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Division Algebras of Prime Degree and
Maximal Galois p-Extensions

J. Mináč and A. Wadsworth

Abstract. Let p be an odd prime number, and let F be a field of characteristic not p and not containing

the group µp of p-th roots of unity. We consider cyclic p-algebras over F by descent from L = F(µp).

We generalize a theorem of Albert by showing that if µpn ⊆ L, then a division algebra D of degree pn

over F is a cyclic algebra if and only if there is d ∈ D with dp
n
∈ F − Fp . Let F(p) be the maximal

p-extension of F. We show that F(p) has a noncyclic algebra of degree p if and only if a certain

eigencomponent of the p-torsion of Br(F(p)(µp)) is nontrivial. To get a better understanding of F(p),

we consider the valuations on F(p) with residue characteristic not p, and determine what residue fields

and value groups can occur. Our results support the conjecture that the p torsion in Br(F(p)) is always

trivial.

Introduction

Let p be an odd prime number, and let F be a field with char(F) 6= p such that F

does not contain the group µp of p-th roots of unity. Let L = F(µp). The Galois field

extensions of L of degree p are nicely described by Kummer theory, and the cyclic
central simple algebras over L of degree p also have a nice description as symbol al-
gebras. Such descriptions are lacking for the corresponding objects over F because
of the absence of roots of unity. However, the objects over F can be described by

descent in terms of those over L, a descent that is particularly tractable because [L : F]
is prime to p. In the case of cyclic field extensions of F of degree p, the description
by descent was given by Albert and he used this in his characterization of cyclic alge-
bras of prime degree. The approach by descent was also used by Merkurjev [M] to

prove that pBr(F), the p-torsion in the Brauer group of F, is generated by algebras of
degree p. Merkurjev (and, less explicitly, Albert), used the eigendecomposition for
the action of the Galois group H = G(L/F) acting on abelian groups related to L of
exponent a power of p.

Here we take a closer look at the algebras of degree pn over F in terms of the
corresponding algebras over L, with particular attention to the question of cyclicity

of algebras of degree p. If A is a division algebra of degree pn over F, then A is
determined by A ⊗F L which is a division algebra of degree pn over L. When n = 1
and p ≥ 5, it is a major open question whether A must be a cyclic algebra. But
conceivably it might be “harder” for A to be a cyclic algebra than for A ⊗F L, since

L has more cyclic field extensions of p power degree than F. In Proposition 1.3 we
will give a criterion for cyclicity of A for a class of algebras for which A ⊗F L is cyclic.
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However, this criterion is not algorithmic, and we do not have any examples where
this criterion actually produces a noncyclic A. It turns out that when L contains

the group µpn of pn-th roots of unity, then arguments using H-eigendecompositions
work just as well for algebras of degree pn; this allows us to generalize to pn, Albert’s
criterion for cyclicity of algebras of degree p, (see Theorem 1.5 below).

Again with the cyclicity question in mind, we can pass from F to its maximal
p-extension F(p). Since F(p) has no cyclic field extensions of degree p, it certainly
can have no cyclic division algebras of degree p. The cyclicity question for F(p) re-
duces to the question of whether the p-torsion in its Brauer group, pBr(F(p)) can be

nontrivial. If we let J = F(p)(µp), then pBr(F(p)) ∼= (pBr( J))G( J/F(p)), so the cyclic-

ity question for F(p) reduces to the question whether (pBr( J))G( J/F(p)) must always
be trivial.

It is difficult to get at the arithmetic of J, since it is generally such a large exten-

sion of L. But we can obtain some information by valuation theory. We analyze in
Section 2 the valuations on F(p) and J arising from valuations on F with residue
characteristic prime to p. We obtain in Theorem 2.7 a nice description of the residue
fields and the value groups of such valuations. This allows us to produce many ex-

amples in which pBr( J) is nontrivial. However, we will show that cyclic p-algebras in

(pBr( J))G( J/F(p)) coming from eigencomponents of J∗
/

J∗p are all unramified with
respect to each such valuation. So, this valuation theory does not help in finding

noncyclic algebras of degree p over F(p). One can view this result as supporting a
conjecture that for any field K, if K has no cyclic field extension of degree p, then

pBr(K) = 0. This is of course formally weaker than the assertion that every algebra

of degree p is cyclic.

1 Cyclic Algebras of Degree pn

We work here with cyclic algebras and symbol algebras. Our notation for these
is as follows: If T is a cyclic Galois field extension of a field K of degree m with
G(T/K) = 〈τ 〉 and a ∈ K∗, we write (T/K, τ , a) for the m2-dimensional cyclic

K-algebra
⊕m−1

i=0 Txi , where xm
= a and xcx−1

= τ (c) for c ∈ T. Recall that any

m2-dimensional central simple K-algebra containing T has such a description. If
µm ⊆ K (so char(K) ∤ m) and ζ ∈ µ∗

m (i.e., ζ is a primitive m-th root of unity) and
a, b ∈ K∗

= K−{0}, we write (a, b; K)ζ for the m2-dimensional symbol algebra over
K with generators i, j and relations im

= a, jm
= b, and i j = ζ ji. For a ∈ F∗, we

write [a] for the image of a in F∗
/

F∗m.

Assume now that p is an odd prime and that µp 6⊆ F. Let L = F(µp). We will
look at cyclic field extensions and cyclic algebras over F from the perspective of L. Let

H = G(L/F). Let s = |H|, so s | (p − 1). Then H acts on L∗ and on the Brauer group
Br(L). (See [D, p. 50] for a description of the action on Br(L).) Let pn Br(F) denote
the pn-torsion subgroup of Br(F).

Lemma 1.1 F∗
/

F∗pn ∼= (L∗
/

L∗pn

)H and pn Br(F) ∼= (pn Br(L))H . Furthermore, the

second isomorphism preserves the Schur index.
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Proof We have the succession of maps F∗
/

F∗pn → (L∗
/

L∗pn

)H → F∗
/

F∗pn →
(L∗

/
L∗pn

)H , where the outer maps arise from the canonical inclusion of F in L and

the middle one is induced by the norm from L to F. The composition of the first
and second maps is the s-th power map, as is the composition of the second and the
third. Since s is prime to pn, the s-th power map is an isomorphism of these pn torsion
groups. This yields the first isomorphism of the lemma. The second isomorphism

follows in exactly the same way, using the restriction and corestriction maps, since
the composition in either order starting from pn Br(F) or (pn Br(L))H is the s-th power
map (cf. [D, pp. 53–54]). Any central division algebra D over F of exponent a power
of p also has Schur index a power of p, cf. [P, Proposition b(ii), p. 261]. Therefore,

as s = [L : F] is prime to p, D ⊗F L has the same index as D, by [P, Proposition (vi),
p. 243].

