〈�, (〉 ≤ 〈�2, (2〉 and 〈�,)〉 ≤ 〈�2, (2〉 such that

〈〈�, (〉, 〈�,)〉〉 is 〈8, 9〉-saturated. We will ensure that all the pairs in the homeomorphic copy of Q

which we are going to construct inside - are coloured either 8 or 9 .

Lemma 41 is another application of the pressing down lemma. Lemma 42 is proved using Lemmas 41

and 39. Item 2 of Lemma 42 is implied by item 1, but it is stated for emphasis.

Lemma 41. Suppose 〈�, (〉 ≤ 〈�0, (0〉. For each = ∈ l, there exists* so that {" ′ ∈ ( : * = *� (" ′) ,=}

is stationary in [�]<ℵ1 .

Proof. By Lemma 26, there exists 〈�,)〉 ≤ 〈�, (〉 with the property that there exists an uncountable

regular cardinal j such that � = � (j) and for each " ∈ ) , |" | = ℵ0, " ≺ � (j) and 〈-, T〉,B ∈ " .

Consider any " ∈ ) . Then � (") ∈ " ∩ - \ " . So by Lemma 24, B{� (" ) } ⊆ " . In particular,

*� (" ) ,= ∈ " . Thus by the pressing down lemma there exists* such that

) ′
= {" ∈ ) : * = *� (" ) ,=} ⊆ [�]<ℵ1

is stationary. So ) ′
↓�

⊆ [�]<ℵ1 is stationary. Since

) ′
↓� ⊆ {" ′ ∈ ( : * = *� (" ′) ,=} ⊆ ( ⊆ [�]<ℵ1 ,

{" ′ ∈ ( : * = *� (" ′) ,=} is also stationary in [�]<ℵ1 . �

Lemma 42. Suppose 〈�, (〉 ≤ 〈�1, (1〉 and = ∈ l. There exist 〈�′, (′〉, 〈�′, ) ′〉 ≤ 〈�, (̃〉 and there

exists* satisfying the following:

1. For all " ′ ∈ (′,* = *� (" ′) ,=, and for all  ′ ∈ ) ′,* = *� ( ′) ,=.

2. For each " ′ ∈ (′, � (" ′) ∈ *, and for each  ′ ∈ ) ′, � ( ′) ∈ *.

3. 〈〈�′, (′〉, 〈�′, ) ′〉〉 is 〈8, 9〉-saturated.

Proof. Since 〈�, (̃〉 ≤ 〈�, (〉 ≤ 〈�1, (1〉 ≤ 〈�0, (0〉, Lemma 41 applies and implies that there exists*

so that (∗ = {" ∈ (̃ : * = *� (" ) ,=} is stationary in [�]<ℵ1 . So 〈�, (∗〉 ≤ 〈�, (̃〉, and by Lemma 32,

〈�, (̃(∗)〉 ≤ 〈�, (∗〉. Choose any "∗ ∈ (̃(∗). Then (∗∗ = {" ∈ (∗ : � (") ∈ *� (" ∗) ,= = *} is

stationary in [�]<ℵ1 . Therefore, 〈�, (∗∗〉 ≤ 〈�, (∗〉 ≤ 〈�1, (1〉, and by the choice of 〈�1, (1〉, there

exist 〈�′, (′〉, 〈�′, ) ′〉 ≤ 〈�, (∗∗〉 such that 〈〈�′, (′〉, 〈�′, ) ′〉〉 is 〈8, 9〉-saturated. It is clear that 〈�′, (′〉

and 〈�′, ) ′〉 are as required. �

Definition 43. Suppose G ∈ �0 and 〈�, (〉 ≤ 〈�1, (1〉. We will say that G is an 〈8, 9〉-winner in 〈�, (〉

if there exists " ∈ (̃ with � (") = G and there exists a sequence 〈〈〈�G,=, (G,=〉, 〈�G,=, )G,=〉〉 : = ∈ l〉

satisfying the following conditions:

1. For each = ∈ l, 〈�G,=, (G,=〉, 〈�G,=, )G,=〉 ≤ 〈�, (̃〉, and

〈�G,=+1, (G,=+1〉, 〈�G,=+1, )G,=+1〉 ≤ 〈�G,=, (̃G,=〉.
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2. For each = ∈ l, there exists " ∈ (̃G,= with � (") = G, and moreover, for each " ′ ∈ (G,=,

� (" ′) ∈ *G,= and each  ′ ∈ )G,=, we have � ( ′) ∈ *G,=.