Lemma 1.1 suggests an interesting possibility: There may be a central simple divi-
sion algebra A over L of degree p with [A] ∈ Br(L)H , such that A is a cyclic algebra
over L, but the inverse image of A in pBr(F) is not a cyclic algebra. This possibility

becomes more plausible when we recall that the cyclic field extensions of F of degree
p correspond only to a portion of those of L, see Proposition 1.2 below.

We can put this into sharper focus using the eigendecomposition of pn-torsion

H-modules, which we now recall. Let B be any H-module such that B is pn torsion
as an abelian group (e.g., B = L∗

/
L∗pn

or B = pn Br(L)). We write B additively.

Let χ : H → (Z
/

pnZ)∗ be any character, i.e., group homomorphism. Let B(χ)
=

{b ∈ B | τ · b = χ(τ ) · b for all τ ∈ H}; we call B(χ) the χ-eigenmodule of B for the
action of H on B. If B(χ)

= B, we say that H acts on B via χ. There are in all s =

|H| distinct characters χ1, . . . , χs : H → (Z/pnZ)∗. Let γi = χi(σ) for some fixed
generator σ of the cyclic group H. Then {γ1, . . . , γs} is the unique cyclic subgroup
of order s in (Z

/
pnZ)∗. Because γi − γ j ∈ (Z

/
pnZ)∗ whenever i 6= j, the ideals

(x − γ1), . . . , (x − γs) are comaximal in the polynomial ring Z
/

pnZ[x]. Therefore,

the Chinese remainder theorem shows that for the groupring R = Z
/

pnZ[H],

R ∼= Z
/

pn
Z[x]

/
(xs − 1) ∼= Z

/
pn

Z[x]
/(

(x − γ1) . . . (x − γs)
)

∼=
s⊕

i=1

Z
/

pn
Z[x]/(x − γi) ∼=

s⊕
i=1

Z
/

pn
Z.

If the first map is induced by sending σ to x, and ei is the primitive idempotent
of R associated with the i-th summand in this direct decomposition, then we have

σ · ei = γi · ei , so H acts on eiR via χi . This direct decomposition yields the canonical
eigendecomposition of any pn-torsion H-module B,

(1.1) B =

s⊕
i=1

eiB =

s⊕
i=1

B(χi ).

This decomposition for n = 1 was used implicitly by Albert [A1, A3], and explicitly
by Merkurjev [M]. Observe that, in this language, Lemma 1.1 says that pn Br(F) ∼=
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(pn Br(L))(χ1), where χ1 is the trivial character. When µpn ⊆ L, we have the cyclotomic

character α : H → (Z
/

pnZ)∗ defined by

(1.2) τ (ω) = ωα(τ ) for all τ ∈ H and all ω ∈ µpn .

Let α−1 denote the inverse to α in the group of characters from H to (Z/pnZ)∗. So,

for all τ ∈ H, we have α−1(τ )α(τ ) = 1 in Z/pnZ.
If µpn ⊆ L, then a central simple L-algebra A of degree pn which is a cyclic al-

gebra is a symbol algebra, A ∼= (a, b; L)ω , where ω ∈ µ∗
pn . So, τ [(a, b; L)ω] =

[(τ (a), τ (b); L)τ (ω)] = [(τ (a), τ (b); L)ω]α
−1(τ ) in Br(L). Note the complication intro-

duced because τ acts on ω, as well as on a and b. It follows that if χ, ψ are characters:
H → (Z

/
pnZ)∗, then

(1.3)

if [a] ∈ (L∗
/

L∗pn

)(χ) and [b] ∈ (L∗
/

L∗pn

)(ψ), then [(a, b; L)ω] ∈ pn Br(L)(χψα−1).

Albert gave a characterization of the cyclic field extensions of F of degree p in

terms of those of L [A1, Theorem 2], [A2, p. 211, Theorem 15]. We need the follow-
ing generalization of this:

Proposition 1.2 Suppose µpn ⊆ L. Take any [c] ∈ L∗
/

L∗pn

, and let K = L( pn√
c).

Then there is a cyclic extension E of F with [E : F] = [K : L] and E · L = K if and only if

H acts on 〈[c]〉 via the cyclotomic character α.

Proof Let C be the cyclic subgroup 〈[c]〉 of L∗
/

L∗pn

. We have the nondegenerate

Kummer pairing B : G(K/L) × C → µpn given by (τ , [d]) 7→ δ/τ (δ) for any δ ∈ K

with δpn

= d; it is easy to check that B is H-equivariant. Kummer theory shows that
K is Galois over F if and only if H maps C to itself. Assume this is the case. Then
there is a cyclic extension E of F with [E : F] = [K :L] and E · L = K if and only if

G(K/F) is abelian, if and only if H acts trivially by conjugation on G(K/L). Indeed,
observe that if H acts trivially on G(K/L), then G(K/F) ∼= G(K/L) ×H. Since H acts
on µpn via α, it follows by using the nondegenerate H-equivariant Kummer pairing
B that H acting trivially on G(K/L) is equivalent to H acts on C via α.

Proposition 1.3 Let χ : H → (Z/pZ)∗ be a character. Take any a, b ∈ L∗ with

[a] ∈ (L∗/L∗p)(χ) and [b] ∈ (L∗/L∗p)(αχ−1), and let A = (a, b; L)ω . Then there

is a central simple algebra B of degree p over F with B ⊗F L ∼= A. Furthermore, B

is a cyclic algebra if and only if there exist a ′, b ′ ∈ L∗ with [a ′] ∈ (L∗/L∗p)(α) and

[b ′] ∈ (L∗/L∗p)H such that A ∼= (a ′, b ′; L)ω .

Proof By (1.3) and Lemma 1.1,

[A] ∈ (pBr(L))(α−1χ(αχ−1))
= (pBr(L))H

= im(pBr(F)).

Because the scalar extension map pBr(F) → pBr(L) is index-preserving (see Lem-
ma 1.1), there is a central simple F-algebra B of degree p with B ⊗F L ∼= A. Suppose
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B is a cyclic algebra, say B ∼= (S/F, ρ, b ′) where S is a cyclic field extension of F of
degree p, G(S/F) = 〈ρ〉, and b ′ ∈ F∗. Let T = S · L which is a cyclic field extension

of L of degree p, and let ρ ′ ∈ G(T/L) be the generator such that ρ ′|S = ρ. We have
T = L( p

√
a ′) for some a ′ ∈ L∗, and a ′ can be chosen so that ρ ′( p

√
a ′) = ω−1 p

√
a ′. By

Proposition 1.2, [a ′] ∈ (L∗/L∗p)(α), while [b ′] ∈ F∗/F∗p ∼= (L∗/L∗p)H . Thus, we
have A ∼= B ⊗F L ∼= (T/L, ρ ′, b ′) ∼= (a ′, b ′; L)ω , as desired.