3. For each = ∈ l, 〈〈�G,=, (G,=〉, 〈�G,=, )G,=〉〉 is 〈8, 9〉-saturated.

4. For each = ∈ l, for each  ′ ∈ )G,=, � ( 
′) ≠ G and 2(G, � ( ′)) = 8.

We would like to point out certain features of Definition 43. Intuitively speaking, the sequence of

sets 〈)G,= : = ∈ l〉 is converging to the 〈8, 9〉-winner G. Moreover, G has colour 8 with all of the points in

)G,= for all =, and the pair 〈〈�G,: , )G,:〉, 〈�G,=, )G,=〉〉 is 〈8, 9〉-saturated for all = < : . These properties

of an 〈8, 9〉-winner are formulated and proved in Lemma 45. And they are essentially the only properties

of an 〈8, 9〉-winner that will be used in the final construction. Thus the condition 〈�G,=, (G,=〉 is not

directly used at all, though it is the reservoir from which the future 〈�G,: , )G,:〉 are drawn. Also, in

item 2 of Definition 43, the property that � (") = G for some " ∈ (̃G,= will not be used, though it is

automatically ensured by the proof that 〈8, 9〉-winners exist.

The next lemma is the key to the final construction. It asserts that almost every point in any condition

below 〈�1, (1〉 is an 〈8, 9〉-winner in that condition. Its proof appeals to Theorem 28, and it is the only

place in the proof of Theorem 47 where the assumption that X is Woodin or strongly compact is essential.

Lemma 44. For any 〈�, (〉 ≤ 〈�1, (1〉,

{" ∈ ( : � (") is not an 〈8, 9〉-winner in 〈�, (〉}

is nonstationary in [�]<ℵ1 .

Proof. Suppose not. Then

(′ = {" ∈ (̃ : � (") is not an 〈8, 9〉-winner in 〈�, (〉}

is stationary in [�]<ℵ1 . Thus 〈�, (′〉 ≤ 〈�, (̃〉 ≤ 〈�, (〉 ≤ 〈�1, (1〉. Applying Lemma 42 with 〈�, (′〉

in place of 〈�, (〉, choose 〈�0, '
′
0
〉, 〈�0, )0〉 ≤ 〈�, (′〉 and*0 so that for each " ′ ∈ '′

0
, � (" ′) ∈ *0 =

*� (" ′) ,0; for each  ′ ∈ )0, � ( ′) ∈ *0 = *� ( ′) ,0; and 〈〈�0, '
′
0
〉, 〈�0, )0〉〉 is 〈8, 9〉-saturated. In

particular, '0 =
{
" ′ ∈ '′

0
: " ′ is 8-large in 〈�0, )0〉

}
is stationary in [�0]

<ℵ1 . Now define a strategy

for Empty in a(X) as follows. Suppose that f is a partial run of a(X) with |f | = 2= (for some

= ∈ l), during which Empty has followed their strategy. If = = 0, then Empty plays 〈�0, '̃0〉. If

= > 0, then f(2= − 1) ≤ f(0) = 〈�0, '̃0〉 ≤ 〈�1, (1〉. Applying Lemma 42 with f(2= − 1) in

place of 〈�, (〉, Empty chooses 〈�f , '
′
f〉, 〈�f , )f〉 ≤ f(2= − 1) and *= so that for each " ′ ∈ '′

f ,

� (" ′) ∈ *= = *� (" ′) ,=; for each  ′ ∈ )f , � ( ′) ∈ *= = *� ( ′) ,=; and 〈〈�f , '
′
f〉, 〈�f , )f〉〉 is

〈8, 9〉-saturated. In particular, 'f =
{
" ′ ∈ '′

f : " ′ is 8-large in 〈�f , )f〉
}

is stationary in [�f]
<ℵ1 .

Empty then plays 〈�f , '̃f〉 ≤ f(2= − 1) as the 2=th move of this run. This concludes the definition of

a strategy for Empty in a(X).

Since Empty does not have a winning strategy, there is a complete run of a(X) in which Empty

follows the strategy just defined and loses. Therefore, there exist sequences 〈〈�=, '=〉 : = ∈ l〉,

〈〈〈�2=, '
′
2=
〉, 〈�2=, )2=〉〉 : = ∈ l〉 and 〈*= : = ∈ l〉 satisfying the following:

1. Nonempty wins the run of a(X) given by

Empty 〈�0, '̃0〉 〈�2, '̃2〉 · · ·

Nonempty 〈�1, '1〉 〈�3, '3〉 · · ·

2. For each = ∈ l, for each " ′ ∈ '′
2=

, � (" ′) ∈ *= = *� (" ′) ,=; for each  ′ ∈ )2=, � ( 
′) ∈ *= =

*� ( ′) ,=; and 〈〈�2=, '
′
2=
〉, 〈�2=, )2=〉〉 is 〈8, 9〉-saturated.

3. For each = ∈ l, '2= =
{
" ′ ∈ '′

2=
: " ′ is 8-large in 〈�2=, )2=〉

}
is stationary in [�2=]

<ℵ1 .