Conversely, suppose A ∼= (a ′, b ′; L)ω , as in the proposition. Since [a ′] ∈
(L∗/L∗p)(α), we know by Proposition 1.2 that there is a cyclic field extension S of
F of degree p, such that S · L = L( p

√
a ′). Let ρ ′ be the generator of G(S · L/L) such

that ρ ′( p
√

a ′) = ω−1 p
√

a ′, and let ρ = ρ ′|S. Since [b ′] ∈ (L∗/L∗p)H ∼= F∗/F∗p

(see Lemma 1.1), there is c ∈ F∗ with [c] = [b ′] in L∗/L∗p. Then B ⊗F L ∼= A ∼=
(S/F, ρ, c) ⊗F L, so B ∼= (S/F, ρ, c) since the map Br(F) → Br(L) is injective by
Lemma 1.1.

Remark 1.4 Proposition 1.3 suggests a potential way of obtaining a noncyclic al-
gebra of degree p over F, but we must necessarily start with a character χ : H →
(Z/pZ)∗ different from α and the trivial character χ1. We would need

[a] ∈ (L∗/L∗p)(χ) and [b] ∈ (L∗/L∗p)(αχ−1)

such that A = (a, b; L)ω is a division algebra, but A is not expressible as (a ′, b ′; L)ω
for any [a ′] ∈ (L∗/L∗p)(α) and [b ′] ∈ (L∗/L∗p)H . If [L : F] ≤ 2, then there are not
enough different characters, and the proposition is of no help. In this connection,
recall Merkurjev’s result [M, Theorem 1, Lemma 2] that if [L : F] ≤ 3, then pBr(F) is

generated by cyclic algebras of degree p.

The approach in Proposition 1.3 leads to a generalization of Albert’s character-
ization of cyclic algebras of prime degree. This theorem has recently been proved
independently by U. Vishne [V, Theorem 11.4].

Theorem 1.5 Suppose p ∤ [F(µpn ) : F]. Let D be a division algebra of degree pn over

F. Then D is a cyclic algebra over F if and only if there is a γ ∈ D with γ pn ∈ F∗ − F∗p.

Proof Suppose first that D is a cyclic algebra, say D ∼= (C/F, σ, b). Then there is γ ∈
D with γ pn

= b and γcγ−1
= σ(c) for each c ∈ C . If b ∈ F∗p, say b = dp, then for

δ = γ pn−1

d−1 we have δp
= 1, and δ /∈ F as δ is not central. So, 1 < [F(δ) : F] < p,

contradicting [F(δ) : F] | dimF(D). Hence, b ∈ F∗ − F∗p.

Conversely, suppose there is γ ∈ D with γ pn ∈ F∗ − F∗p, say γ pn

= c. Let L =

F(µp). The assumption that p ∤ [F(µpn ) : F] implies that µpn ⊆ L. Let E = D ⊗F L.
Since E contains the cyclic Galois field extension L(γ) of degree pn over L, this E

must be a cyclic L-algebra; hence, E ∼= (a, c; L)ω for some a ∈ L∗ and ω ∈ µ∗
pn . Let

χ1, . . . , χs be the distinct characters mapping H = G(L/F) → (Z/pnZ)∗, with χ1

the trivial character, and let α be the cyclotomic character (see (1.2)). We have the
eigendecompositions

(1.4) L∗
/

L∗pn ∼=
s∏

i=1

(L∗
/

L∗pn

)(χi ) and pn Br(L) ∼=
s⊕

i=1

(pn Br(L))(χi )
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as in (1.1) above. Write [a] =
∏s

i=1[ai] in L∗
/

L∗pn

, where [ai] ∈ (L∗
/

L∗pn

)(χi ).

Then, in pn Br(L), we have E ∼= (a, c; L)ω ∼ ⊗s
i=1(ai , c; L)ω. Also, [c] ∈ (L∗

/
L∗pn

)(χ1)

as c ∈ F∗; so each (ai, c; L)ω ∈ pn Br(L)(χiα
−1) by (1.3). Thus, each (ai , c; L)ω lies in a

different direct summand of pn Br(L) in the eigendecomposition of (1.4). Since [E] ∈
pn Br(L)H

= pn Br(L)(χ1), we must have E ∼ (a j , c; L)ω in pn Br(L), where χ jα
−1

= χ1,
i.e., χ j = α; dimension count shows that E ∼= (a j , c; L)ω . So, as a cyclic algebra

E ∼= (L( pn√a j)/L, τ ′, c), where τ ′ is the generator of G(L( pn√a j)/L) mapping pn√a j to

ω pn√a j . But, since [a j] ∈ (L∗
/

L∗pn

)(α), the field L( pn√a j) = S · L for some cyclic field

extension S of F of degree pn, by Proposition 1.2. Then, if τ denotes the restriction
of τ ′ to S, we have (S/F, τ , c) ⊗F L ∼= (S · L/L, τ ′, c) ∼= E. Since the map pn Br(F) →
pn Br(L) is injective by Lemma 1.1, we have D ∼= (S/F, τ , c), as desired.

Remark 1.6 Albert’s result is the n = 1 case of Theorem 1.5 (see [A1, Theorem 5],

[A4, p. 177, Theorem 4]), for which the condition p ∤ [F(µp) : F] always holds. Our
proof of Theorem 1.5 is similar to Albert’s, though Albert used different terminology,
which somewhat veiled his use of eigendecompositions. The theorem is false without
the assumption that p ∤ [F(µpn ) : F]. Albert gave a counterexample with pn

= 4 [A3],

and there are presumably examples with odd p also.

2 Valuations on the Maximal p-Extension

Let p be any prime number. Let Fsep be some fixed separable closure of F. We set
F(p) to be the union of all finite degree Galois extensions S of F in Fsep with [S : F]

a power of p. The following proposition gives a convenient characterization of the
finite degree field extensions of F within F(p). It follows easily using Galois theory
and standard properties of p-groups, and is certainly well known, though we could
not find a reference for it.

Proposition 2.1 Let S be a field of any characteristic, and let T be a field, T ⊇ S,

[T : S] <∞. Then the following are equivalent.

(i) The normal closure of T over S is Galois over S of degree a power of p, i.e., T ⊆ S(p).

(ii) There is a chain of fields S = S0 ⊆ S1 ⊆ S2 ⊆ · · · ⊆ Sk = T with each Si Galois

over Si−1, and [Si : Si−1] = p.

Proposition 2.1 provides an easy way to see that for any field M with F ⊆ M ⊆
F(p), we have M(p) = F(p). In particular, F(p) has no proper Galois p-extensions.

From now on, let p be an odd prime number, let F be a field with char(F) 6= p

and µp 6⊆ F. Let L = F(µp) and let J = F(p)(µp) = F(p) · L. So, J ⊆ L(p), as

G( J/L) ∼= G(F(p)/F), but in general J is much smaller than L(p). We will see below
that J typically has many degree p cyclic field extensions, and we can have pBr( J)
nontrivial. We identify G( J/F(p)) with G(L/F), and call this group H.

Proposition 2.2 If (pBr( J))H 6= 0, then there exists a division algebra of degree p over

F(p) which is not a cyclic algebra.
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Proof By Lemma 1.1, with F(p) replacing F, if (pBr( J))H 6= 0, then pBr(F(p)) 6= 0.
By a theorem of Merkurjev [M, Theorem 2], the group pBr(F(p)) is generated by

algebras of degree p. No such algebra can be a cyclic algebra, since F(p) has no cyclic
field extensions of degree p, as noted above.

Remark 2.3 Take any field K with L ⊆ K ⊆ J and [K : L] = p. Then, since
G( J/L) ∼= G(F(p)/F) via the restriction map, there is a field S with F ⊆ S ⊆ F(p),

[S : F] = p, and S · L = K. By Proposition 2.1, S is Galois over F. So by Albert’s

theorem (see Proposition 1.2 above), K = L( p
√

c), for c ∈ L∗ with [c] ∈ (L∗/L∗p)
(α)

,

where α : H → (Z/pZ)∗ is the cyclotomic character, as in (1.2) above (with n = 1).

By Kummer theory, the map L∗/L∗p → K∗/K∗p has kernel 〈[c]〉 ⊆ (L∗/L∗p)
(α)

.

Consequently, for any character χ : H → (Z/pZ)∗ with χ different from α, the map

(L∗/L∗p)
(χ) → (K∗/K∗p)

(χ)
is injective. It follows by iteration and passage to the di-

rect limit that the map (L∗/L∗p)
(χ) → ( J∗/ J∗p)

(χ)
is injective for each χ 6= α. Thus,

( J∗/ J∗p)
(χ)

can be nontrivial for each χ 6= α, though necessarily ( J∗/ J∗p)
(α)

= 1

by Albert’s theorem (see Proposition 1.2 above), as F(p) has no Galois extensions of
degree p.

It is a more difficult question when or whether division algebras of degree p over L

can remain division algebras after scalar extension to J. We will use valuation theory

to show that this can occur. We use the following notation. Suppose K is a field and
W is a valuation ring of (i.e., with quotient field) K. Let MW denote the maximal
ideal of W , let W = W/MW , the residue field of W ; and let ΓW denote the value
group of W (written additively). For a field K ′ ⊇ K, an extension of W to K ′ is a

valuation ring W ′ of K ′ such that W ′ ∩ K = W .

Example 2.4 Let k be any field with char(k) 6= p and µp 6⊆ k. Let F be the twice

iterated Laurent power series field F = k((x))((y)). Then F has the Henselian val-
uation ring V = k[[x]] + yk((x))[[y]], where k[[x]] denotes the formal power series
ring in x over k. Also, V ∼= k. If v : F∗ → ΓV is the associated valuation, then
ΓV = Z × Z, with right-to-left lexicographical ordering, with v(x) = (1, 0) and

v(y) = (0, 1). Then F(p) = k(p)((x))((y)) and J = k(p)(µp)((x))((y)), while

L(p) =
⋃∞

i=1 k(µp)(p)((x1/pi

))((y1/pi

)). (The descriptions of F(p) and J follow
from Theorem 2.7 below, but can be seen more directly using the fact that since
µp 6⊆ k = V , there is no Galois field extension of F of degree a power of p which is
totally ramified with respect to V , cf. [E, pp. 161–162, (20.11)] or, more explicitly,

[JW, Cor. 2.4]. So Proposition 2.1 shows that every finite degree extension of F within
F(p) must be unramified over F, hence F(p) is unramified over F.) The unique ex-
tension of V to J is Z = k(p)(µp)[[x]] + yk(p)(µp)((x))[[y]] with ΓZ = ΓV = Z × Z;
let z : J∗ → ΓZ be the associated valuation. For any ω ∈ µ∗

p, let D = (x, y; J)ω
(see §1 for the notation). Because the images of z(x) and z(y) in ΓZ/pΓZ are Z/pZ-
independent, we know by [JW, Cor. 2.6] that D is a division ring and z extends to a
valuation on D. Thus, pBr( J) is nontrivial. Since x and y are H-stable, it is tempting

to think that [D] should be H-stable. But, in fact, [D] lies in pBr( J)(α−1) but not in

pBr( J)H , because of the nontrivial action of H on µp.
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To try to get more information about pBr( J), we look at the valuations on J with
residue field of characteristic prime to p. We will consider a valuation ring on J as an

extension of one on F. For this, we now fix a valuation ring V of F with char(V ) 6= p.
Let W1, . . . ,Wℓ be all the different extensions of V to L. Let T = W1∩· · ·∩Wℓ, which
is the integral closure of V in L. This notation will be fixed for the rest of this section.
Recall [E, pp. 95–96, Theorem (13.4)] that the maximal ideals of T are N1, . . . ,Nℓ,

where Ni = MWi
∩ T, and that each Wi is the localization TNi

of T at Ni .

Proposition 2.5 Let V be a valuation ring of F with char(V ) 6= p. Let W1,W2,
. . . ,Wℓ be all ℓ distinct valuation rings of L extending V . Then each Wi

∼= V (µp) and

ΓWi
= ΓV . Also, ℓ [V (µp) :V ] = [L : F].

Proof Let ω ∈ µ∗
p ⊆ L, and let f ∈ F[x] be the monic minimal polynomial of

ω over F. Then f ∈ V [x], as ω is integral over V , which is integrally closed. Also,
f

∣∣ ∑p−1
i=0 xi in F[x], and hence in V [x] by the division algorithm, as f is monic.

So the image f of f in V [x] divides
∑p−1

i=0 xi in V [x]. This shows that the roots

of f are all primitive p-th roots of unity, and f has no repeated roots. So if f =∏k
i=1 gi is the irreducible monic factorization of f in V [x], then the gi are distinct

and deg(gi) = [V (µp) :V ]. Since f F[x] ∩ V [x] = f V [x] by the division algorithm,
we have V [ω] ∼= V [x]/ f V [x], so

V [ω]/MV V [ω] ∼= V [x]/(MV , f ) ∼= V [x]/( f ) ∼=
k⊕

i=1

V [x]/(gi),

a direct sum of fields. The inverse images in V [ω] of the k maximal ideals of

V [ω]/MV V [ω] are maximal ideals P1, . . . , Pk of V [ω] such that each Pi ∩ V = MV

and V [ω]/Pi
∼= V [x]/(gi) ∼= V (µp). Because T is integral over V [ω], for each Pi

there is a maximal ideal Ni of T with Ni ∩ V [ω] = Pi . Then, for Wi = TNi
, we

have Wi
∼= T/Ni ⊇ V [ω]/Pi

∼= V (µp). By the fundamental inequality, [E, p. 128,

Cor. (17.8)] or [B, Ch. VI, §8.3, Theorem 1], we have

[L : F] ≥
∑k

i=1[Wi :V ] |ΓWi
:ΓV | ≥

∑k
i=1[Wi :V ]

≥
∑k

i=1[V (µp) :V ] =
∑k

i=1 deg(gi) = deg( f ) = [L : F].