4. For each = > 0, 〈�2=, '
′
2=
〉, 〈�2=, )2=〉 ≤ 〈�2=−1, '2=−1〉.
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There is a sequence 〈"= : = ∈ l〉 so that

∀= ∈ l["2= ∈ '̃2= and "2=+1 ∈ '2=+1] and

∀= ≤ : < l["= = ": ∩ �=],

because Nonempty wins. Define G = � ("0). Note that for any = > 0, � ("2=) = � ("0) = G.

Furthermore, "0 ∩ � ∈ (′, which means that "0 ∩ � ∈ (̃ and G = � ("0 ∩ �) is not an 〈8, 9〉-winner in

〈�, (〉. We will get a contradiction by showing that G is an 〈8, 9〉-winner in 〈�, (〉.

First note that if we let " = "0 ∩ �, then " ∈ (̃ and G = � ("). Now define a sequence

〈〈〈�G,=, (G,=〉, 〈�G,=, )G,=〉〉 : = ∈ l〉 as follows. Fix = ∈ l and define 〈�G,=, (G,=〉 = 〈�2=, '2=〉. Note

that "2= ∈ '2=, whence "2= ∈ '′
2=

and "2= is 8-large in 〈�2=, )2=〉, which means that

)G,= = { ′ ∈ )2= : � ("2=) ≠ � ( 
′) and 2(� ("2=), � ( 

′)) = 8}

is stationary in [�2=]
<ℵ1 . Defining �G,= = �2=, we have that 〈�G,=, )G,=〉 = 〈�2=, )G,=〉 ≤ 〈�2=, )2=〉.

Moreover, by the definition of)G,=, for any ′ ∈ )G,=, G ≠ � ( 
′) and 2(G, � ( ′)) = 8, which is what item

4 of Definition 43 says. Also, 〈〈�2=, '
′
2=
〉, 〈�2=, )2=〉〉 is 〈8, 9〉-saturated, 〈�G,=, (G,=〉 = 〈�2=, '2=〉 ≤

〈�2=, '
′
2=
〉 and 〈�G,=, )G,=〉 ≤ 〈�2=, )2=〉, which implies that

〈〈�G,=, (G,=〉, 〈�G,=, )G,=〉〉

is 〈8, 9〉-saturated, satisfying item 3 of Definition 43. Next, note that "2= ∈ '̃2= = (̃G,= and � ("2=) = G.

Note also that since "2= ∈ '′
2=

, *= = *� ("2=) ,= = *G,=. Moreover, for any " ′ ∈ (G,=, � ("
′) ∈ *= =

*G,=, and for any ′ ∈ )G,=, � ( 
′) ∈ *= = *G,=. Hence item 2 of Definition 43 is satisfied. Furthermore,

if = = 0, then 〈�G,=, (G,=〉 ≤ 〈�2=, '
′
2=
〉 = 〈�0, '

′
0
〉 ≤ 〈�, (̃〉 and 〈�G,=, )G,=〉 ≤ 〈�2=, )2=〉 =

〈�0, )0〉 ≤ 〈�, (′〉 ≤ 〈�, (̃〉. If = > 0, then 〈�2=, '
′
2=
〉, 〈�2=, )2=〉 ≤ 〈�2=−1, '2=−1〉 ≤ 〈�0, '̃0〉 ≤

〈�, (̃〉, and so 〈�G,=, (G,=〉 ≤ 〈�2=, '
′
2=
〉 ≤ 〈�, (̃〉 and 〈�G,=, )G,=〉 ≤ 〈�2=, )2=〉 ≤ 〈�, (̃〉. Thus

〈�G,=, (G,=〉, 〈�G,=, )G,=〉 ≤ 〈�, (̃〉 always holds. Finally, we have 〈�G,=+1, (G,=+1〉 ≤ 〈�2=+2, '
′
2=+2

〉 ≤

〈�2=+1, '2=+1〉 ≤ 〈�G,=, (̃G,=〉 and

〈�G,=+1, )G,=+1〉 ≤ 〈�2=+2, )2=+2〉 ≤ 〈�2=+1, '2=+1〉 ≤ 〈�G,=, (̃G,=〉.

Thus 〈�G,=+1, (G,=+1〉, 〈�G,=+1, )G,=+1〉 ≤ 〈�G,=, (̃G,=〉 holds, and so item 1 of Definition 43 holds.

This concludes the verification that G is an 〈8, 9〉-winner in 〈�, (〉. Since this yields a contradiction,

the proof is complete. �

Lemma 45. Suppose G ∈ �0 and 〈�, (〉 ≤ 〈�1, (1〉. If G is an 〈8, 9〉-winner in 〈�, (〉, then there exists

a sequence 〈〈�G,=, )G,=〉 : = ∈ l〉 such that the following hold for each = ∈ l:

1. 〈�G,=, )G,=〉 ≤ 〈�, (〉.