(2.1)

Hence, equality must hold throughout (2.1). Therefore, each Wi = V (µp) and ΓWi
=

ΓV , and k = [L : F]
/

[V (µp) :V ]. Furthermore, (2.1) and the fundamental inequality
show that W1, . . . ,Wk are all the extensions of V to L; so ℓ = k.

Remark 2.6 Let S be any Galois extension field of F of degree p, and let U be any
extension of V to S. Then [U :V ] | [S : F] = p, as S/F is Galois. Consequently, U and
V (µp) are linearly disjoint over V , and hence [U (µp) :U ] = [V (µp) :V ]. It follows by

Proposition 2.5 applied to U in S in place of V in F that the number of extensions of
U to S(µp) is ℓ. Since any field S ′ with F ⊆ S ′ ⊆ F(p) and [S ′ :F] <∞ is obtainable
from F by a tower of degree p Galois extensions (see Proposition 2.1), it follows by
iteration that every extension of V to S ′ has exactly ℓ extensions to S ′(µp). Because
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this holds for every finite degree extension S ′ of F in F(p), it clearly holds for every
field S ′ ′ with F ⊆ S ′ ′ ⊆ F(p).

The main result of this section describes the residue field and value group of any

extension of V to J. In case µp ⊆ V (i.e., ℓ = [L : F], by Proposition 2.5), this will
require looking at two pieces of ΓV . For this, let P be the union of all prime ideals P

of V such that V/P contains no primitive p-th root of unity. Since the prime ideals
of V are linearly ordered by inclusion, it is clear that P is a prime ideal of V (possibly

P = (0)), and P is maximal with the property that µp 6⊆ V/P. (Note also that for
every prime ideal Q ⊆ P, we have µp 6⊆ V/Q. For, if µp ⊆ V/Q, then µp ⊆ V/P, as
char(V/P) 6= p.) The localization VP of V at P is a valuation ring of F (a “coarsening”
of V ); let Ṽ = V/P, which is a valuation ring of VP. Recall [B, Ch. VI, §4.3, Remark]

that there is a canonical short exact sequence of value groups:

(2.2) 0 −→ ΓṼ −→ ΓV −→ ΓVP
−→ 0.

Theorem 2.7 Let V be a valuation ring of F with char(V ) 6= p, and let ℓ be the

number of extensions of V to L. Let Y be any extension of V to F(p). Then Y ∼= V (p).

If µp 6⊆ V , then ΓY = ΓV . If µp ⊆ V , let P be the prime ideal of V maximal such that

µp 6⊆ V/P, as above, and let Q be the prime ideal of Y with Q ∩V = P; let Ỹ = Y/Q.

Then ΓYQ
= ΓVP

, while ΓỸ = Z[1/p] ⊗Z ΓṼ . Furthermore, Y has exactly ℓ different

extensions Z1,Z2, . . . ,Zℓ to J, and each Zi
∼= Y (µp) and ΓZi

= ΓY .

Note that in view of the exact sequence like (2.2) for ΓY , the theorem determines
ΓY completely. It says that when we view ΓY as in the divisible hull Q ⊗Z ΓV of ΓV ,
then ΓY is the subgroup generated by Z[1/p] ⊗Z ΓṼ (the p-divisible hull of ΓṼ ) and

ΓV .

To prove the theorem we will analyze the range of possibilities for value groups and

residue fields of extensions of V to degree p Galois field extensions of F. This will be
done in terms of the corresponding extensions of L, where we can invoke Kummer
theory. To facilitate the analysis, we need some information on the eigencomponents
of induced modules, which is given in the next proposition.

Let H = 〈σ〉 be a cyclic group of finite order s, and let H = 〈σm〉 for some m | s.
Let A be any H-module, and let B be the induced H-module, B = IndH→H A =

Z[H]⊗
Z[H] A. So, as abelian groups B =

⊕m−1
i=0 σi ⊗A, where each σi ⊗A ∼= A. The

left action of H on B arises from the multiplication action of H on Z[H]. That is,

(2.3) σ ·
(

id⊗a0 + σ ⊗ a1 + · · · + σm−1 ⊗ am−1

)
=

id⊗σm · am−1 + σ ⊗ a0 + σ2 ⊗ a1 + · · · + σm−1 ⊗ am−2 .

Proposition 2.8 With H = 〈σ〉 and H = 〈σm〉 as above, let A be an H-module which

is e-torsion for some integer e. Let B = IndH→H A, as above. Let χ : H → (Z/eZ)∗ be

any character. Then the projection map π : B → A given by
∑m−1

i=0 σi ⊗ ai 7→ a0 maps

B(χ) bijectively onto A(χ|H ), where χ|H is the restriction of χ to H.
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Proof Let b =
∑m−1

i=0 σi ⊗ ai ∈ B. Note that since σm ∈ H, we have σm · b =∑m−1
i=0 σi ⊗ σm(ai). Now, b ∈ B(χ) if and only if σ · b = χ(σ) b, if and only if

(2.4) a0 = χ(σ)a1, a1 = χ(σ)a2, . . . , am−2 = χ(σ)am−1, and σm ·am−1 = χ(σ)a0.

If b ∈ B(χ), then σm(a0) = π(σm · b) = π(χ(σ)mb) = χ(σm)(a0). Hence, a0 ∈
A(χ|H ). Furthermore, if a0 = 0, then (2.4) shows that each ai = χ(σ)−ia0 = 0;
so π maps B(χ) injectively to A(χ|H ). On the other hand, if we take any a0 ∈ A(χ|H ),
then σm · a0 = χ(σm)a0 = χ(σ)ma0; so if we choose a1 = χ(σ)−1a0, . . . , ai =

χ(σ)−ia0, . . . , am−1 = χ(σ)−(m−1)a0, then σm · am−1 = σm · (χ(σ)−(m−1)a0) =

χ(σ)−(m−1)σm · a0 = χ(σ)a0, so the equations in (2.4) are satisfied, showing that
a0 ∈ π(B(χ)). Thus, π : B(χ) → A(χ|H ) is a bijection.

Proof of Theorem 2.7 It was noted in Remark 2.6 that Y has exactly ℓ extensions to
J. The assertions about Zi and ΓZ follow by applying Proposition 2.5 to Y in F(p) in
place of V in F. It remains to analyze Y and ΓY . For this, we look closely at what can
happen with Galois p-extensions of F. These are difficult to get at directly, so we look

at the corresponding extensions of L.

Let us now select and fix one of the ℓ extensions of V to L; call it W . Let w : L∗ →
ΓW be the associated valuation. Now, let c ∈ L∗ − L∗p with [c] ∈ (L∗/L∗p)

(α)
, and

let K = L( p
√

c). Let S = F(p) ∩ K, which we know by Proposition 1.2 is a degree p

Galois extension of F. (Moreover, all such Galois extensions of F arise this way.) Let

R be a valuation ring of K with R ∩ L = W , let r : K∗ → ΓR be its valuation, and let
U = R ∩ S, which is a valuation ring of S with U ∩ F = V . The description of R and
U breaks down into three possible cases:

Case 1 (w(c) /∈ pΓW ) Then, since r( p
√

c) =
1
p

w(c) ∈ ΓR, the fundamental inequal-

ity implies that ΓR = 〈 1
p

w(c)〉 + ΓW . By Proposition 2.5 applied to U in S instead

of V in F, we have ΓU = ΓR = 〈 1
p

w(c)〉 + ΓV . So |ΓU :ΓV | = p = [S : F], and the

Fundamental Inequality shows that U = V and U is the unique extension of V to S.

Case 2 (w(c) ∈ pΓW ) Then, by modifying c by a p-th power in L, we may assume
that w(c) = 0. Let c be the image of c in W . For this case, assume that c /∈ W

∗p
. Then

R contains p
√

c =
p
√

c which is not in W . So, the fundamental inequality implies that
R = W ( p

√
c). Because p = [R :W ] | [R :V ] but p ∤ [R :U ] by Proposition 2.5 applied

to U in S, we have p
∣∣ [U :V ]. The fundamental inequality implies that [U :V ] = p,

ΓU = ΓV , and U is the unique extension of V to S. We noted earlier that U is Galois
over V . A comparison of degrees over V shows that R = U ·W so R is abelian Galois
over V . Thus, U is the unique cyclic Galois extension of V of degree p within R.

Case 3 (w(c) ∈ pΓW , and so we may assume w(c) = 0) For this case, assume that

c ∈ W
∗p

. We claim that there are p different valuation rings of K extending W .
Consider the subring W [ p

√
c] of K. Since xp − c is the minimal polynomial of p

√
c

over L, we have W [ p
√

c] ∼= W [x]
/

(W [x] ∩ (xp − c)L[x]) = W [x]/(xp − c)W [x],
where the last equality follows by the division algorithm for monic polynomials in
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W [x]. Hence, W [ p
√

c]
/

MW W [ p
√

c] ∼= W [x]
/

(MW , x
p − c) ∼= W [x]/(xp − c). Be-

cause c ∈ W
∗p

and µp ⊆ W , xp − c factors into distinct linear terms in W [x], say

xp − c = (x − d1) . . . (x − dp). Then the Chinese remainder theorem shows that

W [x]/(xp − c) ∼=
⊕p

i=1 W [x]/(x − di). Because W [ p
√

c]
/

MW W [ p
√

c] thus has p

maximal ideals, W [ p
√

c] has at least p maximal ideals. Let C be the integral closure
of W in K. Since C is integral over W [ p

√
c], C has at least p different maximal ideals,

say N1, . . . ,Np. Each localization Ri = CNi
is a different valuation ring of K with

Ri ∩ L = W . The fundamental inequality shows that there must be exactly p of the

Ri , as claimed.
Now, since G(S/F) acts transitively on the valuation rings of S extending V

[E, p. 105, (14.1)], the number of such extensions is either 1 or p. There are at least p

extensions of V to K (namely, the Ri), but every extension of V to S has ℓ ≤ p−1 ex-

tensions to K by Proposition 2.5 applied over S. Hence, there must be more than one,
so exactly p extensions of V to S, call them U1, . . . ,U p. The fundamental inequality
shows that each Ui = V and ΓUi

= ΓV . This completes Case 3.

We must still see what constraints are imposed by the condition that [c] ∈
(L∗/L∗p)

(α)
. For this, let H = G(L/F) = 〈σ〉, as usual, and let H = {τ ∈ H |

τ (W ) = W}, the decomposition group of W over V . Because H acts transitively
on the set of extensions of V to L and there are ℓ such extensions, |H : H| = ℓ, so
H = 〈σℓ〉. Each τ ∈ H maps W to itself, so induces an automorphism τ of W .
Recall ([E, p. 147, (19.6)] or [ZS, p. 69, Theorem 21]) that the map H → G(W/V )

given by τ 7→ τ is a group epimorphism. By Proposition 2.5 we have |H| = |H|/ℓ =

[L : F]/ℓ = |G(W/V )|, and therefore the map H → G(W/V ) is an isomorphism.
Also, because τ acts on the p-th roots of unity in W according to the action of τ on
the p-th roots of unity in L, the cyclotomic character α for G(W/V ) corresponds to

the restriction α|H .
Observe that the distinct extensions of V to L are σi(W ) for 0 ≤ i ≤ ℓ− 1. Each

Γσi (W ) is canonically identified with ΓW inside the divisible hull of ΓV , and for the
associated valuation wi of σi(W ) we have wi = w ◦ σ−i . Likewise, for 0 ≤ i ≤
ℓ− 1 we identify σi(W ) with W using the isomorphism σi : W → σi(W ) induced by
σi : W → σi(W ). So, for c ∈ σi(W ), we have c ∈ σi(W ) corresponds to σ−i(c) in
W .

We can now determine Y . View W
∗

as an H-module, where τ ∈ H acts by τ .
Let IndH→H W

∗
be the induced H-module described before Proposition 2.8, with

m = ℓ. Recall that T denotes the integral closure of V in L, so T =
⋂ℓ−1

i=0 σ
i(W )

[E, p. 95, Theorem 3.3.(b)]. Let γ : T∗ → IndH→H W
∗

be the map given by γ(t) =∑ℓ−1
i=0 σ

i ⊗ σ−i(t) (the bar denotes image in W
∗
). The surjectivity of γ is equivalent

to the assertion that for every r0, . . . , rℓ−1 ∈ W
∗
, there is t ∈ T∗ with σ−i(t) = ri in

W for each i, i.e., t = σi(ri) in σi(W ). This holds by the Approximation Theorem
([E, p. 79, Theorem (11.14)] or [ZS, p. 30, Lemma 2]). (For this the valuation rings

σ0(W ), . . . , σℓ−1(W ) need not be independent, just incomparable. This result uses

only the Chinese remainder theorem applied to T.) Also, since σℓ · σ−(ℓ−1)(t) =

σℓ(σ−(ℓ−1)(t)) = σ(t), we have σ · γ(t) = γ(σ(t)), so γ is an H-module epimor-
phism. Therefore, the corresponding map T∗/T∗p → IndH→H(W

∗
/W

∗p
) is an H-
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module epimorphism. So, (T∗/T∗p)
(α)

maps onto
(

IndH→H(W
∗
/W

∗p
)
) (α)

, which

by Proposition 2.8 projects onto (W
∗
/W

∗p
)

(α)
. That is, for any a ∈ W

∗ − W
∗p

such that [a] ∈ (W
∗
/W

∗p
)

(α)
there is t ∈ T∗ with [t] = [a] in W

∗
/W

∗p
. If

we choose c = t , then for the resulting K = L( p
√

c) we are in Case 2 above, with

R = W (
p
√

t) = W ( p
√

a), and U is the degree p Galois extension of V within R. Since

we can do this for any [a] ∈ (W
∗
/W

∗p
)

(α)
, Proposition 1.2 shows that every Galois

extension of V of degree p is realizable as some U , and so lies in Y .