2. For each  ′ ∈ )G,=, � ( 
′) ∈ *G,=.

3. For any = < : < l, 〈〈�G,: , )G,:〉, 〈�G,=, )G,=〉〉 is 〈8, 9〉-saturated.

4. For each  ′ ∈ )G,=, � ( 
′) ≠ G and 2(G, � ( ′)) = 8.

Proof. By the definition of an 〈8, 9〉-winner in 〈�, (〉, there exists a sequence

〈〈〈�G,=, (G,=〉, 〈�G,=, )G,=〉〉 : = ∈ l〉

satisfying items 1–4 of Definition 43. We argue that 〈〈�G,=, )G,=〉 : = ∈ l〉 has the required properties.

Indeed, from item 1 of Definition 43, 〈�G,=, )G,=〉 ≤ 〈�, (̃〉 ≤ 〈�, (〉 for each = ∈ l. Next, items

2 and 4 of this lemma follow from items 2 and 4 of Definition 43, respectively. Finally, for any

https://doi.org/10.1017/fmp.2020.12 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.12


18 Raghavan Dilip and Todorcevic Stevo

= ∈ l and any = < : < l, 〈�G,: , )G,:〉 ≤ 〈�G,=, (G,=〉 by item 1 of Definition 43. If = ∈ l, then

〈〈�G,=, (G,=〉, 〈�G,=, )G,=〉〉 is 〈8, 9〉-saturated, whence for any = < : < l, 〈〈�G,: , )G,:〉, 〈�G,=, )G,=〉〉

is 〈8, 9〉-saturated. �

Definition 46. If % ⊆ l<l is a (downwards closed) subtree, we say that f is a leaf node of % if f ∈ %

but there is no < ∈ l for which f⌢〈<〉 ∈ %. The expression !(%) will denote the collection of all leaf

nodes of %, and # (%) will denote % \ !(%). Thus % = !(%) ∪ # (%).

If f, g ∈ l<l are incomparable, then

Δ (f, g) = min {< ∈ dom(f) ∩ dom(g) : f(<) ≠ g(<)} .

We say f <lex g if f and g are incomparable and f(Δ (f, g)) < g(Δ (f, g)).

We are now ready to prove the main theorem. We will organise the construction of the homeomorphic

copy of Q by associating every node of the tree l<l to a point in the copy. This makes certain features

of the construction easier to visualise. For instance, the points associated to the successors of a node

converge to the point associated to that node. Since the construction is inductive, the homeomorphic

copy of Q is naturally well-ordered by the order in which the points are chosen. Our scheme explicitly

displays the interplay between this well-ordering and the lexicographic ordering of the tree, as well as

the correspondence between this interplay and the colours 8 and 9 . Of course, we know from Sierpiński’s

example that such a close correspondence is unavoidable. The sequence of trees 〈%< : < ∈ l〉 in the

proof of Theorem 47 serves as a bookkeeping device ensuring that once a point has been chosen, all of

its neighbourhoods are eventually considered and met.

Theorem 47. There is a nonempty countable . ⊆ - such that . is dense in itself and 2′′[. ]2 ⊆ {8, 9}.

Proof. We may choose a sequence 〈%< : < ∈ l〉 satisfying the following conditions:

1. For each < ∈ l, %< ⊆ l<l is a nonempty subtree of finite height.

2. For each < ∈ l, there exists f< ∈ !(%<) such that

%<+1 = %< ∪ {(f<)
⌢〈=〉 : = ∈ l} .

3. %0 = {∅} and l<l =
⋃
=∈l%=.

It is clear that for each < ∈ l, !(%<+1) = (!(%<) \ {f<}) ∪ {(f<)
⌢〈=〉 : = ∈ l} and # (%<+1) =

# (%<) ∪ {f<}. Also, if < < <′ < l, then f< ≠ f<′ and f< ∈ # (%<′). Finally, observe that for each

f ∈ l<l , there exists < ∈ l with f = f<, and < + 1 is the minimal <∗ ∈ l with f ∈ # (%<∗ ). We

will construct two sequences 〈G<+1 : < ∈ l〉 and 〈�< : < ∈ l〉 such that the following conditions hold

at each < ∈ l:

4. G<+1 ∈ - and �< : !(%<) → Q<X ; for a f ∈ !(%<), we will write 〈�<,f , )<,f〉 instead of �< (f).

5. For each f ∈ !(%<), 〈�<,f , )<,f〉 ≤ 〈�1, (1〉, and furthermore, for each <′ ≤ < and each

f ∈ !(%<′) ∩ !(%<), )<,f ⊆ )<′,f .

6. For each <′ < < and each f ∈ !(%<), if f<′ ( f, then for each  ∈ )<,f , � ( ) ≠ G<′+1 and

2(� ( ), G<′+1) = 8; if f<′ <lex f, then for each  ∈ )<,f , � ( ) ≠ G<′+1 and 2(� ( ), G<′+1) = 9 ;

if f <lex f<′ , then for each  ∈ )<,f , � ( ) ≠ G<′+1 and 2(� ( ), G<′+1) = 8.

7. For any f, g ∈ !(%<), if f <lex g, then 〈〈�<,g , )<,g〉, 〈�<,f , )<,f〉〉 is 〈8, 9〉-saturated.

8. There exists  ∈ )<,f<
so that G<+1 = � ( ).

9. For each = ∈ l,
〈
� (<+1) , ( (f<)⌢ 〈=〉) , )(<+1) , ( (f<)⌢ 〈=〉)

〉
≤ 〈�<,f<

, )<,f<
〉, and furthermore, for

each  ∈ )(<+1) , ( (f<)⌢ 〈=〉) , � ( ) ∈ *G<+1 ,=.

Suppose for a moment that these two sequences can be built. Define . = {G<+1 : < ∈ l}. Clearly

. ⊆ - and . is countable and nonempty. We first verify that . is dense in itself. Indeed, fix <, = ∈ l.
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We must find some <′ ∈ l for which G<′+1 ∈ *G<+1 ,= and G<′+1 ≠ G<+1. Put g = (f<)
⌢〈=〉. Then

g ∈ !(%<+1). Let <′ ∈ l be so that g = f<′ . It is easy to see that < + 1 ≤ <′. By item 9, for each

 ∈ )<+1,g , � ( ) ∈ *G<+1 ,=. By item 6 applied to < < <′ and g ∈ !(%<′), since f< ( g, we have

that for each  ∈ )<′,g , � ( ) ≠ G<+1. By item 5 applied to < + 1 ≤ <′ and g ∈ !(%<+1) ∩ !(%<′),

we have that )<′,g ⊆ )<+1,g . Finally, by item 8 applied to <′, we have that there exists  ∈ )<′,g so

that G<′+1 = � ( ). Thus G<′+1 = � ( ) ≠ G<+1. Also,  ∈ )<+1,g , whence G<′+1 = � ( ) ∈ *G<+1 ,=, as

needed. This verifies that . is dense in itself.

We next check that 2′′[. ]2 ⊆ {8, 9}. Consider any <′ < < < l. We will verify that G<′+1 ≠ G<+1

and that 2(G<′+1, G<+1) ∈ {8, 9}. Apply item 8 to find  ∈ )<,f<
so that G<+1 = � ( ). We see that

f<′ ≠ f<, that f<′ ∈ # (%<) and that f< ∈ !(%<). In particular, we cannot have f< ⊆ f<′ . Hence by

item 6, we have the following three possibilities: if f<′ ( f<, then G<+1 ≠ G<′+1 and 2(G<+1, G<′+1) = 8;

if f<′ <lex f<, then G<+1 ≠ G<′+1 and 2(G<+1, G<′+1) = 9 ; if f< <lex f<′ , then G<+1 ≠ G<′+1 and

2(G<+1, G<′+1) = 8. This is as required.

To finish the proof, it suffices to construct sequences 〈G<+1 : < ∈ l〉 and 〈�< : < ∈ l〉 satisfying

items 4–9. We do this by induction. So fix <∗ ∈ l and assume that 〈G<′+1 : <′ < <′ + 1 < <∗〉

and 〈�<′ : <′ < <∗〉 have been defined. We will define �<∗ , and if <∗ ≠ 0, then also G<∗ . Since

!(%0) = %0 = {∅}, when <∗ = 0 we only need to ensure that 〈�0,∅, )0,∅〉 is defined and that it is below

〈�1, (1〉. So we define 〈�0,∅, )0,∅〉 = 〈�1, (1〉. Now suppose that <∗ = < +1, for some< ∈ l. Note that

sincef< ∈ !(%<), everyf ∈ !(%<)\{f<} is incomparable tof<. Therefore, !(%<)\{f<} = G0∪G1,

where G0 = {f ∈ !(%<) : f< <lex f} and G1 = {f ∈ !(%<) : f <lex f<}. Applying Lemma 40, we

conclude that

{
 ′ ∈ )<,f<

: ∃f ∈ G0 [ 
′ is not 9-large in 〈�<,f , )<,f〉]

}

is nonstationary in [�<,f<
]<ℵ1 and also that

{
 ′ ∈ )<,f<

: ∃f ∈ G1 [ 
′ is not 8-large in 〈�<,f , )<,f〉]

}

is nonstationary in [�<,f<
]<ℵ1 . Further, Lemma 44 tells us that

{
 ′ ∈ )<,f<

: � ( ′) is not an 〈8, 9〉-winner in 〈�<,f<
, )<,f<

〉
}

is nonstationary in [�<,f<
]<ℵ1 . Therefore, we may choose  ′ ∈ )<,f<

such that the following things

are satisfied: ∀f ∈ G1 [ 
′ is 8-large in 〈�<,f , )<,f〉], ∀f ∈ G0 [ 

′ is 9-large in 〈�<,f , )<,f〉] and

� ( ′) is an 〈8, 9〉-winner in 〈�<,f<
, )<,f<

〉. Define G<+1 = � ( ′) = � ( ′ ∩ �0) ∈ - . By Lemma 45,

there exists a sequence
〈〈
� (<+1) , ( (f<)⌢ 〈=〉) , )(<+1) , ( (f<)⌢ 〈=〉)

〉
: = ∈ l

〉
such that the following hold

for each = ∈ l:

10.
〈
� (<+1) , ( (f<)⌢ 〈=〉) , )(<+1) , ( (f<)⌢ 〈=〉)

〉
≤ 〈�<,f<

, )<,f<
〉.