Now, F(p) is the direct limit of finite towers of Galois extensions of degree p start-
ing with F (see Proposition 2.1). If S ′ is the top field in such a tower, then Y ∩ S ′

is obtained from V by a succession of Galois extensions of degree 1 or p. Hence
Y ∩ S ′ ⊆ V (p) for each S ′, and therefore Y ⊆ V (p). But, iteration of the argument

in the preceding paragraph shows that any finite degree extension of V within V (p)
is obtainable as Y ∩ S ′ for a suitably built S ′. Hence, Y = V (p), as desired.

We now determine ΓY . For the trivial H-module ΓW , we have the induced H-

module IndH→H ΓW . Let β : L∗ → IndH→H ΓW be the map given by d 7→
∑ℓ−1

i=0 σ
i ⊗

w(σ−i(d)). Since σℓ · w(σ−(ℓ−1)(d)) = w(σ(d)), as w ◦ σℓ = w and σℓ acts trivially
on ΓW , this β is an H-module homomorphism. By reducing mod p we obtain an
H-module homomorphism β : L∗/L∗p → IndH→H(ΓW/pΓW ). So, for our c ∈ L∗

used to define K, since [c] ∈ (L∗/L∗p)
(α)

, we have β[c] ∈ (IndH→H ΓW/pΓW )(α), so

Proposition 2.8 shows that w(c) + pΓW ∈ (ΓW /pΓW )(α|H ).

Suppose first that µp 6⊆ V . Then ℓ < s = [L : F], by Proposition 2.5. So H,
of order s/ℓ, is nontrivial. Since the cyclotomic character α has order s, its restric-
tion α|H has order |H|, so is nontrivial. Since H acts trivially on ΓW , it follows that

(ΓW /pΓW )(α|H )
= (0). Now, the only way we could have ΓU larger than ΓV is if our

c is in Case 1 above. But then we would have w(c) /∈ pΓW , yielding a nontrivial ele-
ment in the trivial group (ΓW/pΓW )(α|H ). Since this cannot occur, we see that Case 1
never arises when µp 6⊆ V . Therefore, ΓU = ΓV for every degree p Galois extension S

of F. It follows by iteration and passage to the direct limit that ΓY = ΓV , as asserted.

Now suppose instead that µp ⊆ V . Proposition 2.5 shows that ℓ = s, i.e., there
are s different extensions W1, . . . ,Ws of V to L. Consider first the extreme case where
µp ⊆ V/p for each nonzero prime ideal p of V . For any such p, the extensions of the
localizations Vp to L are the localizations W1p, . . . ,Wsp. (Each Wip coincides with

the localization of Wi at its prime ideal lying over p.) Since µp ⊆ Vp, which is the
quotient field of V/p, Proposition 2.5 applied to Vp shows that Vp has s different ex-
tensions to L. (The Proposition applies, as char(Vp) 6= p.) So, Wip 6= W jp for i 6= j.
Now, for each i, the rings between Wi and L are the Wip as p ranges over the nonzero

prime ideals of V . Since Wip 6= W jp for i 6= j, it follows that the valuation rings
W1, . . . ,Ws are pairwise independent, i.e., there is no valuation ring of L (smaller
than L itself) containing both Wi and W j for any i 6= j. Because of this indepen-
dence, the Approximation Theorem (see [E, p. 80, (11.16)]) applies, and shows that

our map β : L∗ → IndH→H ΓW is surjective; so β : L∗/L∗p → IndH→H(ΓW/pΓW ) is
also surjective, so it is also surjective when restricted to the α-eigencomponents. By
Proposition 2.8 (IndH→H(ΓW/pΓW ))(α) projects onto (ΓW/pΓW )(α|H ), which here is
all of ΓW/pΓW since |H| = 1 as ℓ = s. This means that for any ε ∈ ΓW − pΓW
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there is c ∈ L∗ such that [c] ∈ (L∗/L∗p)
(α)

and w(c) ≡ ε mod pΓW ). If we
let K = L( p

√
c) for this choice of c, then we are in Case 1 above which shows that

ΓU = ΓR = 〈 1
p
ε〉 + ΓW . Since this is true for any ε ∈ ΓW − pΓW , it follows by

iteration and passage to the direct limit that ΓY = lim−→
1
pn ΓV = Z[1/p] ⊗Z ΓV . This

is what is asserted in the theorem, since in the extreme case we are now considering
P = (0), so Ṽ = V and Ỹ = Y .

We handle the general situation by combining the cases previously considered.
Suppose µp ⊆ V . For the prime ideal P defined in the theorem, we have µp 6⊆ VP,
which is the quotient field of V/P. Now, YQ is an extension of VP to F(p). Since
µp 6⊆ VP and char(Vp) 6= p, by applying to Vp the argument given previously for V

we obtain ΓYQ
= ΓVP

, as desired. Furthermore, YQ
∼= VP(p). Thus, Ỹ = Y/Q can be

viewed as an extension of Ṽ = V/P from VP to VP(p). By the choice of P, the extreme
case considered in the previous paragraph applies to Ṽ . Hence, ΓỸ = Z[1/p]⊗Z ΓṼ .

Example 2.9 Let F0 = Q(x, y), the rational function field in two variables over Q .
Let V0 = Q[x](x) + yQ(x)[y](y). Here we are localizing first with respect to the prime
ideal (x) of Q[x], and second with respect to the prime ideal (y) of Q(x)[y]. Then

V0 is a valuation ring of F0 with V0
∼= Q and ΓV0

= Z × Z. If v0 : F∗
0 → ΓV0

is the
associated valuation, then v0(x) = (1, 0) and v0(y) = (0, 1). Note that V0 is the in-
tersection with F0 of the standard Henselian valuation ring on Q((x))((y)) described
in Example 2.4 above. For any odd prime p, let F = F0( p

√
1 + x). To see how V0

extends to F, let T be the integral closure of V0 in F, and let S = V0[ p
√

1 + x] ⊆ T.
Since S ∼= V0[t]

/(
t p − (1 + x)

)
, we have

S/MV0
S ∼= V0[t]

/(
t p − (1 + x)

) ∼= Q[t]/(t p − 1)

∼= Q[t]/(t − 1) ⊕ Q[t]/(t p−1 + · · · + 1) ∼= Q ⊕ Q(µp).