11. For each  ∈ )(<+1) , ( (f<)⌢ 〈=〉) , � ( ) ∈ *G<+1 ,=.

12. For any = < : < l,

〈〈� (<+1) , ( (f<)⌢ 〈: 〉) , )(<+1) , ( (f<)⌢ 〈: 〉)〉, 〈� (<+1) , ( (f<)⌢ 〈=〉) , )(<+1) , ( (f<)⌢ 〈=〉)〉〉

is 〈8, 9〉-saturated.

13. For each  ∈ )(<+1) , ( (f<)⌢ 〈=〉) , � ( ) ≠ G<+1 and 2(G<+1, � ( )) = 8.

For each f ∈ !(%<) \ {f<}, if f ∈ G0, then define �<+1,f = �<,f and

)<+1,f =
{
 ∈ )<,f : � ( ′) ≠ � ( ) and 2(� ( ′), � ( )) = 9

}
,
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which is a stationary subset of [�<,f]
<ℵ1 . If f ∈ G1, then set �<+1,f = �<,f and

)<+1,f =
{
 ∈ )<,f : � ( ′) ≠ � ( ) and 2(� ( ′), � ( )) = 8

}
,

which is a stationary subset of [�<,f]
<ℵ1 . Note that for all f ∈ !(%<) \ {f<}, 〈�<+1,f , )<+1,f〉 ≤

〈�<,f , )<,f〉. This finishes the definition of �<+1 and G<+1. It is simple to verify items 4, 5, 8 and 9.

We will go through the verification of items 6 and 7.

To check item 7, fix any f, g ∈ !(%<+1) and suppose that f <lex g. If f, g ∈ !(%<) \ {f<}, then

the induction hypothesis applies and implies that

〈〈�<,g , )<,g〉, 〈�<,f , )<,f〉〉

is 〈8, 9〉-saturated. Since we have 〈�<+1,g , )<+1,g〉 ≤ 〈�<,g , )<,g〉 and

〈�<+1,f , )<+1,f〉 ≤ 〈�<,f , )<,f〉,

it follows that 〈〈�<+1,g , )<+1,g〉, 〈�<+1,f , )<+1,f〉〉 is 〈8, 9〉-saturated. Next, if f = (f<)
⌢〈=〉 and

g = (f<)
⌢〈:〉 for some =, : ∈ l, then = < : , and by item 12, 〈〈�<+1,g , )<+1,g〉, 〈�<+1,f , )<+1,f〉〉 is

〈8, 9〉-saturated. Now suppose that

f ∈ !(%<) \ {f<}

and that g = (f<)
⌢〈=〉 for some = ∈ l. Then f <lex f<, and since f, f< ∈ !(%<), the induction

hypothesis applies and implies that 〈〈�<,f<
, )<,f<

〉, 〈�<,f , )<,f〉〉 is 〈8, 9〉-saturated. Since we know

that 〈�<+1,f , )<+1,f〉 ≤ 〈�<,f , )<,f〉 and

〈
�<+1,g , )<+1,g

〉
≤ 〈�<,f<

, )<,f<
〉,

we conclude that 〈
〈
�<+1,g , )<+1,g

〉
, 〈�<+1,f , )<+1,f〉〉 is also 〈8, 9〉-saturated. In the case when f =

(f<)
⌢〈=〉 for some = ∈ l and g ∈ !(%<) \ {f<}, we have that f< <lex g. Since f<, g ∈ !(%<), the

induction hypothesis tells us that 〈〈�<,g , )<,g〉, 〈�<,f<
, )<,f<

〉〉 is 〈8, 9〉-saturated. Since we know that

〈�<+1,g , )<+1,g〉 ≤ 〈�<,g , )<,g〉

and
〈
�<+1,f , )<+1,f

〉
≤ 〈�<,f<

, )<,f<
〉, we conclude that

〈〈�<+1,g , )<+1,g〉,
〈
�<+1,f , )<+1,f

〉
〉

is also 〈8, 9〉-saturated. This verifies item 7.