So T, being integral over S, has at least two maximal ideals N1 and N2, with Q ⊆
T/N1 and Q(µp) ⊆ N2. The fundamental inequality shows that for the extensions
Vi = TNi

of V0 to F, we have V1
∼= Q , V2

∼= Q(µp), and ΓV1
= ΓV2

= ΓV0
= Z × Z.

Furthermore, V1 and V2 are the only extensions of V0 to F. If Yi is any extension of

Vi to F(p), then Theorem 2.7 shows that Y1
∼= Q(p) and ΓY1

= Z × Z. Let p be the
prime ideal yV2. Then V2/p ∼= Q(x)( p

√
1 + x), which does not contain µp. So p is

the prime ideal P of Theorem 2.7 for V2. Since ΓV2/p = Z × 0, Theorem 2.7 shows
that ΓY2

= Z[1/p] × Z while Y2
∼= Q(µp)(p).

Remark 2.10 By using Theorem 2.7 we can now see that one cannot construct an
example of a nonsplit algebra of degree p in pBr( J)H by using only the valuations V

on L with char(V ) 6= p. This provides support for a conjecture that pBr(F(p)) = 0.
For this, let V be a valuation ring of F with char(V ) 6= p, let W be an extension of

V to L with associated valuation w : L∗ → ΓW , and let Z be an extension of W to J.
There are three types of symbol algebras A = (a, b; L)ω (with a, b ∈ L∗ and ω ∈ µ∗

p)
for which it is known that w extends to a valuation on A, and hence A is a division
algebra:
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(1) If w(a) and w(b) map to Z/pZ-independent elements of ΓW/pΓW , then, cf. [JW,
Corollary 2.6], the valuation ring of A is tame and totally ramified over W , with

residue division algebra V and value group 〈 1
p

w(a), 1
p

w(b)〉 + ΓW .

(2) If w(a) /∈ pΓW and w(b) = 0, and for the image b of b in W we have b /∈ W
∗p

,
then cf. [JW, Corollary 2.9], the valuation ring of A is semiramified over W , with

residue division algebra W (
p
√

b) and value group 〈 1
p

w(a)〉 + ΓW .

(3) If w(a) = w(b) = 0 and (a, b; W )ω is a division ring, then the valuation ring on
A is unramified over V , with residue algebra (a, b; W )ω and value group ΓW .

For, if i and j are standard generators of A = (a, b; L)ω , then it is easy to check that

the map u : A − {0} → ΓW given by u(
∑p−1

r=0

∑p−1
s=0 crs ir js) = min{w(crs) | crs 6= 0}

(crs ∈ L) is a valuation on A with the specified residue algebra and value group. (The
proof is similar to but easier than the proof of [JW, Theorem 2.5].) Since type (3)
reduces the problem of obtaining a division algebra to the same problem over the

residue field, it is not helpful for constructing examples, and we will not consider this
type further.

Suppose we choose a, b ∈ L∗ so that for some character χ : H → Z/pZ∗ we

have [a] ∈ (L∗/L∗p)
(χ)

and [b] ∈ (L∗/L∗p)
(αχ−1)

. Then [A] ∈ pBr(L)H by (1.3), so

[A ⊗L J] ∈ pBr( J)H . But we will see that the valuation conditions that assure A is a
division algebra break down over J. Suppose first that µp /∈ V ; so, in the notation
of Theorem 2.7 and its proof, ℓ < [L : F] and H is nontrivial. Suppose w(a) /∈ pΓW .
Then as in the proof of Theorem 2.7, Proposition 2.8 implies that the image of w(a)

is nontrivial in ΓW/pΓW
(χ|H )

. This forces χ|H to be trivial, as H acts trivially on
ΓW . Hence, αχ−1|H = α|H , which is nontrivial and is identified with the cyclotomic

character α for G(W/V ). The nontriviality of αχ−1|H forces w(b) ∈ pΓW , so we

may assume w(b) = 0. If b /∈ W
∗p

, then A is a division algebra of type (2). But
Proposition 2.8 implies that b maps to

(W
∗
/W

∗p
)

(αχ−1|H )
= (W

∗
/W

∗p
)

(α)
.

Hence, on passing to J we find that b ∈ (Z
∗
/Z

∗p
)

(α)
, which is trivial as Z ∼=

V (p)(µp), (see Remark 2.3). This means that b ∈ Z
∗p

, and we have lost the condi-
tions for type (2) for A ⊗L J. Likewise, if w(b) /∈ pΓW , then we are forced to have
w(a) ∈ pΓW , and when we adjust a so that w(a) = 0, the same argument as just

given shows that a ∈ Z
∗p

. Thus, we have not been able to obtain a type (1) or a type
(2) valued division algebra in pBr( J)H when µp /∈ V .

Suppose instead that µp ⊆ V . Since Z = V (p)(µp) = V (p) and µp ⊆ V ,

Z
∗
/Z

∗p
is trivial. Therefore, we will not obtain any valued division algebras of

degree p of type (2) or type (3) over J. We are left to search for type (1) divi-
sion algebras. Thus, we may assume that w(a) and w(b) are Z/pZ-independent

in ΓW/pΓW . Here H is trivial, but choose the prime ideal P of V as in Theo-
rem 2.7, and let P be the prime ideal of W with P ∩ V = P, and H̃ the (non-
trivial) decomposition group of WP over VP; let wP be the valuation of WP. We
have an H-module homomorphism γ̃ : L∗/L∗p → indH̃→H(ΓWP

/
pΓWP

) so since
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[a] ∈ (L∗/L∗p)
(χ)

, we find that γ̃[a] ∈ (indH̃→H(ΓWP

/
pΓWP

))(χ). By Proposi-

tion 2.8 it follows that wP(a) ∈ (ΓWP

/
pΓWP

)(χ|H̃ ). Since H̃ acts trivially on ΓWP
,

this implies that wP(a) ∈ pΓWP
or χ|H̃ is trivial. If wP(a) ∈ pΓWP

, we can modify a

by a p-th power in L∗ to assume that wP(a) = 0. But then for W̃ = W/P, the exact
sequence like (2.2) for ΓW shows that w(a) ∈ ΓW̃ . But then Theorem 2.7 shows that
w(a) ∈ pΓZ , so that (a, b; J)ω is not a type (1) valued division algebra over J. On

the other hand, if χ|H̃ is trivial, then αχ−1|H̃ = α|H̃ , which is nontrivial. Hence, the
argument just given for a now shows that w(b) ∈ pΓZ , so again we do not obtain a
type (1) valued division algebra over J.
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