To verify item 6, fix <′ ∈ l with <′ < < + 1 and fix f ∈ !(%<+1). Suppose first that f ∈ !(%<) \

{f<}. If <′ < <, then the induction hypothesis together with the fact that )<+1,f ⊆ )<,f gives what is

needed. Now suppose that <′ = <. Then we cannot have f< ( f. If f< <lex f, then f ∈ G0, and by the

definition of)<+1,f , for each  ∈ )<+1,f , G<+1 ≠ � ( ) and 2(G<+1, � ( )) = 9 . Similarly, if f<lexf<,

thenf ∈ G1, and by the definition of)<+1,f , for each  ∈ )<+1,f , G<+1 ≠ � ( ) and 2(G<+1, � ( )) = 8.

This finishes the case when f ∈ !(%<) \ {f<}. Next suppose that f = (f<)
⌢〈=〉 for some = ∈ l.

Observe that f<′ ∈ %< and hence that f<′ ≠ (f<)
⌢〈:〉 for any : ∈ l. Note also that f< ∈ !(%<).

Furthermore, we know that 〈�<+1,f , )<+1,f〉 ≤ 〈�<,f<
, )<,f<

〉. Therefore, for any  ∈ )<+1,f ,

 ∩ �<,f<
∈ )<,f<

and � ( ) = � ( ∩ �<,f<
). Now suppose that f<′ ( f. Then f<′ ⊆ f<.

If f<′ = f<, then < = <′, and by item 13 we have that for each  ∈ )<+1,f , � ( ) ≠ G<+1 and

2(G<+1, � ( )) = 8, as required. So assume that f<′ ( f<. Then <′ < <, and by the induction

hypothesis, for each  ∈ )<,f<
, � ( ) ≠ G<′+1 and 2(� ( ), G<′+1) = 8. Therefore for each  ∈ )<+1,f ,

� ( ) = � ( ∩ �<,f<
) ≠ G<′+1 and 2(� ( ), G<′+1) = 2(� ( ∩ �<,f<

), G<′+1) = 8. This finishes the

case when f<′ ( f. Next assume that f<′ <lex f. Then f<′ <lex f< and <′ < <. So by the induction
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hypothesis, for each  ∈ )<,f<
, � ( ) ≠ G<′+1 and 2(� ( ), G<′+1) = 9 . Therefore, for any  ∈ )<+1,f ,

� ( ) = � ( ∩ �<,f<
) ≠ G<′+1 and 2(� ( ), G<′+1) = 2(� ( ∩ �<,f<

), G<′+1) = 9 . Finally, assume

that f <lex f<′ . Then f< <lex f<′ and <′ < <. So by the induction hypothesis, for each  ∈ )<,f<
,

� ( ) ≠ G<′+1 and 2(� ( ), G<′+1) = 8. Therefore, for any  ∈ )<+1,f , � ( ) = � ( ∩ �<,f<
) ≠ G<′+1

and 2(� ( ), G<′+1) = 2(� ( ∩ �<,f<
), G<′+1) = 8. This concludes the verification of item 6.

Therefore, sequences 〈G<+1 : < ∈ l〉 and 〈�< : < ∈ l〉 having the required properties can be

constructed. This finishes the proof of the theorem. �

It is not necessary for X to be a real Woodin cardinal for our proof of Theorem 47 to work. The

following is a corollary to the proof of Theorem 47:

Corollary 48. Fix a regular topological space 〈-, T,B〉, where B ⊆ T is a point-countable base and

〈-, T〉 is not left-separated. Fix ; ∈ l with ; > 0 and fix 2 : [-]2 → ;. Suppose there exist # and X

so that # is an inner model of ZFC, X ∈ # is a Woodin cardinal relative to # , 〈-, T,B, 2〉 ∈ +#
X

and

Bl ⊆ # . Then there exist 〈8, 9〉 ∈ ; × ; and a nonempty countable . ⊆ - such that . is dense in itself

and 2′′[. ]2 ⊆ {8, 9}.

Proof. Work in # . It is clear that 〈-, T〉 is still a regular topological space with base B ⊆ T. For any

G ∈ - , B{G } = {* ∈ B : G ∈ *} is a countable nonempty set in + , and so there is an onto function

5 : l → B{G }. Note that 5 ∈ Bl . So 5 ∈ # , because of the hypothesis that Bl ⊆ # . Therefore

B is point-countable in # . Next suppose that <wo is a well-ordering of - in # . Then since 〈-, T〉

is not left-separated in + and since <wo well-orders - in + , it follows that ∃G ∈ -∀* ∈ T∃I ∈

- [(I ≮wo G ∧ I ∉ *) ∨ (I ∈ * ∧ I <wo G)]. This is Δ0 and clearly relativises to # . Hence 〈-, T〉 is

not left-separated in # . Since X is Woodin in # , 〈-, T,B, 2〉 ∈ +#
X

and 2 : [-]2 → ;, the proof of

Theorem 47 is applicable in # . Therefore there exist . ∈ # and 8, 9 ∈ ; such that according to # , .

is nonempty and countable, . ⊆ - , ∀H ∈ .∀* ∈ T [H ∈ * =⇒ ∃H′ ∈ . [H′ ≠ H ∧ H′ ∈ *]] and

∀E ∈ [. ]2 [2(E) = 8 ∨ 2(E) = 9]. It is clear that all of these properties relativise up to + . Hence . is as

required. �

The hypothesis of Corollary 48 is fairly weak and does not even imply the existence of an inaccessible

cardinal in + . Recent work in inner model theory shows that frequently occurring situations like the

failure of � automatically lead to the satisfaction of Corollary 48’s hypothesis for all relevant spaces

and colourings. We now state some corollaries to Theorem 47. Corollary 49 establishes Theorem 17

which, as pointed out in Section 3, implies Theorem 3.

Corollary 49. Assume (∗). Then for every regular topological space 〈-, T〉 which is not left-separated

and has a point-countable base, every 0 < ; < l and every colouring 2 : [-]2 → ;, there exists . ⊆ -

such that . is homeomorphic to the rationals and 2 realises at most two colours on . . In particular, this

conclusion holds if there exists a proper class of Woodin cardinals or one strongly compact cardinal.

Proof. Let -, T, ; and 2 be given. Let B ⊆ T be a point-countable base for 〈-, T〉. Let U be so that

〈-, T,B, 2〉 ∈ +U. Use the hypothesis to find # and X such that # is an inner model of ZFC,+U+l ⊆ # ,

X > U, X ∈ # and X is a Woodin cardinal in # . Then 〈-, T,B, 2〉 ∈ +#
X

and Bl ⊆ # . Therefore the

conclusion follows by applying Corollary 48.

To prove the final statement of the corollary, assume that there is a strongly compact cardinal ^. By

a well-known theorem of Solovay, �_+ fails for all _ ≥ ^. By [31, Theorem .04], if �_+ fails for any

proper class of singular strong limit _, then for every ordinal U, there exists an inner model # of ZFC

such that +U ⊆ # and in # there exists a proper class of Woodin cardinals. The conclusion now follows

exactly as in the previous paragraph. �

Corollary 50. Assume the P-ideal dichotomy. Then the 2-dimensional Ramsey degree of Q in any

regular topological space which is not left-separated and has a point-countable base is at most 2.
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Proof. By a well-known theorem of Todorcevic [27], the P-ideal dichotomy implies the failure of �^
for all ^ ≥ l1. Hence the conclusion can be derived by using [31, Theorem .04] like in the proof of

Corollary 49. �

We do not know of a direct proof of Corollary 50 that does not go through recent developments in

inner model theory. Corollary 51 establishes Theorem 3 for all uncountable sets of reals. Note that a

single Woodin cardinal suffices for this special case of Theorem 3, as every set of reals is a member of

+X when X is the least Woodin cardinal.

Corollary 51. Suppose that - is any uncountable set of reals, that 0 < ; < l and that 2 : [-]2 → ;.

Suppose there exist # and X such that # is an inner model of ZFC, -, 2, X ∈ # and X is a Woodin

cardinal in # . Then there exists . ⊆ - such that . is homeomorphic to the rationals and 2 realises at

most two colours on . . In particular, the conclusion holds if there exists at least one Woodin cardinal

or one strongly compact cardinal.

Proof. Work in # , where X is a Woodin cardinal. - is an uncountable set of reals because it is so in + .

Therefore if T is the usual topology on - as calculated inside # , then there is in # a countable base

B ⊆ T, 〈-, T〉 is regular and not left-separated and 〈-, T,B〉 ∈ +#
X

. Since 2 ∈ # and 2 : [-]2 → ;,

the proof of Theorem 47 is applicable inside # . So we get . ∈ # and 8, 9 ∈ ; such that according

to # , . is nonempty and countable, . ⊆ - , ∀H ∈ .∀= ∈ l∃H′ ∈ . [H′ ≠ H ∧ |H′ − H | < 1
=+1

] and

∀E ∈ [. ]2 [2(E) = 8 ∨ 2(E) = 9]. It is clear that all of these properties relativise up to + . Hence . is as

required. �

It is easy to modify the proof of Theorem 47 to show that the conclusion of Corollary 51 also holds if

there is a precipitous ideal onl1. It is not known at present whether any large-cardinal hypothesis proves

the existence of a precipitous ideal on l1. However, the existence of a precipitous ideal on l1 is equal in

consistency strength to the existence of one measurable cardinal (see [12]), which is considerably lower

in consistency strength than the existence of one Woodin cardinal. Hence a measurable cardinal puts an

upper bound on the consistency strength of the statement that the 2-dimensional Ramsey degree of Q

within the class of all uncountable sets of real numbers is 2. We do not know whether this statement has

any large-cardinal strength. However, as mentioned in the introduction, it would not be surprising if the

much more general Theorem 17 turns out to be equiconsistent with some large-cardinal axiom.
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